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1. Introduction

The long wave-short wave resonance equation has been deeply explored by many experts and
scholars in recent years, see [13, 17, 20, 25–27]. The focus of recent research has gradually shifted
from deterministic to stochastic long wave-short wave equations. For instance, in reference [29], the
authors have proved that the compact kernel part of the long wave-short wave equation on an infinite
lattice is upper semi-continuous. The random attractor of the stochastic discrete long wave-short wave
resonance equation on an infinite lattice has been obtained by reference [28]. Many studies are
obtained by using Itö theorem under standard Brownian motion (see [14]). We find that the method of
standard Brownian motion is no longer applicable here when we study fractional Brownian motion.
The most significant difference between fractional Brownian motion and standard Brownian motion is
that it has no independent increment, so we can not found the Markov process. However, we have
known that some theories of stochastic dynamical systems can also explain non-Markov processes
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through references [10, 21]. Therefore, we obtain a new technique to study fractional Brownian
motion, which is inspired by reference [12].

In recent years, many experts and scholars have carried out extensive and in-depth research on lattice
dynamic system because of its more and more critical role in biology, electrical engineering, laser
system and other fields. For example, the travelling wave solutions of the lattice dynamical system are
studied in [2]. Many people also have studied the dynamics of lattice dynamical systems, see [3, 6, 23,
26,30] and related references. Besides, a large number of authorities have studied the specific equations
in the lattice system. For instance, In reference [18], the author has explored the stochastic dynamical
system of the stochastic 3D Navier-Stokes equations and obtained the random attractor of this system.
As we know, the study of attractors has received considerable attention, see [19, 20]. Recently, a lot of
work has been done on the existence of random attractors, see [4, 8, 11, 12, 15, 22, 28, 30].

In this article, we discuss the stochastic discrete long wave-short wave resonance equation driven
by fractional Brownian motions. For ∀ n ∈ Z, t > 0, we have

i(
dun

dt
+ αun) − (Au)n − unvn = fn(t) + an

dβH
n (t)
dt

,

dvn

dt
+ µvn + γ(B(|u|2))n = gn(t) + bn

dβH
n (t)
dt

,

u(0) = un(0) = (un0)n∈Z, v(0) = vn(0) = (vn0)n∈Z,

(1.1)

where un = un(t) is a complex-valued function and vn = vn(t) is a real-valued function, α, γ and µ are
positive constants. Z is the set of integers, and i is the unit of imaginary numbers. It is well known
that i satisfies the equation i2 = −1. a = (an)n∈Z ∈ `2, b = (bn)n∈Z ∈ `2, f = ( fn)n∈Z ∈ `2 and
g = (gn)n∈Z ∈ `

2, where `2 ∈ Cb(R, `2) is the space composed of all bounded continuous functions from
R into `2. {βH

n (t) : n ∈ Z} is a fractional Brownian motion with Hurst parameter H ∈ (1/2, 1), A and B
are linear operators. We will give their detailed definitions in the second section.

The goal of this article is to study the stochastic discrete long wave-short wave resonance equation
driven by fractional Brownian motion with Hurst parameter H ∈ ( 1

2 , 1) and to obtain the random
attractor of the system (1.1). The method of this paper mainly comes from literature [10]. This
method has used a pathwise Riemann-Stieltjes integral (see [24]) to define the random integral of a
fractional Brownian motion with Hurst parameter H ∈ (1

2 , 1). Furthermore, by using fractional
Ornstein-Uhlenbeck process and Gronwall lemma, a pullback absorption set of the stochastic
dynamical system is obtained. In this paper, we need to consider two problems, one is the path
differentiability of the solution of the system (1.1), and the other is the property of the random
attractor of the solution. To solve the first problem, we use the indivisibility of the trajectory of the
system (1.1) to find the difference between any two solutions. Furthermore, we can obtain the path
differentiability of solutions (see [5]). To solve the second problem, the existence of a unique
stochastic equilibrium set were researched by using the stationarity of fractional Ornstein-Uhlenbeck
process. Combining the above two points, we can get that the random attractor of the system (1.1) is a
singleton sets random attractor.

The rest of this article is organized as follows. In Section 2, we introduce some symbols and spaces.
Furthermore, we review some facts about fractional Brownian motion and random dynamical systems.
In Section 3, we prove that the system (1.1) has a global solution by transforming the equation form
and making a priori estimation. In Section 4, we show that (1.1) generates a stochastic dynamical
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system φ. And then the system φ developed by Eq (1.1) has a unique stochastic equilibrium, which
constitutes a singleton sets random attractor.

2. Preliminary

In this portion, we introduce some symbols used in the following and describe some theorems
associated with fractional Brownian motion (fBm) and random attractors (see [3, 7]).

Firstly, we introduce some symbolic representations and some spaces related to this article.

L2 = {u = (uk)k∈Z, uk ∈ C :
∑
k∈Z

|uk|
2 < ∞},

`2 = {v = (vk)k∈Z, uk ∈ R :
∑
k∈Z

|vk|
2 < ∞},

where R is the set of real numbers, and C is the set of imaginary numbers. Both L2 and `2 are Hilbert
spaces. They have the inner product and norm as

(u, v) = Re
∑
k∈Z

ukvk, ‖u‖2 = (u, u) =
∑
k∈Z

|uk|
2, ∀u ∈ L2, v ∈ `2,

where vk means the conjugate of vk. Assume that Φ = (Φ(t)) = (u(t), v(t)) for all t ≥ 0. Let H denote
H = L2 × `2 . Then we have norm ‖ · ‖H as follows

‖Φ‖2H = ‖u‖2 + ‖v‖2,

where u = (uk)k∈Z ∈ L2 and v = (vk)k∈Z ∈ `
2. Next, we give the definition of these linear operators A, B

and B∗ in the system (1.1)

(Au)k = −uk−1 + 2uk − uk+1, (Bu)k = −uk + uk+1, (B∗u)k = uk−1 − uk,

where u = (uk)k∈Z ∈ L2. By simple calculation, we can get

A = BB∗ = B∗B, (B∗u, u′) = (u′, Bu), ∀u, u′ ∈ L2.

Obviously, (Au, u) ≥ 0 holds. Moreover, for u = (uk)k∈Z ∈ L2, the L2 norm of Bu satisfies the following
inequality( [12])

‖Bu‖2 ≤ 4‖u‖2. (2.1)

Secondly, we review some knowledge of the fractional Brownian motion (fBm). Let βH(t), t ∈ R be
a continuous centred Gaussian process, assuming that H is the Hurst parameter and H ∈ (0, 1). Now
we give the definition of the two-sided one-dimensional fractional Brownian motion βH

EβH(t)βH(s) =
1
2

(|t|2H + |s|2H − |t − s|2H), t, s ∈ R.

Next, we discuss the value of Hurst parameter H. When H = 1
2 , βH becomes the standard Brownian

motion, and the random attractor of the stochastic discrete long wave-short wave equation is obtained
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in reference [28]. When H , 1
2 , the fractional Brownian motion does not satisfy the Markov process.

But we have

E|βH(t) − βH(s)|2 = |t − s|2H.

When 0 < H < 1
2 , the generalized Stieltjes integral can not be used to define random integral, which

makes it very difficult to deal with the stochastic dynamical systems. So we only consider the case of
Hurst parameter 1

2 < H < 1 in this article.
According to the definition of βH(t), we can use Kolmogorov’s theorem not only to know that

βH(t) is continuous, but also that the path is Hölder continuous of any order H′ ∈ (0,H). For details,
see [16]. In this paper, (Ω,F ,P, (θt)t∈R) is an ergodic metric dynamical system, where F is a relevant
sigma-algebra, Ω = C0(R, `2) denotes a continuous function space with value `2 on R with an open
compact topology, and {θt}t∈R is the group of Wiener transformations on Ω given by

{θt}ω(s) = ω(s + t) − ω(t),

where every s, t ∈ R. Consequently, we can get the following equation

βH(·, ω) = ω(·),
βH(·, θsω) = βH(· + s, ω) − βH(s, ω) = ω(· + s) − ω(s). (2.2)

In light of Definition 2.1 in reference [12], it can be seen that system (Ω,F ,P, (θt)t∈R) exists a
measurable mapping θ : (R ×Ω,B(R ⊗ F )→ (Ω,F ).

Finally, we review some definitions of random attractors. For the convenience of readers, we will
make a brief description. We should note that in the following definitions, the symbols (X, ‖ · ‖X) and
(Ω,F ,P, (θt)t∈R) represent separable Hilbert space and metric dynamical system, respectively.
Definition 2.1. (see [12]) Let φ be a random dynamical system on X over (Ω,F ,P, (θt)t∈R). If φ :=
φ(t, ω) is continuous for every t ≥ 0, ω ∈ Ω and satisfies

φ(0, ω, ) = IdX,

φ(t + s, ω) = φ(t, θsω, φ(s, ω)),

where s, t ≥ 0, ω ∈ Ω. Then the system φ is called a (B × F × B(X),B(X))-measurable mapping.
Definition 2.2. We have D = {D(ω), ω ∈ Ω} as a domain containing the set of all nonempty subsets
D(ω) in X. For every ω ∈ Ω, it holds

D ∈ D and D′(ω) ⊂ D(ω).

Then D′ ∈ D. We say that the domainD satisfies the inclusion property.
Definition 2.3. (see [1]) Let A = {A(ω), ω ∈ Ω} be composed of the nonempty measurable compact
subsetsA(ω) of X. We have

φ(t, ω,A(ω)) = A(θtω), ∀ t ∈ R+,

where R+ is the set of positive real numbers. ThenA(ω) of X is referred to as a φ-invariant.
Definition 2.4. (see [1]) There is a family A as defined in Definition 2.3. If the pathwise pullback
attracting satisfying

lim
t→∞

dX(ϕ(t, θ−tω,D(θ−tω),A(ω))) = 0,
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for all D ∈ D. ThenA(ω) of X become a random attractor. Here dX is the Hausdorff semi-distance on
X.
Definition 2.5. Let {D(ω)} be a random bounded set. For all β > 0, we have

lim
t→∞

e−βtd(D(θ−tω)) = 0, ω ∈ Ω,

where d(D) = sup
b∈D
‖b‖X. Then {D(ω)} is tempered with regard to (θt)t∈R.

In this article, we will always use random tempered sets to give the attracting universe.
Definition 2.6. Let u: Ω → X be a random variable. Suppose u is invariant under the action of
stochastic dynamical system φ(t, ω), i.e.,

φ(t, ω)u(ω) = u(θtω), f or all t ≥ 0 and ω ∈ Ω.

Then u is called stochastic equilibrium.
Definition 2.7. (see [7]) We have the nonempty measurable sets D(ω) ∈ D. For all TD ≥ 0, a family B
composed of B(ω), we have

φ(t, θ−tω,D(φ−tω)) ⊂ B(ω), ∀t ≥ TD(ω), ω ∈ Ω.

Then a family B is called random absorbing.
Theorem 2.8. (see [1, 7]) Suppose that the system φ as defined in Definition 2.1 is asymptotically
compact in X and B be a closed random tempered absorbing family. If there exists ω ∈ Ω such that

A(ω) =
⋂
t>0

⋃
τ≥t

φ(τ, θ−τ, B(θ−τω)).

ThenA(ω) is a random attractor of system φ.
We have to note that when the random variable u∗ has the relationA(ω) = {u∗(ω)}. In other words,

the random attractor includes singleton sets. Then u∗(t) = u∗(θtω) is called a stationary stochastic
process.

3. The existence of the global solution

In this section, We mainly divide into three steps to prove the existence of global solution of system
(1.1). Firstly, we transform the system (1.1) with initial conditions into a pathwise Riemann-Stieltjes
integral equation in H

u(t) = u0 +

∫ t

0
[−iu(s)v(s) − αu(s) − iAu(s) − i f (s)]ds + W1(t),

v(t) = v0 +

∫ t

0
[−µv(s) − γ(B(|u(s)|2)) + g(s)]ds + W2(t),

u(0) = un(0) = (un0)n∈Z, v(0) = vn(0) = (vn0)n∈Z,

(3.1)

where

W1(t) := W1(t, ω) =
∑
i∈Z

anωi(t)ei,
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W2(t) := W2(t, ω) =
∑
i∈Z

bnωi(t)ei.

(ei)i∈Z ∈ `
2 represent the element with a value of 1 at position i and 0 at rest. And then we make a

priori estimation of the transformed system (3.1). Finally, we prove that the system (3.1) has the global
solution.

Moreover, through [21,22], we can be known that if (ρ̃i(ω))i∈Z ∈ `
2 are some positive constants and

for ∀ω ∈ Ω such that

‖W j(t)‖2 ≤ 2 max{‖a‖2, ‖b‖2}‖ρ̃(ω)‖2(1 + |t|4), j = 1, 2, (3.2)

Then the fractional Brownian motions are well-defined.
Now let’s start with a priori estimation of the pathwise Riemann-Stieltjes integral Eq (3.1).

Lemma 3.1. Suppose that f (t) = ( fk(t))k∈Z ∈ Cb(R, L2). Then we obtain that the system (3.1) exists
solutions and satisfies

‖u‖2 ≤ e−αt‖u0‖
2 +

1
α
‖ f ‖2, ∀t ≥ 0, ω ∈ Ω, (3.3)

where ‖ f ‖ = sup
t∈R
| f (t)|2.

Here, we omit the proof (see Lemma 3.1 of [28] for details). By using similar methods in references
[12, 21], we can obtain the following two lemmas.
Lemma 3.2. Suppose that f ∈ C(R, L2) and T > 0. Then we can obtain that there exists a pathwise
solution Φ = (Φ(t))t≥0 = (u(t), v(t))t≥0 for system (3.1). And the solution satisfies

sup
t∈[0,T ]

‖Φ(t)‖2H ≤C‖Φ(0)‖2H + sup
t∈[0,T ]

(‖W1(t)‖2 + ‖W1(t)‖2)

+

∫ T

0
(‖W1(t)‖2 + ‖AW1(t)‖2 + ‖W2(t)‖2 + ‖ f ‖2 + ‖g‖2 + ‖W1(t)‖4)ds,

where C is a positive constant independent of T .
Lemma 3.3. The solution of Eq (3.1) can be rewritten as determinants of a continuous random
dynamical system φ : R+ ×Ω × H→ H as follows

φ(t, ω,Φ0) = Φ0 +

∫ t

0
G(Φ(s))ds + η(t, ω) ∀ t ≥ 0, (3.4)

where G(Φ(t)) = LΦ(t) + F(Φ(t)) and

L =

(
−α − iA 0

0 −µ

)
, F =

(
−iuv − i f

−γ(B(|u|2)) + g(t)

)
, η(t, ω) =

(
W1(t, ω)
W2(t, ω))

)
.

4. Existence of Random attractors

In this part, we not only prove that there exists a random attractor for the system φ defined in Lemma
3.3, but also show that the random attractor is composed of the singleton sets.
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We study the fractional Ornstein-Uhlenbeck equations as follows

du(t) = −αu(t)dt + W1(t), (4.1)
dv(t) = −µv(t)dt + dW2(t), (4.2)

where α, µ are positive constants and W1(t),W2(t) denote one-dimensional fractional Brownian motions
with Hurst parameter H ∈ ( 1

2 , 1). According to the simple calculation, we can get the solutions

u(t) = u0e−αt + e−αt
∫ t

0
eαsdW1(s),

v(t) = v0e−µt + e−µt
∫ t

0
eµsdW2(s). (4.3)

By taking the pullback limit for the above time t, we obtain a stochastic stationary solution

u(t) = e−αt
∫ t

−∞

eαsdW1(s),

v(t) = e−µt
∫ t

−∞

eµsdW2(s), t ∈ R. (4.4)

This solution (u(t), v(t)) is called fractional Ornstein-Uhlenbeck solution.
Lemma 4.1. Suppose that (ρi(ω))i∈Z and (%i(ω))i∈Z ∈ `

2 are two positive constants, and for each ω ∈ Ω,
it holds

(ρ2(ω)) = 16
∑
i∈Z

a2
i ρ

2
i (ω)), (%2(ω)) = 16

∑
i∈Z

b2
i %

2
i (ω)).

Then the Riemann-Stieltjes integrals of the system (4.4) are well defined on H. Furthermore, we also
establish

‖e−αt
∫ t

−∞

eαsdW1(s)‖ ≤ ρ(ω)(1 + |t|2),

‖e−µt
∫ t

−∞

eµsdW2(s)‖ ≤ %(ω)(1 + |t|2),

where all ω ∈ Ω, t ∈ R.
Proof. We omit the proof here because we can draw this conclusion directly from [9].

Next, we give the main conclusion of this paper and prove it in detail.
Theorem 4.2. Suppose that f , g ∈ Cb(R, L2). Then the system φ has a unique stochastic equilibrium,
and it constitutes a singleton sets random attractor of the system φ.
Proof. Expressing two solutions of system (1.1) with Φ = (u(t), v(t)) and Φ = (u(t), v(t)). For all t ≥ 0,
their difference satisfies pathwise differentiability. So according to (3.4), we obtain that

Φ(t) − Φ(t) = Φ0 − Φ0 +

∫ t

0
[L(Φ(s) − Φ(s)) + F(Φ(s)) − F(Φ(s))]ds.
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Moreover, according to the integrand function on the right side of the above equation is path
continuous, we can get that Φ(t) − Φ(t) is path differentiable by the basic theorem of calculus. It’s
easy to get

d
dt

(Φ(t) − Φ(t)) = L(Φ(t) − Φ(t)) + F(Φ(t)) − F(Φ(t)). (4.5)

Taking the inner product of (4.5) and Φ(t) − Φ(t) on H, we get

d
dt
‖Φ(t) − Φ(t)‖2H =2(Φ(t) − Φ(t), L(Φ(t) − Φ(t)))H

+ 2(Φ(t) − Φ(t), F(Φ(t)) − F(Φ(t)))H

≤ − 2κ‖Φ(t) − Φ(t)‖2H,

where κ = min{α, γ, µ}. Thus we have

lim
t→∞
‖Φ(t) − Φ(t)‖2H ≤ lim

t→∞
e−2βt‖Φ0 − Φ0‖

2
H = 0.

The above equation shows that the solutions of system φ converge pathwise forward concerning time
t.

Next, we need to find the convergence value of the solution. According to the path continuity of
Φ(t) and Φ(t), we assert that Φ(t) − Φ(t) is path differentiable. When t ≥ 0, it satisfies the following
path differentiable Eq (4.5). In other words, we can write (4.5) in the following equivalent form

d
dt

(u(t) − u(t)) = −α(u(t) − u(t)) − iu(t)v(t) − iAu(t) − i f (t),

d
dt

(v(t) − v(t)) = −µ(v(t) − v(t)) − γB(|u(t)|2) + g(t). (4.6)

Let’s take the inner product of H with u(t) − u(t) and v(t) − v(t) respectively, and add their real parts
together. we have

d
dt

(‖u(t) − u(t)‖2 + ‖v(t) − v(t)‖2)

= − 2α‖u(t) − u(t)‖2 − 2µ‖v(t) − v(t)‖2

− 2Im(−u(t)v(t) − Au(t) − f (t), u(t) − u(t))
+ 2(−γB(|u(t)|2) + g(t), v(t) − v(t)). (4.7)

Using (2.1) and Young’s inequality, we have the following estimates

2Im(u(t)v(t), u(t) − u(t)) ≤
4
α
‖u‖2‖v‖2 +

α

4
‖u(t) − u‖2

≤
2
α

(‖u‖4 + ‖v‖4) +
α

4
‖u(t) − u‖2,

2Im(Au(t), u(t) − u(t)) ≤
4
α
‖Au‖2‖v‖2 +

α

4
‖u(t) − u‖2

≤
32
α
‖u‖2 +

α

2
‖u(t) − u‖2,
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2Im( f , u(t) − u(t)) ≤
4
α
‖ f ‖2‖v‖2 +

α

4
‖u(t) − u‖2,

−2γ(B(|u|2), v(t) − v(t)) ≤
4γ
µ
‖B(|u|2)‖2 +

γµ

4
‖v(t) − v‖2

≤
16γ
µ

(‖u‖4 + ‖v‖4) +
γµ

4
‖v(t) − v‖2,

2(g, v(t) − v(t)) ≤
4
µ
‖g‖2 +

µ

4
‖v(t) − v‖2.

We recall that κ = min{α, µ, γ}. For some terms on the right side of (4.7), utilizing the above
inequalities, we get

d
dt

(‖u(t) − u(t)‖2 + ‖v(t) − v‖2) ≤ − κ(‖u(t) − u(t)‖2 + ‖v(t) − v‖2)

+ C2(‖ f ‖2 + ‖g‖2 + ‖u(t)‖2), (4.8)

where C2 = C2(α, µ, ‖v‖). Then we get

d
dt

(‖Φ(t) − Φ(t)‖2H) ≤ −κ‖Φ(t) − Φ(t)‖2H + C2(‖ f ‖2 + ‖g‖2 + ‖u(t)‖2). (4.9)

By using Gronwall lemma, we get

‖Φ(t) − Φ(t)‖2H ≤e−κt‖Φ0(ω) − Φ0(ω)‖2H

+ C2e−κt
∫ t

0
eκs(‖ f (s)‖2 + ‖g(s)‖2 + ‖u(s)‖2)ds. (4.10)

In the following description, we usually write Φ(·) (or u, v, Φ) as Φ(ω) (or u(ω), v(ω), Φ(ω)) to
better illustrate the correlation between these variables and ω. We find the family of balls with Φ0(ω)
as the centre and r(ω) as the radius. Its radius r(ω) is expressed as follows

r(ω) :=

√
1 + C2

∫ 0

−∞

eκs(‖ f (s)(ω)‖2 + ‖g(s)(ω)‖2 + ‖u(s)(ω)‖2)ds. (4.11)

Then we infer that it is a family of pullback absorbing of the system (1.1). The random radius r(ω) is
well defined by the properties of f , g ∈ Cb(R, L2) and Lemma 4.1. By replacing ω by θ−tω, we obtain
from (4.10) that

‖Φ(θ−tω) − Φ(θ−tω)‖2H

≤e−κt‖Φ0(θ−tω) − Φ0(θ−tω)‖2H + C2

∫ t

0
eκ(s−t)(‖ f (s)(θ−tω)‖2

+ ‖g(s)(θ−tω)‖2 + ‖u(s)(θ−tω)‖2)ds,

≤e−κt‖Φ0(θ−tω) − Φ0(θ−tω)‖2H + C2

∫ 0

−t
eκs(‖ f (s)(θ−tω)‖2

+ ‖g(s)(θ−tω)‖2 + ‖u(s)(θ−tω)‖2)ds. (4.12)
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We also have

u(s)(θ−tω) = u0(s)(θs−tω) = u(s − t)(ω).

If we take the above formula into (4.12), we obtain that (u(t))t∈R and (v(t))t∈R are stationary processes.
This conclusion holds when t → ∞.

According to Lemma 4.1, we get

e−κt‖(Φ0(θ−tω)‖2H = e−κt‖(Φ(−t)(ω)‖2H → 0 as t → ∞.

Then we can obtain the pullback absorption as follows

‖Φ(θ−tω)‖2H = ‖(Φ0(ω)‖2H + r2(ω), ∀t ≥ TD(ω). (4.13)

Therefore, we can get the existence of stationary random process Φ(t)(ω) := Φ0(θtω). This random
process Φ(t)(ω) is a random equilibrium because it attracts all solutions along the pathwise either
forward or pullback. Then we define a singleton set A, which is composed of random equilibria and
expressed as A = {A(ω), ω ∈ Ω} = {Φ0(ω)}. According to Definition 2.4 and its absorption, we can
obtain thatA has compactness, invariance and attraction. So we can deduce that the singleton setA is
a random attractor. We have completed the proof of Theorem 4.2.
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