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1. Introduction

Marshall Olkin in 1997 gave a general method to extend any existing distribution by adding one
additional parameter called tiled parameter for the seek of goodness of fit. Later on many researchers
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adopted this method and proposed many new extended distributions, available in literature some of
them are the Marshall Olkin Pareto distribution [7], Marshall Olkin beta distribution [14], Marshall
Olkin extended Weibull distribution [10], Marshall Olkin exponentiated Burr XII distribution [11],
Marshall Olkin additive Weibull distribution [2], Marshall Olkin alpha power family [22], Marshall
Olkin Burr III family [1], and Marshall Olkin power generalized Weibull distribution [3], among many
more.

In this study, we introduced a new family of distributions called Marshall Olkin Burr-R (MOB-R)
family by inserting the generalized Burr-G (Arslan et al. [20]) in the Marshall Olkin family (Marshall
and Olkin [16]), we obtain the following cdf and pdf of the MOB-R class as

G(x; η, θ, k, ξ) =
1 −

(
1 +

{
− log[1 − R(x)]

}θ)−ρ
1 − (1 − η)

(
1 +

{
− log[1 − R(x)]

}θ)−ρ (1.1)

and

g(x; η, θ, ρ, ξ) =
θ ρ η r(x)

{
− log[1 − R(x)]

}θ−1
(
1 +

{
− log[1 − R(x)]

}θ)−ρ−1

{1 − R(x)}
[
1 − (1 − η)

(
1 +

{
− log[1 − R(x)]

}θ)−ρ]2 . (1.2)

Its hazard rate function (hrf) has the form

h(x; η, θ, ρ, ξ) =
θ ρ r(x)
1 − R(x)

{
− log[1 − R(x)]

}θ−1
(
1 +

{
− log[1 − R(x)]

}θ)[
1 − (1 − η)

(
1 +

{
− log[1 − R(x)]

}θ)−ρ] . (1.3)

The random variable (rv) X having the density (1.2)is denoted by X ∼MOB-R(η, θ, ρ). The quantile
function (qf), Qx(u), of the MOB-R family reduces to

QX(u) = R−1

1 − exp

−

(

u − 1
1 − η̄u

)− 1
ρ

− 1


1
θ

 , (1.4)

where x = Q(u) follows the MOBG family with U ∼ uni f orm(0, 1).

Motivation

The MOB-R family can be justified physically as follows. Cosider N independent components
which are related by a series system and suppose that N is a rv with a probability mass function P(N =

n) = δ(1 − δ)n, 0 < θ < 1 and n = 0, 1, .... Let X1, X2, ..., Xn represents the lifetimes of the components,
which are assumed to be independently and identically distributed rv’s with cdf F(x; θ, ρ, ξ). The rv
Y = min(X1, ..., XN) refers to time of the first failure and its cdf takes the form

G(y) = 1 −
∞∑

n=0

P [min(X1, ..., Xn) > Y] δ(1 − δ)n
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= 1 − δF̄(x)
∞∑

n=0

{
(1 − δ) F̄(x)

}n

=
1 −

(
1 +

{
− log[1 − R(x)]

}θ)−ρ
1 − (1 − η)

(
1 +

{
− log[1 − R(x)]

}θ)−ρ ,
where R(x) is any baseline cdf, i.e 0 < X < ∞ such as Lomax, Frechet, log-logistic and Weibull
distributions.

The rest of the article is followed as. In Section 2, a useful linear mixture representation. The
general properties of the MOB-R class are provided in Section 3. In Section 4, estimation of the
MOB-R parameters is carried out by maximum likelihood. In Section 5, we study the MOB-Lomax
model as a special model of the proposed family. In Section 6, a modified chi-square test statistic
for right censored data is applied to validate the MOB-L model. In Section 7, we provide simulation
results to check the performance of the maximum likelihood and to validate the test statistic. Real data
applications are analyzed to show the flexibility of the MOB-Lomax model in Section 8. Further, a
real censored data is analyzed to validate the considered test statistic. Some concluding remarks are
reported in Section 9.

2. Useful expansion

This section provides an infinite linear mixture for the cdf and pdf of the MOB-R class in (1.1) and
(1.2). By using following two series expansions

(1 − z)−ρ =

∞∑
i=0

(
ρ + i − 1

i

)
zi.

The log-power expansion has the form

[
log (1 + z)

]β
= β

∞∑
ρ=0

(
ρ − β

ρ

) ρ∑
j=0

(−1) j

β − j

(
ρ

j

)
% j,ρ zρ,

where % j,ρ = 1
ρ

ρ∑
m=1

( jm − ρ + m)θm % j,ρ−m, p j,0 = 1 and θρ =
(−1)ρ

ρ+1 .

The Eq (1.1) reduce to

G(x; η, θ, ρ, ξ) = 1 −
∞∑

m=0

am G(x)m, (2.1)

where am = η
∞∑

i=0
η̄i

∞∑
j=0

(
ρ(i+1)+ j−1

j

)
, θ j

(
m−θ j

m

) m∑
l=0

(−1)l+c j+m+ j

c j−l

(
m
l

)
%l,m

and am are weights and
∑

am = 1. Equation (2.1) can be written as

G(x; η, θ, ρ, ξ) =

∞∑
m=0

bm Hm(x), (2.2)
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where b0 = 1 − a0, bm = −am and Hm(x) = R(x)m .
Similarly

g(x; η, θ, ρ, ξ) =

∞∑
m=0

bm+1 hm+1(x), (2.3)

where hm+1(x) = (m + 1) r(x) R(x)m. Equations (2.3) and (2.2) refer to the infinite linear representation
for the cdf and pdf of the MOB-R class in terms of their baseline distributions, and they are helpful to
derive the MOB-R properties.

3. General properties

In this section, we derive some properties of MOB-R family, such as moments, generating function
(mgf), stochastic ordering, reliability parameter, and order statistics.

3.1. Moments

The rth moments of MOB-R family is derived using the following expression

µ′r = E(xr) =

∞∫
−∞

xr g(x; η, θ, ρ, ξ) dx.

Using mixture representation given in (2.3), we have

µ′r =
∑

bm+1

∞∫
−∞

xr hm+1(x) dx.

µ′r =
∑

bm+1 ∆r, (3.1)

where ∆r =
∞∫
−∞

xr hm+1(x) dx. Similarly, incomplete moments of MOB-R family can be calculated using

the following formula

µm
r =

∑
bm+1

∫ m

0
xrhm+1(x) dx. (3.2)

Applications of Eq (3.2) are related to mean deviation, Zenga index, income quantiles such as Lorenz
and Bonferroni curves, mean waiting time, and mean residual life.

The mgf of the MOB-G family can be obtained by using the following expression

M0(t) = E(et x) =

∞∫
−∞

et x g(x; η, θ, ρ, ξ) dx. (3.3)

Using mixture representation given in (2.3), we have

M0(t) =
∑

bm+1

∞∫
−∞

et xhm+1(x) dx,

Note that these integrals only depends only for the arbitrary base line distribution.
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3.2. Stress-strength analysis

In the field of reliability, stress-strength model has an important role which defines the life time of a
component which has a random strength, say X1, which is subject to an accidental stress, say X2. The
component will still work when X1 > X2. It has many application in engineering. Let X1 and X2 be two
rv’s follow the MOB-R family i.e. X1 ∼MOB-R(θ1, ρ1, η1) and X2 ∼MOB-R(θ2, ρ2, η2) with a common
shape and scale parameters.

R = P(X1 < X2) =

∞∫
0

f1(x) F2(x)dx. (3.4)

Using Eqs (2.2) and (2.3), we can write

R = P(X1 < X2) =

∞∑
m=0

∞∑
p=0

bp+1bm

∞∫
0

hp+1(x)Hm(x) dx, (3.5)

where hp+1(x) and Hm(x) are already defined in the previous section.

3.3. Stochastic ordering

The stochastic ordering is commonly used in showing the ordering mechanism in life time
distribution. A rv X is stochastically greater than the rv Y if FX(x) ≤ FY(x) for all x’s. Further, there
are some important stochastic orderings namely, stochastic order, hazard rate order, mean residual
order, likelihood ratio order, and reversed hazard rate order which are related to each other according
to the following chain of stochastic orders

X ≤rhr Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤mrl Y

Further details about different stochastic orderings and their definitions can be explored in Shaked and
Shanthikumar [23]. Let X1 ∼ MOBG(θ, ρ, η1) and X2 ∼ MOBG(θ, ρ, η2). Then, using likelihood ratio
ordering defined by

[
f (x)
g(x)

]
, we can write

f (x)
g(x)

=

[
1 − η̄1ξ

1 − η̄2ξ

]2

,

where ξ =
(
1 + (HR(x))θ

)−ρ
and ξ′ = θ ρ hR(x)HR(x)θ−1

(
1 + (HR(x))θ

)−ρ−1
. Therefore,

d
dx

f (x)
g(x)

= 2
[
1 − η̄1ξ

1 − η̄2ξ

]
ξ′

η1 − η2

(1 − η̄2ξ)2 .

From the above expression we see that d
dx

f (x)
g(x) < 0, if η1 < η2, so the likelihood ratio ordering exists

among the variables i.e. X ≤lr Y and the remaining stochastic orderings follow simply from the above
chain.
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3.4. Order statistics

Let X1, ..., Xn be a random sample for MOB-R family. The ith order statistic, Xi:n, has the following
pdf

fi:n(x) =
n!

(i − 1)!(n − i)!

n−i∑
j=0

(
n − i

j

)
(−1)i f (x)[F(x)]i+ j−1 (3.6)

Using Equations (2.2), (2.3) and the power series expansion in [13] (Pages 17–18), we have

=

n−i∑
j=0

∞∑
r,m=0

v j,r,mhr+m(x), (3.7)

where v j,r,m =
ρ (m+1) n!(−1) j br+1 e j+i−1:r

(i−1)!(n−i− j)! j! (r + m + 1), hr+m(x) = (r + m + 1)g(x)Gr+m(x) is already defined in
previous section.

4. Estimation

In this section, the estimation of the MOB-R parameters are obtained using the maximum likelihood
(ML) method. Let X1, X2, ..., Xn be a random sample from the MOB-R class. The log-likelihood
function for Θ = (η, θ, ρ, ξ)T takes the form

`(Θ) = n log (θ ρ η) +

n∑
i=1

log [hR(xi)] + (θ − 1)
n∑

i=1

log [HR(xi)]

− (ρ + 1)
n∑

i=1

log (1 + S i) − 2
n∑

i=1

log [1 − η̄(1 + S i)−ρ], (4.1)

where S i =
{
− log[1 − R(xi)]

}θ. The score vector elements take the forms

Uη =
n
η

+ 2
n∑

i=1

[
(1 + S i)−ρ

1 − η̄(1 + S i)−ρ

]
,

Uθ =
n
θ

+ (ρ + 1)
n∑

i=1

( ´S i:θ

1 + S i

)
+

n∑
i=1

log [HR(xi)] + 2
n∑

i=1

[
η̄ρ (1 + S i)−ρ−1

1 − η̄(1 + S i)−ρ
´S i:θ

]
,

Uρ =
n
ρ
−

n∑
i=1

log (1 + S i) + 2
n∑

i=1

[
η̄(1 + S i)−ρ log (1 + S i)

1 − η̄(1 + S i)−ρ

]
,

Uξ =

n∑
i=1

hξR(xi)
hR(xi)

 − n∑
i=1

 ´S i:ξ

1 + S i

 + (θ − 1)
n∑

i=1

Hξ
R(xi)

HR(xi)

 − 2
n∑

i=1

[
η̄ρ(1 + S i)−ρ−1

1 − η̄(1 + S i)−ρ
´S i:ξ

]
.

Equating the above equations by zero and solving them simultaneously yields the ML estimates.
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5. The MOB-Lomax model

If X ∼Lomax (a, b), then its cdf takes the form R(x) = 1 −
(
1 + x

a

)−b
. Using Eqs (1.2) and (1.1), we

obtain the cdf and pdf of the MOB-Lomax (MOB-L) distribution as follows

G(x) =

1 −
{
1 +

[
b log

(
1 + x

a

)]θ}−ρ
1 − η̄

{
1 +

[
b log

(
1 + x

a

)]θ}−ρ
and

g(x) =

b θ ρ η
[
b log

(
1 + x

a

)]θ−1
{
1 +

[
b log

(
1 + x

a

)]θ}−ρ−1

a
(
1 + x

a

) (
1 − η̄

{
1 +

[
b log

(
1 + x

a

)]θ}−ρ)2 .

The hrf of the MOB-L distribution reduces to

h(x) =
b θ ρ η

[
b log

(
1 + x

a

)]θ−1

a
(
1 + x

a

) {
1 +

[
b log

(
1 + x

a

)]θ} (
1 − η̄

{
1 +

[
b log

(
1 + x

a

)]θ}−ρ)2 .

In Figure 1, the plots for pdf and hrf are presented for the MOB-L distribution for several values of
parameters. As seen in Figure 1, MOB-L distribution is very flexible with skewed shapes.
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Figure 1. Plots of the pdf and hrf of the MOB-L distribution.

The mixture representations for the cdf and pdf of the MOB-L distribution follow from Equations
(2.2) and (2.3) as

G(x) =

∞∑
m=0

bm

{
1 −

(
1 +

x
a

)−b
}m
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and

g(x) =

∞∑
m=0

bm+1(m + 1)
b
a

(
1 +

x
a

)−b−1
{

1 −
(
1 +

x
a

)−b
}m+1

.

The qf of the MOB-L distribution follows from Equation (1.4) as

Qx(u) = a
[
(1 − A)−

1
b − 1

]
,

where A = 1 − exp

− {(
u−1
1−η̄

)− 1
ρ
− 1

} 1
θ

 .
The rth moment of the MOB-L model can be calculated using (3.1) as

µ′r =

∞∑
m=0

bm+1 (m + 1) ar b
∞∑
j=0

(
m + 1

j

)
(−1) j B(r + 1, β( j + 1) − r)

Its rth incomplete moment takes the form

mr =

∞∑
j=0

v j,m ar b B x
a
(r + 1, β( j + 1) − r), (5.1)

where v j,m =
∞∑

m=0
bm+1 (m + 1)

(
m+1

j

)
(−1) j.

Setting r = 1 in (5.1), the first incomplete moment reduces to

m1 =

∞∑
j=0

v j,m a b B x
a
(2, β( j + 1) − 1).

The mgf of MOB-L distribution follows from Equation (3.3) as

M0(t) =

∞∑
i=0

vi, j,m Γ(i + 1)
(
−1
t

)i+1

,

where vi, j,m =
∞∑

m, j=0
bm+1 (m + 1)

(
m+1

j

)(
β( j+1)+i

i

)
(−1)i+ j.

The pdf of ith order statistic for the MOB-L model is

fi:n(x) =

∞∑
j=0

∞∑
r,m=0

v j,r,m

(
1 +

x
a

)−b−1
{

1 −
(
1 +

x
a

)−b
}m+r+1

,

where

v j,r,m =
ρ (m + 1) n! (−1) j bm+1 e j+i−1:r

(i − 1)! (n − i − j)! j!
.

If we have two MOB-L distributions, such as MOB-L(η1, θ1, ρ1, a, b1) and MOB-L(η2, θ2, ρ2, a, b2),
with a common parameter a then from Equation (3.5), we obtain the reliability function as

R =

∞∑
m=0

∞∑
p=0

bp+1 bm

(
p + 1

i

)(
m + 1

j

)
(−1)i+ j (p + 1) b2

{b2(i + 1) + b1 j}
.

AIMS Mathematics Volume 6, Issue 3, 2912–2931.



2920

5.1. Estimation of the MOB-L Parameters

The log-likelihood function for the MOB-L model takes the form

ł(Θ) = log
{
θ ρ b η

a

}
−

n∑
i=1

log (di) + (θ − 1)
n∑

i=1

log
{
b log (di)

}

−(ρ + 1)
n∑

i=1

log(1 + Bi) − 2
n∑

i=1

log
[
1 − η̄(1 + Bi)−ρ

]
,

where Bi =
[
b log(di)

]θ and di =
(
1 + xi

a

)
.

The components of score vector are

Uη =
n
η
−

n∑
i=1

(1 + Bi)−ρ

1 − η̄(1 + Bi)−ρ
,

Uρ =
n
ρ
−

n∑
i=1

log(1 + Bi) − 2
n∑

i=1

η̄ (1 + Bi)−ρ log(1 + Bi)
1 − η̄(1 + Bi)−ρ

,

Uθ =
n
θ

+

n∑
i=1

log
{
b log (di)

}
− (ρ + 1)

n∑
i=1

Bi:θ

1 + Bi
− 2

n∑
i=1

η̄ ρ (1 + Bi)−ρ−1 B′i:θ
1 − η̄(1 + Bi)−ρ

,

Ub =
n
b

+ n
(θ − 1)

b
− (ρ + 1)

n∑
i=1

B′i:b
1 + Bi

− 2
n∑

i=1

η̄ ρ (1 + Bi)−ρ−1 B′i:b
1 − η̄(1 + Bi)−ρ

,

Ua = n a +

n∑
i=1

xi

a2
(
1 + xi

a

) − (θ − 1)
n∑

i=1

xi

a2 (di)
{
log (di)

} − (ρ + 1)
n∑

i=1

B′i:a
1 + Bi

− 2
n∑

i=1

η̄ ρ (1 + Bi)−ρ−1 B′i:a
1 − η̄(1 + Bi)−ρ

.

The log-likelihood function can be maximized directly using the R-package (AdequecyModel). In
AdequecyModel package, there are some maximization algorithms such as NR (Newton-Raphson),
BFGS (Broyden-Fletcher-Goldfarb-Shanno), BHHH (BerndtHall-Hall-Hausman), NM
(Nelder-Mead), SANN (Simulated-Annealing) and limited memory quasi-Newton code for
Bound-constrained optimization (L-BFGS-B). However, the MLEs here are computed using the
BFGS algorithm.

6. Modified Chi-Square test for right censored data

In this section, we provide a modified chi-square test statistic for right censored data from the
MOB-L distribution based on the modified chi-square type test which is proposed by Bagdonavicius
et al. [8] and Bagdonavicius and Nikulin [9], for parametric models with right censored data. Using
the maximum likelihood estimators (MLEs) for non-grouped data, this test statistic is also based on
the differences between the numbers of observed failures and the numbers of expected failures in the
chosen grouped intervals. Here, random grouping intervals are considered as data functions. Voinov et
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al. [24] developed the description of construction of this chi-square type test. The test statistic can be
defined as follows.

Suppose that X1, X2, ....., Xn is a random sample with right censoring from a parametric model, and
a finite time τ.

The test statistic takes the form

Y2
n =

n∑
j=1

(
U j − e j

)2

U j
+ Q,

where U j and e j are the observed and expected numbers of failure in grouping intervals, and Q has the
form

Q = WTĜ−W Â j = U j/n, U j =
∑

i:Xi∈I j

δi,

W = (W1, ....,Ws)T , Ĝ = [̂gll′]sxs, ĝll′ = îll′ −

r∑
j=1

Ĉl jĈl′ jÂ−1
j ,

Ĉl j =
1
n

∑
i:Xi∈I j

δi
∂

∂ξ
ln h(xi, ξ̂), îll′ =

1
n

n∑
i=1

δi
∂ ln h(xi, ξ̂)

∂ξl

∂ ln h(xi, ξ̂)
∂ξl′

,

Ŵl =

r∑
j=1

Ĉl jÂ−1
j Z j, l, l′ = 1, ...., s,

where h(xi, ξ̂) is the hrf ξ = (b, θ, ρ, η, η̄) and ξ̂ is the MLE of ξ on initial non-grouped data.
The limits a j of r random grouping intervals I j = [a j−1, a j[ are chosen such as the expected failure

times to fall into these intervals which are the same for each j = 1, .., r − 1, âr = max
(
X(l), τ

)
. The

estimated â j is

â j = H−1

E j −
∑i−1

l=1 H (xl, ξ)
n − i + 1

, ξ̂

 , âr = max
(
X(n),τ

)
,

where H(x) is the cdf of the considered distribution. This test statistic Y2
n follows a chi-square

distribution.
The expected failure times e j to fall into these intervals are e j = Er

r for any j, with
Er =

∑n
i=1 H (xi, γ̂).

The limit intervals a j are considered as random variables such that the expected numbers of
failures in each interval I j are the same, so the expected numbers of failures e j can be calculated by
the following formula

E j =
− j

k − 1

n∑
i=1

ln

1 − 1 −
(
1 +$θ

i

)−ρ
1 − η̄(1 +$θ

i )−ρ

 , j = 1, ..r − 1.
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6.1. Quadratic form Q

To calculate the quadratic form Q of the statistic Y2
n , and as its distribution does not depend on the

parameters, so we can use the estimated matrices Ŵ Ĉ and the estimated information matrix Î. The
elements of Ĉ are defined by

Ĉl j =
1
n

n∑
i:xi∈I j

δi
∂

∂ξ̂l
ln h(xi; ξ̂),

where $i = b log(1 + x
a ) and

ln h(xi) = ln(bθρη) + (θ − 1) ln$i − ln a − ln
(
1 +

x
a

)
− ln(1 +$θ

i ) − 2 ln(1 − η̄(1 +$θ
i )
−ρ)

The elements of Ĉ take the forms

Ĉ1 j =
1
n

n∑
i:xi∈I j

δi

[
1
b

+
θ − 1

b
−

θ$θ
i

b(1 +$θ
i )
−

2η̄θρ$θ
i (1 +$θ

i )
−ρ−1

b(1 − η̄(1 +$θ
i )−ρ)

]
,

Ĉ2 j =
1
n

n∑
i:xi∈I j

δi

[
1
θ

+
ln$i

1 + zb
i

−
2η̄ρ$θ

i ln$i(1 +$θ
i )
−ρ−1

1 − η̄(1 +$θ
i )−ρ

]
,

Ĉ3 j =
1
n

n∑
i:xi∈I j

δi

[
1
ρ
−

2η̄(1 +$θ
i )
−ρ ln(1 +$θ

i )
1 − η̄(1 +$θ

i )−ρ

]
,

Ĉ4 j =
1
n

n∑
i:xi∈I j

δi

η
,

Ĉ5 j =
1
n

n∑
i:xi∈I j

δi

[
2(1 +$θ

i )
−ρ

1 − η̄(1 +$θ
i )−ρ

]
and

Ŵl =

r∑
j=1

Ĉl jA−1
j Z j, l = 1, ..,m j = 1, .., r.

As the above components of the statistic have explicit forms, then we can obtain the test statistic for
the MOB-L(ξ̂) distribution with unknown parameters and right censored data. This statistic, follows a
chi-square distribution with r degrees of freedom, takes the form

Y2
n

(
ξ̂
)

=

r∑
j=1

(
U j − e j

)2

U j
+ ŴT

ı̂ll′ − r∑
j=1

Ĉl jĈl′ jÂ−1
j


−1

Ŵ.

7. Simulations

In this section, we provide two simulation studies to assess the performance of the MLEs and to
validate the test statistic Y2

n (ξ).
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7.1. Simulation for the MLEs

Now, we will study the performance of the maximum likelihood in estimating the MOB-L
parameters using simulations which are conducted for sample sizes n = 50, 150, 300, and for different
parameter combinations (I: a = 3, b = 4.5, θ = 0.5, ρ = 4, η = 2), (II:
a = 0.2, b = 0.8, θ = 1.5, ρ = 8, η = 7) and (III: a = 0.2, b = 0.8, θ = 0.5, ρ = 5, η = 5). To obtain the
average values of estimates (AEs), mean square errors (MSEs) and absolute biases (ABs) of the
parameters, we generated N = 3000 samples from the MOB-L model using the R program.

The MSEs and ABs were determined by the following equations:

MS Es(̂ϑϑϑ) =
1
N

N∑
i=1

(̂ϑϑϑ − ϑϑϑ)2, ABs(̂ϑϑϑ) =
1
N

N∑
i=1

|̂ϑϑϑ − ϑϑϑ|,

where ϑϑϑ = (a, b, θ, ρ, η)
′

.
The simulation results are shown in Table 1. The small values of ABs and MSEs prove that the

maximum likelihood performs very well in estimating the MOB-L parameters.

Table 1. Estimated AEs, ABs, and MSEs of the MLEs of the MOB-L parameters.

I II III

n Parameters AEs ABs MSEs AEs ABs MSEs AEs ABs MSEs

50 a 2.251 0.749 1.763 0.224 0.024 0.020 0.251 0.224 0.089
b 5.010 0.510 0.351 0.885 0.085 0.076 0.921 0.194 0.100
θ 0.735 0.235 0.272 2.222 0.722 0.541 0.823 0.624 0.320
ρ 4.847 0.847 1.934 8.016 0.016 0.006 5.614 0.094 0.040
η 2.593 2.407 1.240 6.989 0.015 1.038 5.824 0.324 0.192

150 a 2.549 0.451 0.651 0.157 0.015 0.018 0.230 0.222 0.077
b 4.953 0.453 0.244 0.708 0.072 0.035 0.920 0.171 0.091
θ 0.776 0.206 0.102 2.218 0.718 0.531 0.853 0.522 0.211
ρ 4.631 0.631 1.113 7.980 0.08 0.002 5.714 0.082 0.034
η 1.918 1.082 0.851 6.985 0.011 0.961 5.124 0.291 0.131

300 a 2.568 0.232 0.539 0.184 0.012 0.013 0.241 0.181 0.031
b 4.996 0.406 0.210 0.767 0.033 0.017 0.811 0.123 0.052
θ 0.754 0.154 0.082 2.177 0.677 0.490 0.639 0.031 0.021
ρ 4.689 0.589 1.106 7.784 0.002 0.001 5.219 0.011 0.009
η 2.062 1.009 0.818 7.023 0.003 0.910 5.277 0.091 0.035

500 a 2.988 0.202 0.511 0.204 0.008 0.002 0.204 0.125 0.010
b 4.496 0.316 0.111 0.807 0.031 0.009 0.801 0.029 0.002
θ 0.554 0.124 0.051 1.537 0.677 0.240 0.530 0.025 0.019
ρ 4.029 0.511 0.096 7.989 0.002 0.001 5.111 0.011 0.008
η 2.010 0.077 0.515 7.001 0.003 0.410 5.277 0.058 0.022
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7.2. Simulation for test statistic Y2

For testing the null hypothesis H0 that right censored data are from MOB-L model, we calculate the
test statistic Y2

n (ξ), defined above, using 10,000 simulated samples from the hypothesized distribution
with different sizes n = 15, 25, 50, 130, 350, 500, 1000 using the package ”bb solve algorithm” in the
R software. Then, the empirical levels of significance are calculated, for Y2 > χ2

ε(r), with theoretical
levels of significance ε = 0.10, 0.05, 0.01, and r = 5. The simulated levels of significance for Y2

n (ξ) of
the MOB-L model are reported in Table 1.

Table 2. Simulated significance levels for Y2
n (ξ) statistic of the MOB-L model against their

theoretical values.

N = 10, 000 n = 15 n = 25 n = 50 n = 130 n = 350 n = 500 n = 1000

ε = 1% 0.0059 0.0062 0.0067 0.0073 0.0086 0.0094 0.0109

ε = 5% 0.0432 0.0455 0.0469 0.0478 0.0488 0.0492 0.0508

ε = 10% 0.0922 0.0934 0.0954 0.0962 0.0979 0.0995 0.1001

The null hypothesis H0 for which simulated samples are fitted by MOB-L distribution, is widely
validated for different significance levels. Therefore, the proposed test statistic can be used to fit the
data from the MOB-L distribution.

8. Data analysis

In this section, we provide two real data analysis to prove the importance and flexibility of the
MOB-L distribution and another censored data to validate the MOB-L model using the modified test
statistic.

8.1. Applications

In this section, we illustrate the performance and flexibility of the MOB-L distribution, as a sub-
model of the MOB-R class, using two real-life data sets. The first data on 63 of strengths of 1.5 cm
glass fibres which are used by [6] and [19]. The data are: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.66,
1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.77, 1.84, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76,
1.48, 1.5, 1.55, 1.61, 1.62, 1.81, 2, 1.82, 2.01, 0.77, 1.61, 0.74, 1.04, 1.62, 1.66, 1.7, 1.64, 1.68, 1.73,
1.11, 1.28, 1.42, 1.5, 1.54, 1.3, 1.48, 1.51, 1.55, 1.61, 1.6, 0.84, 1.24, 1.63, 1.67, 1.7, 1.78, 1.89. The
second data on 128 bladder cancer patients on their remission times (in months) which are reported
in [15] and are analyzed by [4] and [5]. The data are: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 6.97, 9.02,
13.29, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 0.40, 2.26, 13.80, 25.74, 0.50, 2.46, 3.57, 5.06, 7.09, 9.22,
25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15,
2.64, 3.88, 5.32, 7.39,10.34, 3.64, 5.09, 7.26, 9.47, 14.24, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59,
10.66, 15.96, 36.66, 10.75, 16.62, 43.01, 1.19, 2.75, 1.05, 2.69, 4.23, 5.41, 7.62, 4.26, 5.41, 7.63, 4.33,
5.49, 7.66, 11.25, 17.14, 17.12, 46.12, 1.26, 2.83, 79.05, 11.64, 17.36, 1.40, 3.02, 1.35, 2.87, 5.62,
7.87, 4.34, 5.71, 7.93, 11.79, 8.26, 11.98, 19.13, 1.76, 18.10, 1.46, 4.40, 5.85, 3.25, 4.50, 6.25, 6.54,
8.53, 12.03, 20.28, 2.02, 8.37, 12.02, 2.02, 3.31, 4.51, 3.36, 6.76, 2.07, 3.36, 12.07, 21.73, 6.93, 8.65,
12.63, 22.69.
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The MOB-L model is compared with some existing models namely, Kumaraswamy-Lomax (Kw-L)
[17], generalized-exponentiated exponential-Weibull (GE-EW), beta-Lomax (B-L) [17], generalized
exponentiated-exponential (GEE), exponentiated-Weibull (EW) [21] and Lomax (L) distributions. The
fitted competing models are assessed using the Anderson-Darling (AnD) and Cramer von Mises (CvM)
measures.

The MLEs and the discrimination measures for all competing models are listed in Tables 3 and 4
for both data sets, respectively. It is clear from Tables 3 and 4, that the MOB-L model provides better
fit for both data sets as compared with other competing models.

Table 3. Parameter estimates, AnD and CvM statistics for carbon fibres data.

Distribution θ ρ η a b AnD CvM

MOB-L 1.92000 33.30000 20.99000 18.83000 2.15000 0.26360 0.04240
(1.2500) (1.0980) (1.7870) (0.7526) (0.0946)

GE-EW 0.15704 0.03692 3.22861 1.77021 - 0.37840 0.05954
(0.3778) (0.0389) (0.6367) (1.3850)

Kw-L 103.18000 8.72000 - 3.90000 345.35000 0.58070 0.105900
(31.2200) (26.5700) - (0.6030) (72.1100)

B-L 181.89000 7.02000 - 7.57000 68.44000 1.33900 0.24740
(38.4600) (40.6400) - (1.3000) (38.3300)

L 109.20000 39.67000 - - - 1.36400 0.25160
(19.5500) (12.8070)

GEE 0.26555 10.03650 7.23658 - - 1.43415 0.26682
(0.2162) (2.5950) (7.0528)

EW 3.73666 0.01709 0.01402 - - 0.40365 0.06479
(0.4457) (0.0213) (0.0084)

The hrf plots of the MOB-L model for the data sets are depicted in Figure 2. The TTT plots for
the two data sets are shown in Figure 3. The TTT plot for glass fibres data is concave that refers to
increasing failure rate, whereas the TTT plot for remission times data is concave then convex which
refers to a unimodal hazard rate. As shown, Figures 2 and 3 are consistent, where the hrf of the MOB-L
model is increasing for glass fibers data and unimodal for remission times data, hence we conclude that
the MOB-L is a suitable distribution for fitting the two data sets. Further, the estimated pdf, cdf, sf and
pp plots of the MOB-L model are displayed in Figures 4 and 5, for the two data sets.

8.2. Testing a real censored data using the Y2
n statistic

For now, we analyze the lymphoma data which represent times from diagnosis to death (in months)
for 31 individuals with advanced non Hodgkin’s lymphoma clinical symptoms, using the MOB-L
model. This data have been analyzed by Matthews et al. [18] and Gijbels and Gurler [12]. Among
these 31 observations 11 of the times are censored, because the patients were alive at the last time of
follow-up. The data are: 2.5, 4.1, 4.6, 6.4, 6.7, 7.4, 7.6, 7.7, 7.8, 8.8, 13.3, 13.4, 18.3, 19.7, 21.9, 24.7,
27.5, 29.7, 30.1*, 32.9, 33.5, 35.4*, 37.7*, 40.9*, 42.6*, 45.4*, 48.5*, 48.9*, 60.4*, 64.4*, 66.4*. The
* denotes a censored observation.
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Table 4. Parameter estimates, AnD and CvM statistics for remission times data.

Distribution θ ρ η a b AnD CvM

MOB-L 1.64953 0.08757 1.15492 32.19600 21.31120 0.09018 0.01391
(0.0144) (0.1735) (0.8478) (5.6221) (1.8282)

GE-EW 1 × 10−10 1.30988 0.52009 3.74791 - 0.29907 0.04526
(0.0983) (1.9112) (0.3223) (3.3941)

Kw-L 13.19000 0.53900 - 1.51800 8.28900 0.17240 0.02580
(17.6800) (2.7120) - (0.2667) (47.4700)

B-L 20.63000 0.08670 - 1.58500 54.60000 0.19230 0.02860
(14.18000) (0.31350) - (0.28360) (19.9300)

L 121.04100 13.94000 - - - 0.48730 0.08060
(42.76000) (15.39000)

GEE 0.12117 1.21795 1.00156 - - 0.71819 0.12840
(0.1068) (0.1877) (0.8659)

EW 1.04783 1.00500 × 10−7 0.09389 - - 0.96345 0.15430
(0.31424) (0.3013) (0.1179)
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Figure 2. The hrf plots of the MOB-L model (left) for glass fibres data and (right) for
remission times data.
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Figure 3. TTT plots (left) for glass fibres data and (right) for remission times data.
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Figure 4. Estimated pdf, cdf, sf and pp of the MOB-L model for glass fibres data.
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Figure 5. Estimated pdf, cdf, sf and pp of the MOB-L model for remission times data.

The test statistic provided in Section 7 is used to verify if these data can be modeled by the MOB-L
distribution. To this end, we first calculate the MLEs of the MOB-L parameters

ξ̂ = (b, θ, ρ, η, η̄)T = (2.673, 1.983, 5.124, 4.286, 3.463)T .

Data are grouped into r = 5 intervals I j. The numerical result are listed in Table 5.

Table 5. The values of â j, e j,U j, Ĉ1 j, Ĉ2 j, Ĉ3 j, Ĉ4 j, Ĉ5 j.

â j 7.1 8.3 16.4 32.5 66.4

UJ 5 4 3 7 12

Ĉ1 j 0.021 0.074 −0.526 −0.432 −0.236

Ĉ2 j −0.564 0.013 0.008 −0.718 −0.936

Ĉ3 j −0.536 −0.895 −0.921 −0.748 −1.103

Ĉ4 j 1.166 0.933 0.699 1.399 0.466

Ĉ5 j 0.852 0.763 0.236 0.974 0.125

e j 2.1935 2.1935 2.1935 2.1935 2.1935
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Then, we obtain the value of the test statistic Y2
n as

Y2
n = X2 + Q = 4.623 + 2.635 = 7.258

For significance level ε = 0.05, the critical value χ2
5 = 11.0705 is superior than the value of Y2

n = 7.
258, so we can conclude that the proposed MOB-L model fit these data very well.

9. Conclusions

In this paper, we present a new family called, Marshall-Olkin Burr-R family. Some general
properties of this family are studied. The estimation of its parameters is carried out by the maximum
likelihood approach. One special sub-model namely, Marshall-Olkin Burr-Lomax (MOB-L)
distribution is discussed in detail. Two applications are used to check the performance of the MOB-L
model. A modified chi-square test statistic for censored data is used to verify the validity of the
MOB-Lomax distribution. This test statistic shows that the MOB-Lomax model can be used as a good
candidate for analyzing real censored data. The work in the present paper can be extended in some
ways. For example, bivariate Marshall-Olkin Burr family can be studied. Further, the parameters of
the MOB-L distribution can be estimated using classical and Bayesian estimation methods and
compare between them to determine the best estimation method.
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