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Abstract: In practice, objective condition may impose constraints on design region, which make it 

difficult to find the exact D-optimal design. In this paper, we propose a Multi-stage Differential 

Evolution (MDE) algorithm to find the global approximated D-optimal design in an experimental 

region with linear or nonlinear constraints. MDE algorithm is approved from Differential Evolution 

(DE) algorithm. It has low requirements for both feasible regions and initial values. In iteration, 

MDE algorithm pursues evolutionary equilibrium rather than convergence speed, so it can stably 

converge to the global D-optimal design instead of the local ones. The advantages of MDE algorithm 

in finding D-optimal design will be illustrated by examples. 
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1. Introduction 

Optimal design is a common tool in solving industrial problems. In order to determine the 

production process or evaluate the product quality, experimenters usually take into account the 

optimal design methods to collect more information. The optimal design is to find a best design with 

given model and certain optimal criteria in a feasible region. When we deal with practical optimal 

design problems, the feasible region is usually irregular due to the limitation of some objective 

conditions, which leads to the constrained experimental regions and the limitations are called 
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constraints. Montgomery et al. [1], Borkowski and Piepel [2] discussed a large number of 

constrained industrial optimal design examples. It is difficult to find the exact design if the design 

region is irregular due to constraints.  

It is difficult to find the exact design if the design region is constrained. Therefore, it turns out 

to be a new trend to find the approximate solutions of constrained optimal design problems by 

computer algorithms. 

Scholars have put forward many approaches to solve the constrained optimal design problems. 

Snee and Marquardt [3] proposed XVERT algorithm to solve constrained mixture design problems.  

Mitchell [4] applied DETMAX algorithm to construct D-optimal design. Cook and Nachtsheim [5] 

presented Modified Fedorov Exchange (MFE) algorithm for D-optimal design. According to the 

iteration processes of the earlier algorithms, the optimality of a design mainly depends on the 

candidate sets or parameters. 

Biomimetic algorithms helped us to find more accurate numerical solutions in the past two 

decades. For example, Heredia-Langner et al. [6,7] used Genetic Algorithm (GA) to calculate 

D-optimum, Q-optimum constrained experimental design problems. Yu [8] proposed Cocktail 

Algorithm to find the D-optimal design of some experimental problems. Liu and Liu [9] constructed 

constrained uniform mixture design by a special method. Li et al. [10] applied Mixture Design 

Random Search (MDRS) algorithm to mixture design, they solved D- and A-optimal designs of 

Scheffé model and Becker model in design region with and without constraints. Duan et al. [11] 

employed Efficient Computational algorithm for solving optimal continuous experimental designs. 

In recent years, Particle Swarm Optimization (PSO) algorithm is very common in design problems. 

Wong et al. and Yang et al. [12,13] applied PSO and Fractional-Order PSO algorithm to obtain 

optimal designs under D-, A-, I- criteria for linear and Quadratic models. 

After an overview of the above biomimetic algorithms, we find that the cocktail algorithm, PSO 

algorithm and Efficient Computational algorithm have not been applied to the design problem with a 

constrained region, while the MDRS algorithm and Liu's method have only be used for the mixture 

constrained design problems. GA can be used for all above situations, but the existing results are not 

accurate. Thus a stable algorithm with wide application and high precision is imperative. 

Differential Evolution (DE) algorithm is well known for its stability and efficiency among 

the existing biomimetic algorithms. It was proposed by Price [14] first, then Storn et al. and Price 

et al. [15,16] gave more details and examples of DE algorithm to further shown its advantages. DE 

algorithm is widely used in many fields, such as Zhao et al. [17] forecasted the per capita annual net 

income of rural households in China by DE algorithm and Grey model, Rajesha et al. [18] planned 

least cost generation expansion with DE algorithm, Xu et al. [19] used DE algorithm to find 

high-dimensional D-optimal designs for logistic models, Deng et al. [20] proposed the EMMSIQDE, 

a new differential mutation strategy of a difference vector to enhance the search ability and descent 

ability, etc. DE algorithm gives a steady performance in solving complex problems and above all it 

has low requirements on feasible region and initial values. DE algorithm is suitable for both optimal 

design and mixture design problems with irregular feasible region. 

One of the difficulties in solving the constrained experimental design problems is that we don't 

know the exact number of support points before calculation. The general method is setting more 

initial points than the number of exact support points, then combine the points with short range to a 

support point. The computation quantity is enormous if we use DE algorithm directly to this problem. 

Therefore we propose a Multi-stage Differential Evolution (MDE) algorithm for the constrained 
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optimal design problems. MDE algorithm is composed of two stages: calculations of D-optimal 

support points and the corresponding measures, both stages base on DE algorithm. MDE algorithm 

can run on any convex feasible region, and sufficient random initial values selected in the feasible 

region can effectively ensure the convergence. It maintains the stability and effectiveness of DE 

algorithm while reduces the computational cost. 

The remainder of the paper is organized as follows. In section 2, we introduce some basic 

concepts of optimal design and D-optimal criterion, then we give the process of finding the 

D-optimal design by MDE algorithm. Section 3 discussed two examples, i.e. an optimal design 

problem with linear constraints and a mixture design problem with nonlinear constraint. The 

conclusions and future research directions are given in the last section. 

2. MDE algorithms for D-optimal design 

2.1. Optimal design and D-optimal criterion 

The optimal design method [21] is widely used and D-optimal is the most popular design 

criterion. When the model is given, the unknown parameters can be calculated efficiently by the data 

from optimal design. Before finding an optimal design, we need to select a response model first. 

Scholars usually choose the general linear models as the response model for convenience. Myers et 

al. [22] discussed the general linear models in details. Dasgupta [23] studied the compromise designs 

in heteroscedastic linear model. Chaloner [24] contributed to optimal Bayesian experimental design 

for linear models. The general linear model is  

( ) ( ) ( ) ( )x x x x ,Y f   = + = +
                                (1) 

where ( )x  is the expectation of Y, which is the outcome of an experiment with a given point x . 

  is a 1p vector of unknown parameters. We denote the coordinates of the experiment point 

x  as a 1 q  vector ( )1x , , qx x= , ( ) ( ) ( ) ( )( )1 2x = x , x , , x
T

pf f f f  is a given function vector, 

here   is a set of all possible design points. Generally, ( )x is a random error with zero mean and 

constant variance. 

In this paper, we focus on the approximate optimal design and assume that   is a compact set, 

therefore the approximate optimal design always exists. That is, there is a probability measure in the 

design space. Generally, a design   can be expressed as a combination of k  design points 

1x , ,xk  and their corresponding measures 1, , kr r , 

1 2

1 2

x x x
,

k

kr r r


 
=  

 
                                        (2) 
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where 1 1kr r+ + = . Given a sample of n  known trials, we can take inr  observation value at 

each x , 1, ,i i k=  to implement the design so that 1 knr nr n+ + = , and , 1,2, ,inr i k=  is an 

integer. This means that an approximate optimal design is a probability measure on  . For a given 

experimental design problem, the set of all possible designs is denoted by  . 

The information matrix of approximate design   is 

( ) ( )( ) ( ) ( ) ( )( ) x x x x x .M E f f f f d 


 = =                         (3) 

A design is called an optimal design with constraints if the experimental point x , 1, ,i i k=  is 

limited in the constrained design region  , see Cook et al [25]. Mixture design focuses on the 

proportions of mixture components, i.e. all the experimental design points are limited to a simplex 

1qS −
, 

( ) 1

1 1
= x , , | 1, 0, 1, , .

qq

q j jj
S x x x x j q−

=
= =  =  

Further details of mixture design can be found in [26]. 

D-optimality is one of the most widely used criteria in experimental design problems. We can 

get D-optimum by choosing the appropriate design   to maximize the determinant value of the 

Fisher information matrix ( )M  , or minimum ( )1det ( )M − . 

In the problem of finding D-optimal design, the variance function is 

( ) ( ) ( )-1x, x ( ) x , x .d f M f =                                 (4) 

D  is a D-optimal design of the linear model (1) if and only if it satisfies the following general 

equivalence theorems, see [27] . 

(1) ( ) ( )( )=det supD M


 


 → ;                                                  (5) 

(2) ( )xmax x, =Dd p . 

D-efficiency is usually used to compare two k  runs D-optimal designs, the D-efficiency in 

constrained optimal design problem can be expressed as follows 

( )
( )

1

1

1

1

2

,

k

eff

det M
D

det M

−

−

 
 =
 
 

 



2960 

AIMS Mathematics  Volume 6, Issue 3, 2956–2969. 

where ( ) ( ) ( )x x x , 1,2i i iM f f d i


= = come from different D-optimal designs of same constrained 

optimal design problem. 

2.2. MDE algorithms for constrained optimal design problems 

When we try to find an optimal design with MDE algorithm, we are solving an optimization 

problem 

max ( ),





                                              (6) 

where objective function is determined by the optimal criterion. 

In this paper, we consider that a D-optimal design consists of two parts: D-optimal experimental 

support points and the correlation measures, then we calculate them respectively by the following 

two stages. 

2.2.1. Stage 1- finding D-optimal design points 

At this stage, we assume that all experimental design points have the same measure, then we 

only focus on finding the experimental design points. 

2.2.1.1. Encoding 

The calculation process of MDE algorithm begins with the coding of design points. For 

model (1), in order to convert the design points in design   into the form in which we can 

solving by MDE algorithm, we code it as a row vector X, 

( )1 2x , x , , x sX = ,                                       (7) 

where X is called design points chromosome vector, in case of optimal design problems with 

constraints, s k , 1 2x ( , , , ) ,i i i iqx x x = 
 

1, ,i s= .  

It is obvious that the design points in a design   correspond to a design point 

chromosome vector X one by one. Each element in the design point chromosome vector is called 

a gene, a design points chromosome X contains a total of s q  genes. 

2.2.1.2. Selection of initial value 

To ensure the implementation of MDE algorithm, we need to establish a design points 

population of 1N  design points chromosome vectors ( )

1

t

NA , where  
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( )

( )

( )

( )

1

1
1

1

,

t

t

N

t

N
N sq

X

A

X


 
 

=  
  
 

 

1N  is called design points population size, t  is the generation of population, ,  0t Z t   , 

( )

1

t

NA  is the parent population of ( )

1

1t

NA
+  , and ( )

1

1t

NA
+  is child population ( )

1

t

NA , 
( )t
iX is the tht  

generation of thi  design points chromosome vector, the design points population size 

1 3N sq   by experience. We call ( )

1

0

NA  the initial design points population, which is given 

randomly on the feasible region rather than chosen especially. 

2.2.1.3. Mutation 

For tht  generation population, we choose three different 
( ) ( ) ( )

, , ,
t t t

k l mX X X  1, , 1, ,k l m N

k l m i    for each ( )  11,,
t

iX i N . Mutation operation is performed to generate mutated 

chromosomes 
1

iV  for each 
( )

1, 1, ,
t

iX i N=  with formula 

( )1 ( ) ( ) ( ) ,t t t

i m k lV X F X X= +  −  

where scale factor [0,2]F . The mutation chromosome 
1

iV  is retained for the next cross 

transformation. 

2.2.1.4. Crossover 

In this step, we obtain a crossover chromosome 
1

iU  by compare each gene of 

( ) ( )11
t

iX i N   with its mutated chromosome 
1

iV . For a given cross factor  0,1CR , the 

crossover approach is to take a random number  0,1b  for the 
thj  gene in 

( )
, 1, ,

t

iX j sq= , 

let 

( )

( )

( )

1

1

     if ,
( )

        otherwise.

t

i

i

i

X j b CR
U j

V j

 
= 


 

After processing all the genes in ( ) ( )11
t

iX i N  , crossover chromosomes 
1

1, 1, ,iU i N=  

will be generated. If there is no special value tendency, CR  will be taken as 0.5. 
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2.2.1.5. Selection and decoding  

We decode the crossover chromosomes 
1

1, 1, ,iU i N=  and 
( )

1, 1, ,
t

iX i N=  into uniform 

measure designs with 
1
iU

  and 
( )t
iX

  respectively, the child chromosome vector 

( )1

1, 1, ,
t

iX i N
+

=  is decided by formula 

( )1

1

( 1)

( )

( ) ( ),

other

 

wi se. 

t
i i

i Ut X

i
t

i

U
X

X

 
+

   
= 


 

The selection process ensures that the chromosome with larger objective function value will 

be chosen into the child population, i.e. the iteration with MDE algorithm holds a correct 

evolution direction and converges fast. 

2.2.1.6. Conditions of termination 

The convergence of MDE algorithm ensures there must exist 1T , so that after the iteration 

times ( )1  t t T , 
( )

1,  1, ,
t

i X i NX → = . Therefore, X is the design points of D-optimal design 

under the uniform measure assumption. 

The child population is obtained after mutation, crossover and selection of the parent 

population. For each child population, it needs to be evaluated whether the termination condition 

has been satisfied. If the termination condition is satisfied, the calculation ends and the optimal 

solution is obtained. Otherwise, go back to the mutation process and the iteration continues. 

After merging nearby points in X , we obtain ( )1 2x , x , , x ,1D DkD DX k s=   , here 

1 2x ,x , ,xD D Dk  are D-optimal support points, k  is the number of D-optimal support points. 

2.2.2. Stage 2-solving the corresponding measure 

In this section, we calculate the corresponding measure 1 2, , , kr r r  to get the D-optimal 

design. 

2.2.2.1. Encoding 

Let 

( )1 2, , , ,kR r r r=  
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where R is called measure chromosome vector, ir  is the corresponding measure of

,x ,  1 ,Di i k= , 
1

1
k

i

i

r
=

= . Each element in the measure chromosome vector is called a gene, a 

measure chromosome R contains a total of k  genes. 

2.2.2.2. Selection of initial value 

Establish a measure population ( )

2

t

NB , where  

( )

( )

( )
2

2
2

1

,

t

t

N

t

N
N k

R

B

R


 
 

=  
  
 

 

2N  is called measure population size, t  is the generation of population, ,  0t Z t  , ( )

2

t

NB  

is the parent population, and ( )

2

1t

NB
+  is child population, 

( )t
iR  is the tht  generation of thi  

measure chromosome vector, here 2 3N k  by experience. ( )

2

0

NB  is the initial measure 

population, and 
( )0

2,  1, ,iR i N=  come from 1kS −  randomly.  

2.2.2.3. Mutation 

For generation t  , we choose three different ( ) ( ) ( )  2, , , , , 1, ,
t t t

k l mR R k l m N k lR m i     for 

each ( )  2, 1,
t

i iR N . We generate mutated chromosomes 
2

21,, ,i i NV =  for each 

( )
2, 1, ,

t

i i NR =  with formula 

( )2 ( ) ( ) ( )t t t

i m k lV R F R R= +  − . 

2.2.2.4. Crossover 

We obtain a crossover chromosome 
2

iU  by following formula 

( )

( )

( )

2

2

     if ,

   
( )

 other wise, 

t

i

i

i

R j s CR
U j

V j

 
= 
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where 21, , ,  1, ,i N j k= = . 

2.2.2.5. Selection and decoding  

( ) ( )( )2

2

( 1)

( )

,

otherw

 

 ise. 

t
i i

it U R
i

t

i

U
R

R

 
+

   
= 


 

For design 
R

, the design points are D-optimal support points 
DX  and the corresponding 

measures are measure chromosome vector R. 

2.2.2.6. Conditions of termination 

There must be 2T , when 2t T , 

( ) supR





 → ， 

where ( )1 2, , ,D D DkDR r r r=  is the limit of 
( )t
iR , 2T  is the generation of measure population. 

If last formula is satisfied, we obtain the D-optimal design  

1 2

1 2

x x x
,

D D Dk

D

D D Dkr r r


 
=  

 
 

of constrained optimal design problem, otherwise go back to 2.2.2.3. 

3. Results 

We programmed the following examples in Matlab with 0.9,  0.5F CR= = . 

3.1. Experiment of adhesive bonding strength 

An industrial experiment of adhesive bonding strength is discussed in detail by Montgomery et 

al. [1] and Heredia-Langner et al [7]. The experimenters used an adhesive to bond two parts together 

and then cured the adhesive at an elevated temperature. It is known that the adhesive strength is 

related to the amount of adhesive and bonding temperature. If the amount of adhesive is too little and 

the curing temperature is too low, the bonding strength will be poor. If the amount of adhesive is too 

much and the curing temperature is too high, the parts may be damaged. The amount of adhesive and 

the curing temperature should be constrained by objective conditions. We should give an 

approximate D-optimal design to arrange the experiment more effectively. Here, let 1x  is the 

amount of adhesive, 2x  is the bonding temperature. After standardization, the experimental area is 
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the classical optimal design area 1,1 [ 1,1]−  − , and 1 2,x x  should be within a constrained region 

1 2 1x x+  , 1 2 0.5x x+  − . It is assumed that the adhesive strength y  is a quadratic function of

1 2,x x , 

2 2

0 1 1 2 2 12 1 2 11 1 22 2 .y x x x x x x      = + + + + + +  

Actually it is an optimal design problem with linear constraints. In order to be consistent with 

the previous works, we set 12 design points, each with 2 components, i.e. ( )1 2x , ,  i x x=  

1, ,12i = . 

According to stage 1, Table 1 is the result of the D-optimal design points with equal measures. 

Table 1. The 12 runs D-optimal support points of experiment of adhesive bonding strength. 

Design point Amount of adhesive Bonding temperature 

1 1.0000 0.0000 

2 −1.0000 1.0000 

3 −1.0000 0.5000 

4 0.1223 0.1037 

5 −0.3151 −0.1849 

6 0.5000 −1.0000 

7 0.1224 0.1035 

8 1.0000 −1.0000 

9 1.0000 0.0000 

10 0.0000 1.0000 

11 0.0000 1.0000 

12 0.0000 1.0000 

We calculate 12 runs D-optimal designs of adhesive bonding strength by several typical 

algorithms and the results are shown in Table 2. It is easy to see that the first stage of MDE algorithm 

gives the minimum ( )1det M −  and the maximum D-efficiency in following 4 D-optimal designs, 

which means MDE algorithm is most accurate in following algorithms. 

Table 2. The results comparison of 12 runs D-optimal design. 

Algorithm ( )1det M −  Relative D-efficiency 

MFE 3.696E-3 0.9711 

GA 3.545E-3 0.9778 

DE 3.101E-3 0.9999 

MDE 3.099E-3 1.0000 
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We combine nearby design points in Table 1, run stage 2 of MDE algorithm, the result is shown 

in Table 3. There are 8 support points in this D-optimal design. The amount of adhesive and bonding 

temperature are shown in the column 2 and 3 respectively. Besides extreme vertices, there are two 

particular support points (0.1223, 0.1037) and (−0.3151, −0.1849) included in the optimal design. 

The data in column 4 is the related measures of the support points, and the results show that the 

measures of support points are not equal due to the existence of constraints. The values of variance 

function at the support points are displayed in the last column. 

Table 3. The D-optimal design of experiment of adhesive bonding strength. 

Support point 
Amount of 

adhesive 

Bonding 

temperature 
r  ( )x,d   

1 1.0000 0.0000 0.1530 5.9983 

2 −1.0000 1.0000 0.1249 5.9996 

3 −1.0000 0.5000 0.1166 5.9999 

4 0.1223 0.1037 0.1549 6.0000 

5 −0.3151 −0.1849 0.0537 6.0000 

6 0.5000 −1.0000 0.1213 6.0000 

7 1.0000 −1.0000 0.1227 6.0000 

8 0.0000 1.0000 0.1529 6.0000 

Figure 1 shows that we obtain an extraordinary accurate D-optimal design with constraints. 

Figure 1(a) is the contour map of variance function. If the measures at the support points are not 

considered, the variance function can show as Figure 1(b). Figure 1(c) is the variance function of 

D-optimal design. We find that the variance function is approximately equal to 6 at the D-optimal 

design support points and less than 6 at other points in the feasible region. The result is consistent 

with the general equivalence theorem of D-optimal design. 

 

Figure 1. D-optimal design results of adhesive bonding strength experiment. 

3.2. Mixture Becker model with nonlinear constraint 

Liu et al. and Li et al. [9,10] discussed an example of mixture Becker model with nonlinear 

constraint. The Becker model is  
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3 3

123 1 2 3

1

{ , } { , , },i i ij i j

i i j

y x min x x min x x x  
= 

= + +   

and the feasible region is  

( ) 3 2 2

1 2 3 1 21
= , , | 1, 0, 0.36 .i ii

x x x x x x x
=

=  +   

We calculate this D-optimal design example with MDE algorithm, the calculations are shown as 

Table 4. We solve this problem by the first stage of MDE algorithm, then combine nearby points to 

get 9 support points, which are listed in the second column. The third column is the measures 

corresponding to the support points, which are obtained by the second stage of MDE algorithm. The 

variance function values at each support point are given in the last column, and all the values are less 

than 7. 

Table 4. The D-optimal design of mixture Becker model with nonlinear constraint. 

Support point Coordinate r  ( )x,d   

1 (0.0000, 0.4999, 0.5001) 0.1247 6.9752 

2 (0.3332, 0.3333, 0.3334) 0.1344 6.9876 

3 (0.2211, 0.5577, 0.2212) 0.1330 6.8547 

4 (0.0000, 0.5999, 0.4001) 0.0287 6.9650 

5 (0.5000, 0.0000, 0.5000) 0.1249 6.9727 

6 (0.4242, 0.4243, 0.1515) 0.1418 6.9673 

7 (0.5578, 0.2207, 0.2214) 0.1418 6.8132 

8 (0.0000, 0.0000, 1.0000) 0.1419 6.9999 

9 (0.5999, 0.0000, 0.4001) 0.0288 6.9656 

Figure 2 shows that the MDE algorithm is valid for nonlinear constrained mixture design 

problems. Figure 2(a) is the contour map of the variance function. Figure 2(b) is the variance 

function without considering measures. Figure 2(c) shows the variance function of Mixture 

D-optimal design of Becker model with nonlinear constraints. The value of variance function is close 

to 7 at each support points and less than 7 at the rest points in the feasible region, which means the 

general equivalence theorem holds.  

 

Figure 2. Mixture D-optimal design results of Becker model with nonlinear constraint. 
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4. Conclusions 

Reliable results can usually be obtained when MDE algorithm is used to solve constrained 

D-optimal design problems. For a given constrained design problem, the significant advantage of 

MDE algorithm is that the global optimal design can be obtained in many situations. Another 

advantage of MDE algorithm is that any set with sufficient initial values can lead to a global optimal 

design. The accuracy of the solution can be determined by the parameter in the algorithm, and more 

iterations are needed for high-precision solution. 

MDE algorithm has low requirements to models, initial values and feasible regions, so it is 

suitable in solving constrained optimal design problems. We will try to apply MDE algorithm to the 

following optimal design problems: A-optimal design problems, E-optimal design problems, optimal 

design problems with heteroscedasticity, multi-response optimal design problems or the combination 

of the above problems. 
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