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1. Introduction

Consider the following doubly perturbed stochastic differential equations with Markovian switching

X(t) = x +

∫ t

0
f (s, X(s), r(s))ds +

∫ t

0
g(s, X(s), r(s))dB(s) + αmax

0≤s≤t
X(s) + β min

0≤s≤t
X(s). (1.1)

where r(t) be a right continuous Markov chain taking values in a finite state space S = {1, 2, · · · ,N},
f : [0,T ] × R × S → R and g : [0,T ] × R × S → R are some appropriate functions; W is a standard
Brownian motion and α and β are two constants. There now exists a considerable body of literatures
which are devoted to the study of “perturbed” stochastic equations. As the limit process from a weak
polymers model, Carmona et al. [5] and Norris et al. [19] investigated the following doubly perturbed
Brownian motion

x(t) = B(t) + αmax
0≤s≤t

x(s) + β min
0≤s≤t

x(s). (1.2)
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Many researchers have devoted themselves to studying this model due to its extensive applications,
see Davis [7], Carmona, Petit and Yor [4], Perman and Werner [23], Chaumont and Doney [6], etc.
Following them, Doney and Zhang [8] studied the following singly perturbed Skorohod equations

x(t) = x0 +

∫ t

0
g(s, x(s))dB(s) +

∫ t

0
f (s, x(s))ds + αmax

0≤s≤t
x(s). (1.3)

The authors proved the existence and uniqueness of the solution for (1.3) when the coefficients b, σ are
the global Lipschitz. Mao et al. [18] discussed the following doubly perturbed stochastic differential
equations

x(t) = x0 +

∫ t

0
g(s, x(s))dB(s) +

∫ t

0
f (s, x(s))ds + αmax

0≤s≤t
x(s) + β min

0≤s≤t
x(s). (1.4)

They showed the existence and uniqueness of the solution for (1.4) under some non-Lipschitz
conditions. Hu and Ren [13] and Luo [16] extended the equation (1.4) to the neutral type and doubly
perturbed jump-diffusion processes, respectively. Liu and Yang [15] established the existence and
uniqueness of the solution for a class of doubly perturbed neutral jump-diffusion processes with
Markovian switching.

On the other hand, in the past decade, a plenty of results have been published concerning Talagrand-
type transportation cost inequalities (TCIs) on the path spaces of stochastic processes. Now let us
consider the kinds of inequalities we will deal with. Let (E, d) be a metric space equipped with a σ-
field B such that the distance d(·, ·) is B ⊗B-measurable. Given p ≥ 1 and two probability measures
µ and ν on E, the Wasserstein distance is defined by

Wd
p(µ, ν) = inf

π∈C (µ,ν)

(∫ ∫
d(x, y)pdπ(x, y)

)1/p

,

where C (µ, ν) denotes the totality of probability measures on the product space E×E with the marginals
µ and ν. The relative entropy of ν with respect to µ is defined as

H(ν|µ) =

{ ∫
ln dν

dµdν, ν � µ,

+∞, otherwise.

The probability measure µ satisfies the T p transportation inequality on (E, d) if there exists a constant
C ≥ 0 such that for any probability measure ν,

Wd
p(µ, ν) ≤

√
2CH(ν|µ).

As usual, we write µ ∈ Tp(C) for this relation. As is known to all, the cases “p = 1” and “p = 2” are of
particular interest. T1(C) is related to concentration of measure phenomenon and well characterized,
as it was shown by Djellout [9] using preliminary results obtained in Bobkov and Götze [1].

The property T2(C) is stronger than T1(C) and it has the dimension free tensorization property. The
property T2(C) is closely linked with many other functional properties such as Poincaré inequality,
logarithmic Sobolev inequality and Hamilton-Jacobi equations. For example, Otto and Villani [20]
showed that in a smooth Riemannian setting, the logarithmic Sobolev inequality implies T2(C), and
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T2(C) means the Poincaré inequality. Since Talagrand [25] established T2(C) for the Gaussian measure
which was generalized in [11] to the framework of an abstract Wiener space, in the past decade, a
plenty of results have been published concerning T2(C) on the path spaces of stochastic processes,
see e.g. [9, 30, 31] for diffusion processes on Rd, [21] for multidimensional semi-martingales, [26]
for diffusion processes with history-dependent drift, [27, 28] for diffusion processes on Riemannian
manifolds, [29] for SDEs driven by pure jump processes, and [17] for SDEs driven by both Gaussian
and jump noises, [3] for Neutral functional SDEs and [24] for SDEs driven by a fractional Brownian
motion, Li and Luo [14] and Boufoussi and Hajji [2] for stochastic delay evolution equations driven by
fractional Brownian motion with Hurst parameter H ∈ (1/2, 1) and H ∈ (0, 1/2) in infinite dimensional
space, respectively.

However, to the best of our knowledge, there is no result on the transportation inequalities for
stochastic differential equations with Markovian switching. Motivated by the need of hybrid system
modeling and in connection with the above discussions, it is worthwhile to develop some techniques
and methods to explore the transportation inequalities for doubly perturbed stochastic differential
equations with Markovian switching. To this end, in this paper, we will investigate the properties
T2(C) for law of the solution of doubly perturbed stochastic equations (1.1) with Markovian switching
under the L2 metric and the uniform metric. Because this kind of stochastic differential equations
contain continuous-time Markov chains and doubly perturbed terms, the structure of this kind of
stochastic differential equations become complex. Therefore, it is complicated to study the properties
T2(C) for law of the solution of the considered equations.

The rest of this paper is organized as follows. In Section 2, we present some necessary preliminaries.
In Section 3, we state and prove our main results.

2. Preliminaries

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e., it is increasing and right continuous, while F0 contains all P-null sets). Let {B(t)}t≥0 be
a one-dimensional Brownian motion defined on the probability space (Ω,F , {Ft}t≥0,P). Let {r(t), t ∈
[0,+∞)} be a right continuous Markov chain on the probability space (Ω,F , {Ft}t≥0,P) taking values
in a finite state space S = {1, 2, · · · ,N}, where N is some positive integer, with generator Γ = (γi, j)N×N

given by

P(r(t + 4) = j|r(t) = i)) =

{
γi, j4 + o(4), if i , j,
1 + γi, j4 + o(4), if i = j,

with 4 > 0, where γi, j ≥ 0 is the transition rate from i to j, if i , j; while γi,i = −
∑

j,i γi, j. We assume
that Markov chain r(·) is independent of the B(·). It is known that almost every sample path of r(t)
is a right continuous step function with a finite number of simple jumps in any finite sub-interval of
[0,+∞).

In order to obtain our main results, we impose the following three hypotheses.
Hypothesis 1. There exists some constant K > 0 such that for any fixed t ∈ [0,+∞), i ∈ S and x, y ∈ R,
the following inequality holds:

| f (t, x, i) − f (t, y, i)|2 + |g(t, x, i) − g(t, y, i)|2 ≤ K|x − y|2.
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Hypothesis 2. For each i ∈ S, f (·, 0, i), g(·, 0, i) ∈ L2([0,T ];R) and for all t ∈ [0,T ] and some constant
K > 0, it follows that

| f (t, 0, i)|2 + |g(t, 0, i)|2 ≤ K.

Hypothesis 3. |α| + |β| < 1.

Lemma 2.1. If the Hypothesis 1-3 hold and the random variable x is independent of B(t), t ≥ 0 and
E|x|p < ∞ for p ∈ N, then there exists a unique Ft-adapted solution X(t), t ≥ 0 for (1.1) such that for
any p ∈ N and T > 0,

E
(

max
0≤t≤T

|X(t)|p
)
≤ C,

where C = C(T, p) and E denotes the expectation under probability measure P.

Proof. We construct the solution by iteration. Let

X0(t) =
x

1 − α − β
, 0 ≤ t < ∞.

For n ≥ 1 define Xn+1(t) to be the unique adapted solution the following equation:

Xn+1(t) =x +

∫ t

0
f (s, Xn(s), r(s))ds +

∫ t

0
g(s, Xn(s), r(s))dB(s)

+ αmax
0≤s≤t

Xn+1(s) + β min
0≤s≤t

Xn+1(s).
(2.1)

Then, by view of the Theorem 3.1 of [15], we know that {Xn+1(t), t ≥ 0} is Cauchy and
X(t) = limn→∞ Xn(t) is the unique Ft-adapted solution for (1.1).

Now, by using (2.1) and |α| + |β| < 1, we have for any p ≥ 2,

E
(

max
0≤t≤T

|X(t)|p
)
≤3p−1

( 1
1 − |α| − |β|

)p(
E|x|p + E

[
max
0≤t≤T

∣∣∣∣ ∫ t

0
f (s, X(s), r(s))ds

∣∣∣∣p]
+ E

[
max
0≤t≤T

∣∣∣∣ ∫ t

0
g(s, X(s), r(s))dB(s)

∣∣∣∣p]).
Then, using similar arguments as in the proof of the Proposition 3.5 of [33] we can obtain our desired
results. The proof is complete. �

Lemma 2.2. If the Hypothesis 1-3 hold and the random variable x is independent of B(t), t ≥ 0 and
E|x|2 < ∞, then for all 0 ≤ s < t ≤ T,

E|X(t) − X(s)|2 ≤ C1(t − s),

where C1 is a positive constant.

Proof. For all 0 ≤ s < t ≤ T , it follows from (1.1) that

X(t) − X(s) =

∫ t

s
f (u, X(u), r(u))du +

∫ t

s
g(u, X(u), r(u))dB(u)

+ αmax
0≤u≤t

X(u) + β min
0≤u≤t

X(u) − αmax
0≤u≤s

X(u) − β min
0≤u≤s

X(u).
(2.2)
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For β ≥ 0, noticing that min0≤u≤t X(u) ≤ min0≤u≤s X(u), we have

X(t) − X(s) ≤
∫ t

s
f (u, X(u), r(u))du +

∫ t

s
g(u, X(u), r(u))dB(u)

+ αmax
0≤u≤t

X(u) − αmax
0≤u≤s

X(u).
(2.3)

Then,

|X(t) − X(s)| ≤
∣∣∣∣ ∫ t

s
f (u, X(u), r(u))du

∣∣∣∣ +
∣∣∣∣ ∫ t

s
g(u, X(u), r(u))dB(u)

∣∣∣∣
+ |α|

∣∣∣∣ max
0≤u≤t

X(u) − max
0≤u≤s

X(u)
∣∣∣∣. (2.4)

Next, let us consider the following two cases.
Case I. If max0≤u≤t X(u) = max0≤u≤s X(u), then we get from (2.4) that

|X(t) − X(s)| ≤
∣∣∣∣ ∫ t

s
f (u, X(u), r(u))du

∣∣∣∣ +
∣∣∣∣ ∫ t

s
g(u, X(u), r(u))dB(u)

∣∣∣∣. (2.5)

Case II. If max0≤u≤t X(u) > max0≤u≤s X(u), then there exists σ ∈ (s, t] such that X(σ) = max0≤u≤t X(u).
So we get from (2.4) that

|X(t) − X(s)|

≤

∣∣∣∣ ∫ t

s
f (u, X(u), r(u))du

∣∣∣∣ +
∣∣∣∣ ∫ t

s
g(u, X(u), r(u))dB(u)

∣∣∣∣ + |α|
∣∣∣∣X(σ) − max

0≤u≤s
X(u)

∣∣∣∣
≤

∣∣∣∣ ∫ t

s
f (u, X(u), r(u))du

∣∣∣∣ +
∣∣∣∣ ∫ t

s
g(u, X(u), r(u))dB(u)

∣∣∣∣ + |α||X(σ) − X(s)|

≤

∣∣∣∣ ∫ t

s
f (u, X(u), r(u))du

∣∣∣∣ +
∣∣∣∣ ∫ t

s
g(u, X(u), r(u))dB(u)

∣∣∣∣ + |α| max
s≤s′<t′≤t

|X(t′) − X(s′)|.

(2.6)

Thus, we obtain that

max
s≤s′<t′≤t

|X(t′) − X(s′)|2 ≤
2

(1 − |α|)2

(∣∣∣∣ ∫ t

s
f (u, X(u), r(u))du

∣∣∣∣2 +
∣∣∣∣ ∫ t

s
g(u, X(u), r(u))dB(u)

∣∣∣∣2). (2.7)

Then, we have

E|X(t) − X(s)|2 ≤
2

(1 − |α|)2

(
E
∣∣∣∣ ∫ t

s
f (u, X(u), r(u))du

∣∣∣∣2 + E
∣∣∣∣ ∫ t

s
g(u, X(u), r(u))dB(u)

∣∣∣∣2). (2.8)

For β < 0, if min0≤u≤t X(u) = min0≤u≤s X(u), then we have also that (2.4) holds. If min0≤u≤t X(u) <
min0≤u≤s X(u), then there exists δ ∈ (s, t] such that X(σ) = min0≤u≤t X(u). Thus, we have

|β min
0≤u≤t

X(u) − β min
0≤u≤s

X(u)| =|β|( min
0≤u≤s

X(u) − X(σ))

≤|β|(X(s) − X(σ)) ≤ |β| max
s≤s′<t′≤t

|X(t′) − X(s′)|.
(2.9)

Thus, we have

E|X(t) − X(s)|2 ≤
2

(1 − |α| − |β|)2

(
E
∣∣∣∣ ∫ t

s
f (u, X(u), r(u))du

∣∣∣∣2 + E
∣∣∣∣ ∫ t

s
g(u, X(u), r(u))dB(u)

∣∣∣∣2). (2.10)

Lastly, using the Lemma 2.1 and the Theorem 4.6.3 of [12] we can obtain our desired results. �
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3. Main results

In this section, we discuss the TCIs for the law of the solution for (1.1).

Theorem 3.1. Let the Hypothesis 1-3 hold and Px be the law of X(·, x), solution process for (1.1).
Assume further that g is bounded by g̃ := max0≤t≤T |g(t, x(t), r(t))|. Then the probability measure Px

satisfies T2(C) on the metric space C([0,T ];R) with:

(a) C =
3Tg̃2

1−|α|−|β|e
6KT+24K
1−|α|−|β| with the metric

d∞(γ1, γ2) := max
0≤t≤T

|γ1 − γ2|, γ1, γ2 ∈ C([0,T ];R);

(b) C =
3T 2g̃2

1−|α|−|β|e
6KT+24K
1−|α|−|β| when using the metric

d2(γ1, γ2) =

(∫ T

0
|γ1(t) − γ2(t)|2dt

)1/2

, γ1, γ2 ∈ C([0,T ];R).

Proof. Let Px be the law of X(·, x) and Q be any probability measure such that Q � Px. Define

Q̃ :=
dQ
dPx

(X(·, x))P, (3.1)

which is a probability measure on (Ω,F ). Recalling the definition of entropy and adopting a measure-
transformation argument we obtain from (3.1) that

H(Q̃|P) =

∫
Ω

ln
dQ̃

dP

 dQ̃ =

∫
Ω

ln
(

dQ
dPx

(X(·, x))
)

dQ
dPx

(X(·, x))dP

=

∫
C([0,T ];R)

ln
(

dQ
dPx

)
dQ
dPx

dPx

= H(Q|Px).

Following [10], there exists a predictable process {h(t)}0≤t≤T ∈ R with
∫ T

0
|h(s)|2ds < ∞, P-a.s., such

that
H(Q̃|P) = H(Q|Px) =

1
2
EQ̃|h(t)|2dt.

Due to the Girsanov theorem, the process (B̃(t))t∈[0,T ] defined by

B̃(t) = B(t) −
∫ t

0
h(s)ds

is a Brownian motion with respect to {Ft}t≥0 on the probability space (Ω,F , Q̃). Consequently, under
the measure Q̃, the process {X(t, x)}t∈[0,T ] satisfies

X(t) =x +

∫ t

0
f (s, X(s), r(s))ds +

∫ t

0
g(s, X(s), r(s))dB̃(s) +

∫ t

0
g(s, X(s), r(s))h(s)ds

+ αmax
0≤s≤t

X(s) + β min
0≤s≤t

X(s).
(3.2)
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We now consider the solution Y (under Q̃) of the following equation:

Y(t) =x +

∫ t

0
f (s,Y(s), r̃(s))ds +

∫ t

0
g(s,Y(s), r̃(s))dB̃(s) + αmax

0≤s≤t
Y(s) + β min

0≤s≤t
Y(s). (3.3)

By the Lemma 2.1, under Q̃ the law of Y(·) is Px. Thus (X,Y) under Q̃ is a coupling of (Q̃,Px), and it
follows that

[Wd2
2 (Q,Px)]2 ≤ EQ̃(|d2(X,Y)|2) = EQ̃

(∫ T

0
|X(t) − Y(t)|2dt

)
,

[Wd∞
2 (Q,Px)]2 ≤ EQ̃(|d∞(X,Y)|2) = EQ̃

(
max
0≤t≤T

|X(t) − Y(t)|2
)
.

where, EQ̃ denotes the expectation under probability measure Q̃.
We now estimate the distance between X and Y with respect to d2 and d∞.
Note from (3.2) and (3.3) that

X(t) − Y(t) =

∫ t

0
[ f (s, X(s), r(s)) − f (s,Y(s), r̃(s))]ds +

∫ t

0
g(s, X(s), r(s))h(s)ds

+

∫ t

0
[g(s, X(s), r(s)) − g(s,Y(s), r̃(s))]dB̃(s)

+ αmax
0≤s≤t

X(s) − αmax
0≤s≤t

Y(s) + β min
0≤s≤t

X(s) − β min
0≤s≤t

Y(s).

(3.4)

Note that
|max

0≤s≤t
X(s) −max

0≤s≤t
Y(s)| ≤ max

0≤s≤t
|X(s) − Y(s)|

and
|min

0≤s≤t
X(s) − min

0≤s≤t
Y(s)| ≤ max

0≤s≤t
|X(s) − Y(s)|.

Then, by view of (3.4) we can obtain

(1 − |α|2 − |β|2)EQ̃
(

max
0≤s≤t
|X(s) − Y(s)|2

)
≤3EQ̃

(
max
0≤s≤t

∣∣∣∣ ∫ s

0
[ f (u, X(u), r(u)) − f (u,Y(u), r̃(u))]du

∣∣∣∣2)
+ 3EQ̃

(
max
0≤s≤t

∣∣∣∣ ∫ s

0
g(u, X(u), r(u))h(u)du

∣∣∣∣2)
+ 3EQ̃

(
max
0≤s≤t

∣∣∣∣ ∫ t

0
[g(u, X(u), r(u)) − g(u,Y(u), r̃(u))]dB̃(u)

∣∣∣∣2)
:=3(I1(t) + I2(t) + I3(t)).

(3.5)

Firstly, applying the Hypothesis 1 and the Hölder’s inequality, we have

I1(t) ≤2EQ̃
(

max
0≤s≤t

∣∣∣∣ ∫ s

0
[ f (u, X(u), r(u)) − f (u,Y(u), r(u))]du

∣∣∣∣2)
+ 2EQ̃

(
max
0≤s≤t

∣∣∣∣ ∫ s

0
[ f (u,Y(u), r(u)) − f (u,Y(u), r̃(u))]du

∣∣∣∣2)
≤2KT

∫ t

0
EQ̃

(
max
0≤u≤s

|X(u) − Y(u)|2
)
ds + I12(t).

(3.6)
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By the Hölder’s inequality, we can obtain

I12(t) ≤2TEQ̃
( ∫ t

0
| f (s,Y(s), r(s)) − f (s,Y(s), r̃(s))|2ds

)
≤2T

[t/ζ]∑
k=0

E
( ∫ tk+1

tk
| f (s,Y(s), r(s)) − f (s,Y(tk), r(s))|2ds

+

∫ tk+1

tk
| f (s,Y(tk), r(s)) − f (s,Y(tk), r̃(s))|2ds

+

∫ tk+1

tk
| f (s,Y(tk), r̃(s)) − f (s,Y(s), r̃(s))|2ds

)
= : 2T

[t/ζ]∑
k=0

[I121(t) + I122(t) + I123(t)],

(3.7)

where t0 = 0 ≤ · · · ≤ tk ≤ ttk+1 ≤ · · · ≤ t[t/ζ] ≤ t[t/ζ]+1 = t and tk+1 − tk = ζ, k = 0, 1, · · · , [t/ζ] − 1. Then,
by the Hypothesis 1 and the Lemma 2.2, we have

I121(t) ≤K
∫ tk+1

tk
EQ̃|Y(s) − Y(tk)|2ds ≤ K

∫ tk+1

tk
(s − tk)ds ≤ K

∫ tk+1

tk
ζds, (3.8)

and

I123(t) ≤K
∫ tk+1

tk
ζds. (3.9)

Now, we estimate the term I122(t). Note that

I122(t) ≤2EQ̃
( ∫ tk+1

tk
| f (s,Y(tk), r(s)) − f (s,Y(tk), r(tk))|2ds

+

∫ tk+1

tk
| f (s,Y(tk), r(tk)) − f (s,Y(tk), r̃(s))|2ds

)
= : 2(I1

122(t) + I2
122(t)).

(3.10)

By the Hypothesis 1-2 and the Lemma 2.2 we know that

I1
122(t) =EQ̃

∑
i∈S

∑
j,i

∫ tk+1

tk
| f (s,Y(tk), j) − f (s,Y(tk), i)|2Ir(s)= jIr(tk)=ids

≤KEQ̃
∑
i∈S

∑
j,i

∫ tk+1

tk
[1 + |Y(tk)|2]Ir(tk)=iE[Ir(s)= j|Y(tk), r(tk) = i]ds

≤KEQ̃
∑
i∈S

∫ tk+1

tk
[1 + |Y(tk)|2]Iα(tk)=i

[∑
j,i

qi j(Y(tk))(s − tk) + o(s − tk)
]
ds

≤K
∫ tk+1

tk
O(ζ)ds,

(3.11)

where qi j(·) is the generator of r(t).
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On the other hand, by the Hypothesis 1-2 and the following estimate (see [22, 32]) that

EQ̃[Ir̃(s)= j|r̃(tk) = i1, r(tk) = i, X(tk),Y(tk)]

=
∑
l∈S

EQ̃[Ir̃(s)= j,Ir(s)=l|r̃(tk) = i1, r(tk) = i, X(tk),Y(tk)]

=
∑
l∈S

q(i1, i)q( j, l)(s − tk) + o(s − tk) = O(ζ),

we have

I2
122(t) =EQ̃

∑
i∈S

∑
j,i

∫ tk+1

tk
| f (s,Y(tk), j) − f (s,Y(tk), i)|2Ir̃(s)= jIr(tk)=ids

≤KEQ̃
∑
i∈S

∑
j,i

∫ tk+1

tk
[1 + |Y(tk)|2]Ir̃(tk)=i1Ir(tk)=i

× EQ̃[Ir̃(s)= j|r̃(tk) = i1, r(tk) = i, X(tk),Y(tk)]ds

≤K
∫ tk+1

tk
O(ζ)ds.

(3.12)

From (3.7)–(3.12), letting ζ → 0, we have I12(t)→ 0. Thus, combined with (3.6) we obtain

|I1(t)| ≤ 2KT
∫ t

0
EQ̃(max

0≤u≤s
|X(u) − Y(u)|2)ds. (3.13)

Since h ∈ L2([0,T ];R), by the boundedness of g and the Hölder’s inequality, we can obtain

EQ̃
(

max
0≤s≤t

∣∣∣∣ ∫ s

0
g(u, X(u), r(u))h(u)du

∣∣∣∣2) ≤ Tg̃2
∫ t

0
EQ̃|h(s)|2ds. (3.14)

Next, we estimate the term I3(t). By using the Burkholder-Davis-Gundy’s inequality and the
assumptions on g we know that

I3(t) ≤4EQ̃

∫ t

0
|g(s, X(s), r(s)) − g(s,Y(s), r̃(s))|2ds

≤8EQ̃
( ∫ t

0
|g(s, X(s), r(s)) − g(s,Y(s), r(s))|2ds

)
+ 8EQ̃

( ∫ t

0
|g(s,Y(s), r(s)) − g(s,Y(s), r̃(s))|2ds

)
≤8K

∫ t

0
EQ̃(max

0≤u≤s
|X(u) − Y(u)|2)ds + I32(t).

Then, being similar to I1(t), we also have

I3(t) ≤ 8K
∫ t

0
EQ̃(max

0≤u≤s
|X(u) − Y(u)|2)ds. (3.15)
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Thus, combining (3.5), (3.13), (3.14) with (3.15) we have

EQ̃(max
0≤s≤t
|X(s) − Y(s)|2

)
≤

6KT + 24K
1 − |α| − |β|

∫ t

0
EQ̃(max

0≤u≤s
|X(u) − Y(u)|2du +

3Tg̃2

1 − |α| − |β|

∫ t

0
EQ̃|h(s)|2ds.

(3.16)

Now, the Gronwall’s lemma implies that for any t > 0,

EQ̃(max
0≤s≤t
|X(s) − Y(s)|2

)
≤

3Tg̃2

1 − |α| − |β|
e

6KT+24K
1−|α|−|β|

∫ t

0
EQ̃|h(s)|2ds,

which implies that

EQ̃|X(t) − Y(t)|2 ≤
3Tg̃2

1 − |α| − |β|
e

6KT+24K
1−|α|−|β|

∫ t

0
EQ̃|h(s)|2ds.

Hence, we may write that

d2
∞(X,Y) ≤

3Tg̃2

1 − |α| − |β|
e

6KT+24K
1−|α|−|β|

∫ T

0
EQ̃|h(s)|2ds

and
[Wd∞

2 (Q,Px)]2 ≤ 2CT,KH(Q|Px)

with CT,K =
3Tg̃2

1−|α|−|β|e
6KT+24K
1−|α|−|β| .

Analogously for the metric d2, we have by the Fubini’s theorem

[Wd2
2 (Q,Px)]2 ≤EQ̃

( ∫ T

0
|X(t) − Y(t)|2dt

)
=

∫ T

0
EQ̃(|X(t) − Y(t)|2)dt

≤
3Tg̃2

1 − |α| − |β|
e

6KT+24K
1−|α|−|β|

∫ T

0

∫ t

0
EQ̃|h(s)|2dsdt

=
3Tg̃2

1 − |α| − |β|
e

6KT+24K
1−|α|−|β|

∫ T

0
EQ̃|h(s)|2

(∫ T

s
1 · dt

)
ds

≤
3T 2g̃2

1 − |α| − |β|
e

6KT+24K
1−|α|−|β|

∫ T

0
EQ̃|h(s)|2ds.

Thus, we can obtain

[Wd2
2 (Q,Px)]2 ≤ 2CT,KH(Q|Px)

with CT,K =
3T 2g̃2

1−|α|−|β|e
6KT+24K
1−|α|−|β| . The proof is complete. �

Remark 3.1. There are many interesting applications of the TCIs, e.g., in Tsirel’son-type inequality
and Hoeffding-type inequality, see [9, 30, 31], and in concentration of empirical measure [17, 29].
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