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Abstract: In this paper, we study a type of Langevin differential equations within ordinary and
Hadamard fractional derivatives and associated with three point local boundary conditions
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D2x (1) = x(1) = 0, x(e) = βx(ξ), for t ∈ (1, e) and ξ ∈ (1, e], where 0 < α < 1, λ, β > 0, Dα
1

denotes the Hadamard fractional derivative of order α, D is the ordinary derivative and f : [1, e] ×
C([1, e],R) × C([1, e],R) → C([1, e],R) is a continuous function. Systematical analysis of existence,
stability and solution’s dependence of the addressed problem is conducted throughout the paper. The
existence results are proven via the Banach contraction principle and Schaefer fixed point theorem.
We apply Ulam’s approach to prove the Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias
stability of solutions for the problem. Furthermore, we investigate the dependence of the solution
on the parameters. Some illustrative examples along with graphical representations are presented to
demonstrate consistency with our theoretical findings.
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1. Introduction

In the recent years, it has been realized that fractional calculus has an important role in various
scientific fields. Fractional differential equations (FDE), which is a consequence of the development
of fractional calculus, have attracted the attention of many researchers working in different
disciplines ( [28]). Scientific literature has witnessed the appearance of several kinds of fractional
derivatives, such as the Riemann-Liouville fractional derivative, Caputo fractional derivative,
Hadamard fractional derivative, Grünwald-Letnikov fractional derivative and Caputo-Fabrizio etc (for
more details, see [11, 13, 16, 21, 22, 44, 48, 51, 54]). It is worthy mentioning here that almost all
researches have been conducted within Riemann-Liouville or Caputo fractional derivatives, which are
the most popular fractional differential operators.

J. Hadamard suggested a construction of fractional integro-differentiation which is a fractional
power of the type

(
t d

dt

)α
. This construction is well suited to the case of the half-axis and is invariant

relative to dilation ( [53, p. 330]). The dilation is interpreted in various forms in relation to the field of
application. Furthermore, Riemann-Liouville fractional integro-differentiation is formally a fractional
power

(
d
dt

)α
of the differentiation operator

(
d
dt

)
and is invariant relative to translation if considered on

the whole axis. On the other hand, the investigations in terms of Hadamard or Grünwald-Letnikov
fractional derivatives are comparably considered seldom.

The boundary value problems defined by FDE have been extensively studied over the last years.
Particularly, the study of solutions of fractional differential and integral equations is the key topic of
applied mathematics research. Many interesting results have been reported regarding the existence,
uniqueness, multiplicity and stability of solutions or positive solutions by means of some fixed point
theorems, such as the Krasnosel’skii fixed point theorem, the Schaefer fixed point theorem and the
Leggett-Williams fixed point theorem. However, most of the considered problems have been treated
in the frame of fractional derivatives of Riemann-Liouville or Caputo types ( [12, 14, 15, 41, 45]). The
qualitative investigations with respect to Hadamard derivative have gained less attention compared to
the analysis in terms of Riemann-Liouville and Caputo settings. Recent results on Hadamard FDE can
be consulted in ( [1, 4, 5, 7, 10, 17, 42, 43, 52]).

The physical phenomena in fluctuating environments are adequately described using the so called
Langevin differential equation (LDE) which was proposed by Langevin himself in [31, 1908] to give
an elaborated interpretation of Brownian motion. Indeed, LDE is a powerful tool for the study of
dynamical properties of many interesting systems in physics, chemistry and engineering ( [9, 32, 57]).
The generalized LDE was introduced later by Kubo in [29, 1966], where a fractional memory kernel
was incorporated into the equation to describe the fractal and memory properties. Since then the
investigation of the generalized LDE has become a hot research topic. As a result, various
generalizations of LDE have been offered to describe dynamical processes in a fractal medium. One
such generalization is the generalized LDE which incorporates the fractal and memory properties with
a disruptive memory kernel. This gives rise to study fractional Langevin equation ( [36]). As the
intensive development of fractional derivative, a natural generalization of the LDE is to replace the
ordinary derivative by a fractional derivative to yield fractional Langevin equation (FLE). The FLE
was introduced by Mainardi and Pironi in earlier 1990s ( [40]). Afterwards, different types of FLE
were introduced and studied in [2, 3, 8, 19, 30, 34, 37–39, 47, 50, 60–62]. In [3], the authors studied a
nonlinear LDE involving two fractional orders in different intervals with three-point boundary
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conditions. The study of FLE in frame of Hadamard derivative has comparably been seldom; see the
papers [27, 56] in which the authors discussed Sturm-Liouville and Langevin equations via
Caputo-Hadamard fractional derivatives and systems of FLE of Riemann-Liouville and Hadamard
types, respectively.

In the paper by Kiataramkul et al. [27]: Generalized Sturm–Liouville and Langevin equations via
Hadamard fractional derivatives with anti-periodic boundary conditions. In particular, the authors
initiate the study of the existence and uniqueness of solutions for the generalized Sturm-Liouville and
Langevin fractional differential equations of Caputo-Hadamard type ( [21]), with two-point nonlocal
anti-periodic boundary conditions, by applying the Banach contraction mapping principle. Moreover,
two existence results are established via Leray-Schauder nonlinear alternative and Krasnosleskii’s
fixed point theorem. In addition, the article by W. Sudsutad et al. [56]: Systems of fractional
Langevin equations of Riemann-Liouville and Hadamard types subject to the nonlocal Hadamard and
standard Riemann-Liouville with multi-point and multi-term fractional integral boundary conditions,
respectively. In particular, the authors also studied the existence and uniqueness results of solutions
for coupled and uncoupled systems are obtained by Banach’s contraction mapping principle,
Leray-Schauder’s alternative.

In the present work, we study the existence, uniqueness and stability of solutions for the following
FLE with Hadamard fractional derivatives involving local boundary conditions

Dα
1

(
D2 + λ2

)
x(t) = f (t, x(t),Dα

1 [x] (t)), t ∈ (1, e) ,

D2x (1) = x(1) = 0,

x(e) = βx(ξ), ξ ∈ (1, e],

(1.1)

where 0 < α < 1, λ, β > 0, such that

sin λ (e − 1) , β sin λ (ξ − 1) ,

Dα
1 denotes the Hadamard fractional derivative of order α, D is the ordinary derivative and

f : [1, e] ×C([1, e],R) ×C([1, e],R)→ C([1, e],R),

is a continuous function.
Our approach is new and is totally different from the ones obtained in [27, 56] in the sense that

different fractional derivatives, ordinary and Hadamard fractional order, are accommodated. Different
boundary conditions are associated to problem (1.1) such as three point local boundary conditions and
associating different fixed point theorems. It is worthwhile to mention that the nonlinear term f in
papers [27, 56] is independent of fractional derivative of unknown function x(t). But the opposite case
is more difficult and complicated. The dependence of the solution on the parameters is discussed,
which has not been investigated in [27, 56]. It is worth mentioning here that Ulam and generalized
Ulam-Hyers-Rassias stability results have not been considered in [27, 56]. Furthermore, the presented
work illustrates a numerical simulation obtained through a discretization methods for the evaluation of
the Hadamard derivative.

Our method differs from that used by [27, 56] in our emphasis on the Schaefer fixed point theorem
is utilized to investigate existence results for problem (1.1). We also employ the generalization
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Gronwall inequality techniques to prove the Ulam stability for problem (1.1), and we use important
classical and fractional techniques such as: integration by parts in the settings of Hadamard fractional
operators, right Hadamard fractional integral, method of variation of parameters, mean value theorem,
Dirichlet formula, differentiating an integral, incomplete Gamma function and discretization methods.
To the best of the authors’ knowledge, there is no work in literature which treats local boundary value
problems on mixed type ordinary differential equations involving the Hadamard fractional derivative
using the above mentioned techniques.

The rest of the paper is organized as follows: In Section 2, we introduce some notations,
definitions and lemmas that are essential in our further analysis. In Section 3, we systemically analyze
problem (1.1). An equivalent integral equation is constructed for problem (1.1) and some infra
structure are furnished for the use of fixed point theorems. The main results of existence and stability
are discussed in Sections 4 and 5, respectively. We prove the main results via the implementation of
some fixed point theorems and Ulam’s approach. We study the solution’s dependence on parameters
in Section 6. Indeed, we give an affirmative response to the question on how the solution varies when
we change the order of differential operator, the initial values or the nonlinear term f . In Section 7,
some illustrative examples along with graphical representations are presented to prove consistency
with our theoretical findings.

2. Fundamental definitions, lemmas and remarks

In this section we introduce notations, lemmas, definitions and preliminary facts which are used
throughout this paper. In terms of the familiar Gamma function Γ (t), the incomplete Gamma function
γ (α, t) and its complement Γ (α, t) are defined by (see, for details, [16, 20])

γ (α, t) =

∫ t

0
τα−1e−τdτ,<e(t) > 0,

∣∣∣arg (t)
∣∣∣ < π,

and
Γ (α, t) =

∫ ∞

t
τα−1e−τdτ,

for all complex t. For fixed α, γ (α, t) is an increasing function of t with limt→∞ γ (α, t) = Γ (α). The
classical Riemann-Liouville fractional integral of order α for suitable function x is defined as

Jαa [x] (t) := Jαa+ [x(τ)] (t) =
1

Γ (α)

∫ t

a
(t − τ)α−1 x (τ) dτ, (2.1)

for 0 < a < t and<e(α) > 0. The corresponding left-sided Riemann-Liouville fractional derivative of
order α is defined by

Dα
a [x] (t) =

1
Γ (n − α)

(
d
dt

)n ∫ t

a
(t − τ)n−α−1 x (τ) dτ, (2.2)

for α ∈ [n − 1, n). However, the left and right Hadamard fractional integrals of order <e(α) > 0,
for suitable function x, introduced essentially by J . Hadamard fractional integral in [18, 1892], are
defined by

Jα
a+

[x] (t) =
1

Γ (α)

∫ t

a

(
ln

t
τ

)α−1
x(τ)

dτ
τ
, (2.3)
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and

Jα
b− [x] (t) =

1
Γ (α)

∫ b

t

(
ln
τ

t

)α−1
x(τ)

dτ
τ
, (2.4)

respectively. Definition (2.3) is based on the generalisation of the nth integral

Jn
a [x] (t) =

∫ t

a

dτ1

τ1

∫ τ1

a

dτ2

τ2
· · ·

∫ τn−1

a
x (τn)

dτn

τn

≡
1

Γ (n)

∫ t

a

(
ln

t
τ

)n−1
x(τ)

dτ
τ
,

where n = [<e(α)] + 1 and [<e(α)] means the integer part of<e(α). Hadamard also proposed [18,53]
a definition of the fractional integral as

Jα
a [x] (t) =

tα

Γ (α)

∫ 1

0
(1 − s)α−1 x (ts) ds. (2.5)

It should be emphasized that expression (2.5) contains x (ts) in place of x (s). Therefore we can
consider the term s > 0 as a variable that describes dilation. As a consequence, using the change of
variables τ = ts, would results in the definition of the classical Riemann-Liouville fractional integral.
It should be noted that in order to describe the change of dilation we can use the operator
Υs (see [53, p. 330]) such that (Υsx) (t) = x

(
exp (ts)

)
where s > 0. It is known that the dilation of

Euclidean geometric figures changes in size while the shape is unchanged. The connection

Jα
a [x] = Υ−1

s Jαa Υs [x] , (Υsx) (t) = x
(
exp (ts)

)
, (2.6)

allows us to extend various properties of operators Jαa to the case of operators Jα
a . It is directly

checked that such connections for the operators (2.5) and (2.1) are given by the relations (2.6). The
corresponding left-sided Hadamard fractional derivative of order α is defined by

Dα
a [x] (t) = δn 1

Γ (n − α)

∫ t

a

(
ln

t
τ

)n−α−1
x (τ)

dτ
τ
, (2.7)

where α ∈ [n − 1, n) and δn = (tD)n is the so-called δ-derivative and D≡ d
dt .

Firstly, from the above definitions, we see the difference between Hadamard derivative and the
Riemann–Liouville one. As a clarification, the aforementioned derivatives differ in the sense that the
kernel of the integral in the definition of the Hadamard derivative contains a logarithmic function,
while the Riemann-Liouville integral contains a power function. On the other hand, the Hadamard
derivative is viewed as a generalization of the operator (tD)n, while the Riemann–Liouville derivative
is considered as an extension of the classical Euler differential operator (D)n. Secondly, we observe
that formally the relationship between Hadamard-type derivatives and Riemann-Liouville derivatives
is given by the change of variable t → ln (t), leading to the logarithmic kernel.

Supposedly one can reduce the theorems and results to the corresponding ones of Hadamard-type
derivatives by a simple change of variables and functions. It is possible to reduce a formula by such a
change of operations but not the precise hypotheses under which a formula is valid. As an illustration,
the function x(t) = sin t is obviously uniformly continuous, but not ln-uniformly continuous on R+,
while the function x(t) = sin(ln t) is ln-uniformly continuous but not uniformly continuous on R+.
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However, the two notions are equivalent on every bounded interval [a, b] with a > 0. Besides, the
Hadamard derivative (also integral) starts at the initial time a which is bigger than zero, but the
Riemann–Liouville derivative (also integral) often begins at the origin (or any other real number).
Under certain precise conditions, an equivalence could be obtained between a problem involving
Hadamard derivative to another defined using a Riemann Liouville derivative.

Lemma 2.1. [28] Let<e(α) > 0, n = [<e(α)] + 1 and x ∈ C[a,+∞)∩ L1[a,+∞), then the Hadamard
fractional differential equationDα

a [x] (t) = 0, has a solution

x(t) =

n∑
k=1

ck

(
ln

t
a

)α−k
.

Further, the following formulas hold J
α
aD

α
a [x] (t) = x(t) −

n∑
k=1

ck

(
ln

t
a

)α−k
,

Dα
aJ

α
a [x] (t) = x(t),

(2.8)

where ck ∈ R, (k = 1, 2, . . . , n) are arbitrary constants.

Lemma 2.2. ( [21]) If 0 < α < 1, then

Dα
a [x] (t) =

1
Γ (1 − α)

∫ t

a

(
ln

t
τ

)−α
δ [x (τ)]

dτ
τ

+
x (a)

Γ (1 − α)

(
ln

t
a

)−α
.

Theorem 2.3. ( [6]) Consider the continuous function x : [a, b] → R belongs to C2[a,+∞) and let
∆T = 1

n ln b
a for n ≥ 1. Denote the time and space grid by

tN = a exp(N∆T ) = a
n

√(
b
a

)N

, (2.9)

and xN = x(tN) for N ∈ {0, 1, 2, · · · , n}. Then for all N ∈ {1, 2, · · · , n},

Dα
a [x] (tN) = D̃α

a [x] (tN) + O(∆T ),

where

D̃α
a [x] (tN) =

x(a)
Γ(1 − α)

(
ln

tN

a

)−α
+ ζ

N∑
k=1

(
ταN−k+1

) x(tk) − x(tk−1)
exp(k∆T )

.tk,

and lim∆T→0 O(∆T ) = 0, here
(
ταk

)
= k1−α − (k − 1)1−α and

ζ =
(∆T )1−α

a[1 − exp(−∆T )]Γ(2 − α)
.

Lemma 2.4. ( [26]) If α, β > 0, then the following equality holds

Jα
a

[
τβ

]
(t) =

β−αtβ

Γ (α)
γ
(
α, β ln

t
a

)
,

where a > 0 is the starting point in the interval. In particular, for a = 0,

Jα
0

[
τβ

]
(t) = β−αtβ.
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The following discussion is essential for our further investigation.

Remark 2.5. If α, β > 0, for t ∈ [1, e]. Then

i) It is easy to verify that

Jα
1

[
τβ

]
(t) ≤ β−α

(β ln t)α

αΓ (α)
tβ =

(ln t)α

Γ (α + 1)
tβ.

ii) The function Jα
1 [sin λ (t − 1)] is continuous as a result of the continuity of sin function.

Furthermore and according to (2.3), we have

Jα
1 [sin λ (τ − 1)] (t) ≤ Jα

1 [1] (t) =
1

Γ(1 + α)
(ln t)α .

Note that
Jα

1 [sin λ (τ − 1)] (1) = lim
t→1+

∣∣∣Jα
1 [sin λ (τ − 1)] (t)

∣∣∣ = 0. (2.10)

iii) From Lemma 2.2, we have

Dα
1 [sin λ (τ − 1)] (t) = J1−α

1 [δ sin λ (τ − 1)] (t) +
0

Γ (1 + α)
. (ln t)−α

=
λ

Γ (1 − α)

∫ t

1

(
ln

t
τ

)−α
τ cos λ (τ − 1)

dτ
τ

≤ λJ1−α
1 [τ] (t) ≤ λ

γ (1 − α, ln t)
Γ (1 − α)

t

≤
λt

Γ (2 − α)
(ln t)1−α .

Remark 2.6. If α > 0, for t ∈ [1, e]. Then, using the elementary inequality (ln s)α ≤ sα, we obtain the
inequality

0 ≤ ρα (t) =

∫ t

1
(ln s)α ds ≤

1
α + 1

max
t∈[1,e]

{
tα+1 − 1

}
=

eα+1

α + 1
. (2.11)

Utilizing the particular case of the Fubini’s theorem, one can deduce that∫ t

1
Jα

1 [x] (s) ds =
1

Γ (α)

∫ t

1
ρα−1

( t
s

)
x(s)ds. (2.12)

Indeed, interchanging the order of integration with the help of (2.3) and (2.4) and it follows that∫ t

1
Jα

1+ [x] (s) ds =

∫ t

1
s × Jα

1 [x] (s)
ds
s

=
1

Γ (α)

∫ t

1
s ×

(∫ s

1

(
ln

s
τ

)α−1
x(τ)

dτ
τ

)
ds
s
.

=
1

Γ (α)

∫ t

1
x(τ)

(∫ t

τ

s
(
ln

s
τ

)α−1 ds
s

)
dτ
τ

=

∫ t

1
x (τ)Jα

t− [τ] (s) ds.
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If we take v = s
τ
, then ∫ t

1
x (τ)Jα

t [τ] (s) ds =
1

Γ (α)

∫ t

1
x(τ)

∫ t
τ

1
(ln v)α−1 dv

 dτ

=
1

Γ (α)

∫ t

1
x(τ)ρα−1

( t
τ

)
dτ.

Following [48], we bring a formula generalizing the well-known rule of differentiating an integral
with respect to its upper limit which serves also as a parameter of the integrand

d
dt

∫ q(t)

p(t)
G (t, τ) dτ =

∫ q(t)

p(t)

∂

∂t
G (t, τ) dτ + G (t, q (t))

dq(t)
dt
−G (t, p (t))

dp(t)
dt

. (2.13)

From (2.7), we have for α ∈ (0, 1) and t ∈ (a, b) that

Dα
a

[∫ s

a
G (s, τ) dτ

]
(t) =

1
Γ (1 − α)

t
d
dt

∫ t

a

(
ln

t
s

)−α [∫ s

a
G (s, τ) dτ

]
ds
s
.

Interchanging the order of integration and applying Dirichlet formula, we obtain

Dα
a

[ ∫ s

a
G (s, τ) dτ

]
(t) =

1
Γ (1 − α)

t
d
dt

∫ t

a

(
ln

t
s

)−α [∫ s

a
G (s, τ) dτ

]
ds
s

= t
d
dt

∫ t

a

(
1

Γ (1 − α)

∫ t

τ

(
ln

t
s

)−α
G (s, τ)

ds
s

)
dτ

= t
d
dt

∫ t

a
J1−α
τ [G (s, τ)] (t) dτ

=

∫ t

a
t
∂

∂t
J1−α
τ [G (s, τ)] (t) dτ + t lim

τ→t−a
J1−α
τ [G (s, τ)] (t)

=

∫ t

a
Dα

τ [G (s, τ)] (t) dτ + t lim
τ→t−a

J
1−α
τ [G (s, τ)] (t) .

In particular, we get

Dα
a

[∫ s

a
G(s, τ)h(τ)dτ

]
(t) =

∫ t

a
Dα

τ [G(s, τ)] (t) h(τ)dτ (2.14)

+ t lim
τ→t−a

(
h(τ)J1−α

τ [G(s, τ)] (t)
)
.

To simplify the presentation, we let

fx(t) = f (t, x(t),Dα
1 [x] (t)), g (t − s) = sin λ (t − s) . (2.15)

In virtue of equation (2.14), we deduce that

Dα
1

( ∫ s

1
g (s − τ)Jα

1
[
fx
]
(τ) dτ

)
(t) =

∫ t

1
Dα

τ

[
g (s − τ)

]
(t)Jα

1
[
fx
]
(τ) dτ

+ t lim
τ→t−1

(
Jα

1
[
fx
]
(τ)J1−α

τ [G(s, τ)] (t)
)
.

Applying a suitable shift in the fractional operators with lower terminal τ, we deduce the next property
[23, 24].
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Property 2.1. Let 0 < α < 1, Dα
1
[
g
]
∈ L1 (1, e) and Jα

1
[
fx
]
∈ C (1, e). Then we have

Dα
1

( ∫ t

1
g (t − s)Jα

1
[
fx
]
(s) ds

)
(t) =

∫ t

1
Dα

1
[
g (s − 1)

]
(τ)Jα

1
[
fx
]
(t − τ + 1) dτ

+ tJα
1
[
fx
]
(t) lim

τ→1+

(
J1−α

1
[
g (s − 1)

]
(τ)

)
.

In the literature, we can read the following Schaefer fixed point theorem.

Lemma 2.7. [21,55] Let E be a Banach space and assume that Ψ : E → E is a completely continuous
operator. If the set

Λ =
{
x ∈ E : x = µΨx : 0 < µ < 1

}
,

is bounded, then Ψ has a fixed point in E.

The next result is a generalization of Gronwall inequality due to Pachpatte ( [46]).

Lemma 2.8. Let u ∈ C(I,R+), ã(t, s), b̃(t, s) ∈ C(D,R+) and ã(t, s), b̃(t, s) are nondecreasing in t for
each s ∈ I, where I = [α̃, β̃], R+ = [0,∞),

D =
{
(t, s) ∈ I × I : α̃ ≤ s ≤ t ≤ β̃

}
,

and suppose that

u(t) ≤ k +

∫ t

α̃

ã(t, s)u(s) ds +

∫ β̃

α̃

b̃(t, s)u(s) ds,

for t ∈ I, where k ≥ 0 is a constant. If

p(t) =

∫ β̃

α̃

b̃(t, s) exp
(∫ s

α̃

ã(s, τ)dτ
)

ds < 1,

for t ∈ I, then

u(t) ≤
k

1 − p(t)
exp

(∫ t

α̃

ã(t, s) ds
)
.

The following hypotheses will be used in the sequel:

H1: There exist a constant Ni > 0 (i = 1, 2) such that

| f (t, x1, x̃1) − f (t, x2, x̃2)| ≤ N1 |x1 − x2| + N2 |x̃1 − x̃2| ,

for each t ∈ [1, e] and all xi, x̃i ∈ R.
H2: There exists a constant L > 0 such that | f (t, x, x̃)| ≤ L, for each t ∈ [1, e] and all x, x̃ ∈ R.

3. The nonlinear boundary value problem (1.1)

In order to study the nonlinear problem (1.1), we first consider the associated linear problem and
obtain its solution:

Dα
1

(
D2 + λ2

)
[x] (t) = h (t) ,

for 0 < α ≤ 1, where h is a continuous function on [1, e].

AIMS Mathematics Volume 6, Issue 3, 2796–2843.



2805

Lemma 3.1. The general solution of the linear differential equation(
D2 + λ2

)
x(t) = x̃ (t) , (3.1)

for t ∈ [1, e], is given by

x(t) =
1
λ

∫ t

1
sin λ (t − s) x̃ (s) ds + c1 cos λt + c2 sin λt,

where c1, c2 are unknown arbitrary constants.

Proof. Assume that x (t) satisfies (3.1), then the method of variation of parameters implies the desired
results. �

Lemma 3.2. Let 0 < α < 1, h ∈ C([1, e],R). Then the unique solution of the linear problem{
Dα

1 [x̃] (t) = h(t),
x̃(1) = 0,

(3.2)

for t ∈ (1, e), is equivalent to the integral equation

x̃ (t) = Jα
1 [h] (t) =

1
Γ (α)

∫ t

1

(
ln

t
τ

)α−1
h (τ)

dτ
τ
. (3.3)

Proof. Applying Lemma 2.1, we may reduce (3.2)-a to an equivalent integral equation

x̃ (t) = Jα
1 [h] (t) + c0 (ln t)α−1 ,

where c0 ∈ R. In view of the boundary condition x̃(1) = 0, we have c0 = 0, thus (3.3) holds. �

Lemma 3.3. Let h ∈ C([1, e],R), α ∈ (0, 1] and 1 < ξ < e. Then the fractional problem Dα
1

(
D2 + λ2

)
[x] (t) = h (t) ,

x(1) = D2 [x] (1) = 0, x(e) = βx(ξ),
(3.4)

has a unique solution given by

x(t) =
1
λ

∫ t

1
sin λ (t − s)

[
1

Γ (α)

∫ s

1

(
ln

s
τ

)α−1
h (τ)

dτ
τ

]
ds (3.5)

+
β

∆
sin λ (t − 1)

∫ ξ

1
sin λ (ξ − s) ×

[
1

Γ (α)

∫ s

1

(
ln

s
τ

)α−1
h (τ)

dτ
τ

]
ds

−
1
∆

sin λ (t − 1)
∫ e

1
sin λ (e − s)

[
1

Γ (α)

∫ s

1

(
ln

s
τ

)α−1
h (τ)

dτ
τ

]
ds,

where
∆ = λ (sin λ (e − 1) − β sin λ (ξ − 1)) , 0. (3.6)
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Proof. Assuming (
D2 + λ2

)
[x] (t) = x̃ (t)

and then applying Lemma 3.1 when 0 < α < 1, we get

x(t) =
1
λ

∫ t

1
sin λ (t − s) x̃ (s) ds + c1 cos λt + c2 sin λt.

By the boundary condition x (1) = 0 and privous equation, we conclude that

c1 cos λ = −c2 sin λ. (3.7)

On the other hand, x(e) = βx(ξ), combining with

x(e) =
1
λ

∫ e

1
sin λ (e − s) x̃ (s) ds + c1 cos λe + c2 sin λe,

and

x(ξ) =
1
λ

∫ ξ

1
sin λ (ξ − s) x̃ (s) ds + c1 cos λξ + c2 sin λξ,

yield

c2 =
cos λ

∆

(
β

∫ ξ

1
sin λ (ξ − s) x̃ (s) ds −

∫ e

1
sin λ (e − s) x̃ (s) ds

)
,

where ∆ is given by (3.6). If λ =
(2k+1)π

2 , k = 0, 1, . . ., then c2 = 0, and by (3.7), we get

c1 =
2

(2k + 1)π

[
cos

(2k + 1)πe
2

− β cos
(2k + 1)πξ

2

]−1

×

[
β

∫ ξ

1
sin

(2k + 1)π
2

(ξ − s) x̃ (s) ds

−

∫ e

1
sin

(2k + 1)π
2

(e − s) x̃ (s) ds
]
,

otherwise, we find

c1 = −
sin λ

∆

(
β

∫ ξ

1
sin λ (ξ − s) x̃ (s) ds −

∫ e

1
sin λ (e − s) x̃ (s) ds

)
.

The above two expressions of c1 are equivalent for the particular choice of λ. Substituting these values
of c1 and c2 in (3.7) and applying Lemma 3.2, we finally obtain (3.5). So, the unique solution of
problem (3.4) is given by (3.5). Conversely, let x(t) be given by formula (3.5), operating D2 on both
sides and using (2.13), we get

D2x(t) = −λ

∫ t

1
sin λ (t − s)

[
1

Γ (α)

∫ s

1

(
ln

s
τ

)α−1
h (τ)

dτ
τ

]
ds +

1
Γ (α)

∫ t

1

(
ln

t
τ

)α−1
h (τ)

dτ
τ

−
βλ2

∆
sin λ (t − 1)

∫ ξ

1
sin λ (ξ − s)

[
1

Γ (α)

∫ s

1

(
ln

s
τ

)α−1
h (τ)

dτ
τ

]
ds
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+
λ2

∆
sin λ (t − 1)

∫ e

1
sin λ (e − s)

[
1

Γ (α)

∫ s

1

(
ln

s
τ

)α−1
h (τ)

dτ
τ

]
ds.

Hence (
D2 + λ2

)
[x] (t) =

1
Γ (α)

∫ t

1

(
ln

t
τ

)α−1
h (τ)

dτ
τ
.

Operating Dα
1 on the above relation and using (2.8), we obtain the first equation of (3.4). Further, it is

easy to get that all conditions in (3.4) are satisfied. The proof is completed. �

By virtue of Lemma 3.3, we get the following result.

Lemma 3.4. Let 0 < α < 1, λ > 0. Then the problem (1.1) is equivalent to the integral equation

x(t) =
1
λ

∫ t

1
g (t − s)Jα

1
[
fx
]
(s) ds (3.8)

+
1
∆

g (t − 1)
[
β

∫ ξ

1
g (ξ − s)Jα

1
[
fx
]
(s) ds −

∫ e

1
g (e − s)Jα

1
[
fx
]
(s) ds

]
.

For convenience, we define the following functions

φx (t) =

∫ t

1
g (t − s)Jα

1
[
fx
]
(s) ds (3.9)

and
Hx (ξ, β) =

1
∆

(βφx (ξ) − φx (e)) . (3.10)

Then, the integral equation (3.8) can be written as

x(t) =
1
λ
φx (t) + Hx (ξ, β) g (t − 1) . (3.11)

From the expressions of (3.5) and (3.8), we can see that if all conditions in Lemmas 3.3 and 3.4
are satisfied, then the solution is a continuous solution of the boundary value problem (1.1). Let
C = C([1, e],R) be a Banach space of all continuous functions defined on [1, e] endowed with the
usual supremum norm. Consider the space defined by

E =
{
x : x ∈ C,Dα

1 [x] ∈ C
}
,

equipped with the norm ‖x‖E = ‖x‖ +
∥∥∥Dα

1 [x]
∥∥∥, then (E, ‖.‖E) is a Banach space. On this space, by

virtue of Lemma 3.4, we may define the operator Ψ : E → E by

Ψx(t) =
1
λ
φx (t) + Hx (ξ, β) g (t − 1) ,

where g (t − 1), φx (t) and Hx (ξ, β) defined by (2.15), (3.9) and (3.10) respectively. Then

Dα
1 [Ψx] (t) =

1
λ
Dα

1
[
φx

]
(t) + Hx (ξ, β)Dα

1
[
g (t − 1)

]
. (3.12)
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By virtue of Property 2.1 and Eq (2.10) in Remark 2.5, we get the following

Dα
1
[
φx

]
(t) =

∫ t

1
Dα

1
[
g (τ − 1)

]
(s)Jα

1
[
fx
]
(t − s + 1) ds. (3.13)

The continuity of the functional f would imply the continuity of Ψx and Dα
1 [Ψx]. Hence the

operator Ψ maps the Banach space E into itself. This operator will be used to prove our main results.
Next section, we employ fixed point theorems to prove the main results of this paper. In view of
Lemma 3.4, we transform problem (1.1) as

x = Ψx, x ∈ E. (3.14)

Observe that problem (1.1) or (3.8) has solutions if the operator Ψ in (3.14) has fixed points. For
computational convenience, we set the notations:

0 ≤ ρ (t) :=
1
λ
ρα (t) +

1
|∆|

(βρα (ξ) + ρα (e)) ≤ Mρ, (3.15)

and

0 ≤ σα (t) :=
∫ t

1
s (ln s)1−α (ln (t − s + 1))α ds ≤ Mσ, (3.16)

where

Mρ :=
1
λ

+
1
|∆|

(β + 1) ,

Mσ := max
{∫ t

1
s2−α (t − s + 1)α ds : t ∈ [1, e]

}
,

(3.17)

and

Q ≥
1

Γ (1 + α)

[
Mρ +

1
Γ (2 − α)

(
Mσ + λ

βρα (ξ) + ρα (e)
|∆|

e2−α
)]
. (3.18)

4. Results of existence and uniqueness

In this section, we establish the existence and uniqueness results via fixed point theorems.

Theorem 4.1. Assume that f : [1, e] × C × C → C is a continuous function that satisfies (H1). If we
suppose

N = max {N1,N2} , NQ < 1, (4.1)

where Q is defined in (3.18), then problem (3.14) has a unique solution in E.

Proof. To prove this theorem, we need to prove that the operator Ψ has a fixed point in E. So, we shall
prove that Ψ is a contraction mapping on E. For any x, x̃ ∈ E and for each t ∈ [1, e], we have

|Ψx̃(t) − Ψx(t)| ≤
1
λ
|φx̃ (t) − φx (t)| + |Hx̃ (ξ, β) − Hx (ξ, β)| |g (t − 1)| , (4.2)
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where x (t) and x̃ (t) are defined in Lemma 3.4. From assumption (H1) and Eqs (3.9) and (4.1), we
obtain

|φx̃ (t) − φx (t)| =

∣∣∣∣∣∣
∫ t

1
g (t − s)Jα

1
[
fx̃(τ) − fx(τ)

]
(s) ds

∣∣∣∣∣∣ (4.3)

≤ sup
t∈[1,e]

| fx̃(t) − fx(t)|

∣∣∣∣∣∣
∫ t

1
Jα

1 [1] ds

∣∣∣∣∣∣
≤ sup

t∈[1,e]

N
(
|x̃ (t) − x (t)| +

∣∣∣Dα
1 x̃ (t) −Dα

1 x (t)
∣∣∣)

Γ (1 + α)

∫ t

1
(ln s)α ds

≤
ρα (t)

Γ (1 + α)
N (M1 + M2) ,

where ρα (t) is given by (2.11) and

M1 = sup
t∈[1,e]

|x̃ (t) − x (t)| ,

M2 = sup
t∈[1,e]

∣∣∣Dα
1 x̃ (t) −Dα

1 x (t)
∣∣∣ .

Similarly, we can obtain |φx̃ (ξ) − φx (ξ)| and |φx̃ (e) − φx (e)|. Then

|Hx̃ (ξ, β) − Hx (ξ, β)| ≤
1
|∆|

[
β |φx̃ (ξ) − φx (ξ)| + |φx̃ (e) − φx (e)|

]
(4.4)

≤
βρα (ξ) + ρα (e)
|∆|Γ (1 + α)

N (M1 + M2) .

Linking (4.2), (4.3) and (4.4), for every x, x̃ ∈ E, we get

|Ψx̃(t) − Ψx(t)| ≤
ρ (t)

Γ (1 + α)
N (M1 + M2) ,

where ρ (t) is given by (3.15). Consequently, it yields that

‖Ψx̃ − Ψx‖ ≤ Q1N
(
‖x̃ − x‖ +

∥∥∥Dα
1 x̃ −Dα

1 x
∥∥∥) , (4.5)

with

Q1 ≥ max
{

ρ (t)
Γ (1 + α)

: t ∈ [1, e]
}
. (4.6)

On the other hand, we observe that∣∣∣Dα
1 [Ψx̃] (t) −Dα

1 [Ψx] (t)
∣∣∣ ≤ 1

λ

∣∣∣Dα
1
[
φx̃

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣ (4.7)

+ |Hx̃ (ξ, β) − Hx (ξ, β)|
∣∣∣Dα

1
[
g (t − 1)

]∣∣∣ .
By (3.13), we have∣∣∣Dα

1
[
φx̃

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣ =

∣∣∣∣∣∣
∫ t

1

[
Dα

1
[
g (t − 1)

]
(s)

] [(
Jα

1
[
fx̃ − fx

])
(t − s + 1)

]
ds

∣∣∣∣∣∣ (4.8)
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≤ sup
t∈[1,e]

| fx̃(t) − fx(t)|
∫ t

1

∣∣∣Dα
1
[
g (t − 1)

]
(s)

∣∣∣Jα
1 [1] (t − s + 1) ds.

Taking into account that

R11(t) =

∫ t

1

∣∣∣Dα
1
[
g (t − 1)

]
(s)

∣∣∣Jα
1 [1] (t − s + 1) ds (4.9)

≤

∫ t

1
λ

∣∣∣∣∣γ (1 − α, ln s)
Γ (1 − α)

s
∣∣∣∣∣ (ln (t − s + 1))α

Γ (1 + α)
ds

≤
λ

Γ (2 − α) Γ (1 + α)

∫ t

1
s (ln s)1−α (ln (t − s + 1))α ds

≤
λ

Γ (2 − α) Γ (1 + α)
σα (t) ,

we have, ∣∣∣Dα
1
[
φx̃

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣ ≤ λσα (t)
Γ (2 − α) Γ (1 + α)

N (M1 + M2) , (4.10)

where σα (t) is given by (3.16). Therefore, from (4.7), (4.7) and (4.10), we have∣∣∣Dα
1 [Ψx̃] (t) −Dα

1 [Ψx] (t)
∣∣∣ ≤ N (M1 + M2)

Γ (1 + α)

(
σα (t)

Γ (2 − α)
+ R12(t)

)
, (4.11)

where

R12(t) =
βρα (ξ) + ρα (e)

|∆|

λt |γ (1 − α, ln t)|
Γ (1 − α)

≤
λ (βρα (ξ) + ρα (e))
|∆|Γ (2 − α)

(ln t)1−α t.
(4.12)

This gives ∥∥∥Dα
1 [Ψx̃] −Dα

1 [Ψx]
∥∥∥ ≤ Q2N

(
‖x̃ − x‖ +

∥∥∥Dα
1 x̃ −Dα

1 x
∥∥∥) , (4.13)

with

Q2 ≥
1

Γ (1 + α) Γ (2 − α)
max

{
σα (t) + λ

βρα (ξ) + ρα (e)
|∆|

(ln t)1−α t : t ∈ [1, e]
}
. (4.14)

By (4.5) and (4.13), we can write

‖Ψx̃ − Ψx‖E ≤ QN ‖x̃ − x‖E , (4.15)

with Q ≥ Q1 + Q2. Combining (4.1) with (4.15), we conclude that Ψ is contractive on E. As a
consequence of Banach fixed point theorem, we deduce that Ψ has a unique fixed point which is a
solution of our problem in E. �

Corollary 4.2. Let the assumptions of the Theorem 4.1 be fulfilled. If we suppose that (4.1) holds, with
Q is defined as

Q =
1

Γ (1 + α)

[
Mρ +

1
Γ (2 − α)

(
Mσ + λ

β + 1
|∆|

e
)]
, (4.16)

then, problem (3.14) has a unique solution in E.
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Let Br ⊂ E be bounded, i.e., there exists a positive constant r > 0 such that ‖x‖E < r for all x ∈ Br.
then Br is a closed ball in the Banach space E, hence it is also a Banach space. The restriction of Ψ on
Br is still a contraction by Theorem 4.1. Then, problem (3.14) has a unique solution in Br if Ψ (Br) ⊂
Br.

Theorem 4.3. Assume that f : [1, e] × C × C → C is a continuous function that satisfies (H1). If we
suppose that (4.1) holds, with Q is defined in (3.18), then problem (3.14) has a unique solution in Br.

Proof. Now we show that Ψ (Br) ⊂ Br, that is ‖Ψx‖E ≤ r whenever ‖x‖E ≤ r. Denoting

Lb = N1 sup
t∈[1,e]

|x (t)| + N2 sup
t∈[1,e]

∣∣∣Dα
1 x (t)

∣∣∣ + L0,

where L0 = max {| f (t, 0, 0| : t ∈ [1, e]}. Observe that

| fx(t)| = | fx(t) − f0(t) + f0(t)| ≤ | fx(t) − f0(t)| + | f0(t)| ≤ Lb.

So, we have

|φx (t)| =

∣∣∣∣∣∣
∫ t

1
g (t − s)Jα

1
[
fx − f0 + f0

]
(s) ds

∣∣∣∣∣∣
≤ sup

t∈[1,e]
(| fx(t) − f0(t)| + | f0(t)|)

∫ t

1
Jα

1 [1] (s) ds

≤
ρα (t)

Γ (1 + α)
Lb

and
|Hx (ξ, β)| ≤

βρα (ξ) + ρα (e)
Γ (1 + α) |∆|

Lb. (4.17)

Then |Ψx(t)| ≤ ρ(t)
Γ(1+α) Lb. Therefore,

‖Ψx‖ ≤ Q1

(
N

(
‖x‖ +

∥∥∥Dα
1 x

∥∥∥) + L0

)
, (4.18)

where Q1 is given by (4.6). On the other hand, we have

∣∣∣Dα
1 [Ψx] (t)

∣∣∣ ≤ ∣∣∣Dα
1
[
φx

]
(t)

∣∣∣
λ

+
β |φx (ξ)| + |φx (e)|

|∆|

∣∣∣Dα
1 (g (t − 1))

∣∣∣ . (4.19)

Thanks to (H1), it yields that∣∣∣Dα
1
[
φx

]
(t)

∣∣∣ ≤ ∣∣∣∣∣∣
∫ t

1
Dα

1
[
g (t − 1)

]
(s)Jα

1
[
fx − f0 + f0

]
(t − s + 1) ds

∣∣∣∣∣∣
≤ Lb

[∫ t

1

[
Dα

1
[
g (t − 1)

]
(s)

]
Jα

1 [1] (t − s + 1) ds
]
.

This gives ∣∣∣Dα
1
[
φx

]
(t)

∣∣∣ ≤ λσα (t)
Γ (1 + α) Γ (2 − α)

Lb, (4.20)
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where σα (t) is given by (3.16). Consequently, by (4.17), (4.19) and (4.20), we have∥∥∥Dα
1 [Ψx]

∥∥∥ ≤ Q2

(
N

(
‖x‖ +

∥∥∥Dα
1 x

∥∥∥) + L0

)
, (4.21)

where Q2 is given by (4.14). Using (4.18) and (4.21), we obtain

‖Ψx‖E ≤ Q
(
N

(
‖x‖ +

∥∥∥Dα
1 x

∥∥∥) + L0

)
,

and we find that ‖Ψx‖E ≤ Q (Nr + L0) ≤ r, where we choose r ≥ L0

(
Q−1 − N

)−1
. Hence, the operator

Ψ maps bounded sets into bounded sets in Br, therefore Ψ is a contraction. Thus, the conclusion of the
theorem follows by the contraction mapping principle. �

Corollary 4.4. Assume that f : [1, e] × C × C → C is a continuous function that satisfies (H1). If we
suppose N = max {N1,N2} and

L0

(
Q−1 − N

)−1
< r,

where Q is defined in (4.16). Then, problem (3.14) has a unique solution in Br.

Our second result will use the Scheafer fixed point theorem.

Theorem 4.5. The problem (3.14) has at least one solution defined on E, whenever assumption (H2)
be hold.

Proof. The proof will be given in several steps.
Step 1: We show that Ψ is continuous. Let us consider a sequence {xn} ∈ E converging to x. For each
t ∈ [1, e], we have

|Ψxn(t) − Ψx(t)| ≤
1
λ

∣∣∣φxn (t) − φx (t)
∣∣∣ +

∣∣∣Hxn (ξ, β) − Hx (ξ, β)
∣∣∣ |g (t − 1)| ,

where ∣∣∣φxn (t) − φx (t)
∣∣∣ =

∣∣∣∣∣∣
∫ t

1
g (t − s)Jα

1
[
fxn − fx

]
(s) ds

∣∣∣∣∣∣ (4.22)

≤
ρα (t)

Γ (1 + α)

∣∣∣ fxn(t) − fx(t)
∣∣∣ .

Similarly, we can obtain∣∣∣Hxn (ξ, β) − Hx (ξ, β)
∣∣∣ ≤ βρα (ξ) + ρα (e)

|∆|Γ (1 + α)

∣∣∣ fxn(t) − fx(t)
∣∣∣ . (4.23)

Thus, from (4.19), (4.22) and (4.23), we have

|Ψxn(t) − Ψx(t)| ≤
ρ (t)

Γ (1 + α)

∣∣∣ fxn(t) − fx(t)
∣∣∣ . (4.24)

If (t, x) ∈ [1, e] × E, xn → x as n→ ∞ and f is continuous, then (4.24) gives

‖Ψxn − Ψx‖ → 0, (4.25)
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as n→ ∞. On the other hand, from (4.11) we observe that∣∣∣Dα
1 [Ψxn] (t) −Dα

1 [Ψx] (t)
∣∣∣ ≤ 1

Γ (1 + α)

(
σα (t)

Γ (2 − α)
+ R12

) ∣∣∣ fxn(τ) − fx(τ)
∣∣∣ ,

where R12 is given by (4.12). Thus ∥∥∥Dα
1 [Ψxn] −Dα

1 [Ψx]
∥∥∥→ 0, (4.26)

as n → ∞. Since the convergence of a sequence implies its boundedness, therefore, there exists r > 0
such that ‖xn‖ ≤ r, ‖x‖ ≤ r and hence f is uniformly continuous on the compact set{ (

t, x (t) ,Dα
1 [x] (t)

)
: t ∈ [1, e] , ‖x‖ ≤ r1,

∥∥∥Dα
1 [x]

∥∥∥ ≤ r2

}
.

By (4.25) and (4.26), we can write ‖[Ψxn] − [Ψx]‖E → 0 as n→ ∞. This shows that Ψ is continuous.
Step 2: Now we show that the operator Ψ : E → E maps bounded sets into bounded sets in E. Let
Br ⊂ E be bounded, i.e., there exists a positive constant r > 0 such that ‖x‖E ≤ r for all x ∈ Br. Let

L = max
{∣∣∣ f (t, x(t),Dα

1 [x] (t))
∣∣∣ : t ∈ [1, e] , 0 < ‖x‖ ≤ r,

∥∥∥Dα
1 [x]

∥∥∥ ≤ r
}
,

then, for x ∈ Br, we have

|φx (t)| =

∣∣∣∣∣∣
∫ t

1
g (t − s)Jα

1
[
fx
]
(s) ds

∣∣∣∣∣∣ ≤ ρα (t)
Γ (1 + α)

L (4.27)

and
|Hx (ξ, β)| ≤

βρα (ξ) + ρα (e)
|∆|Γ (1 + α)

L. (4.28)

Then from (4.27) and (4.28), we get |Ψx(t)| ≤ ρ(t)
Γ(1+α) L. Therefore,

‖Ψx‖ ≤ Q1L. (4.29)

According to Property 2.1, we should have∣∣∣Dα
1
[
φx

]
(t)

∣∣∣ =

∣∣∣∣∣∣
∫ t

1
Dα

1
[
g (t − 1)

]
(s)Jα

1
[
fx
]
(t − s + 1) ds

∣∣∣∣∣∣ (4.30)

≤
λσα (t)

Γ (1 + α) Γ (2 − α)
L.

Consequently, by (3.12), (4.28) and (4.30), we have∥∥∥Dα
1Ψx

∥∥∥ ≤ Q2L. (4.31)

Using (4.29) and (4.31), we obtain ‖Ψx‖E ≤ QL. Hence, the operator Ψ maps bounded sets into
bounded sets in E. Next we show that Ψ maps bounded sets into equicontinuous sets of Br.
Step 3: In this step, we show that Ψ (Br) is equicontinuity. Let t1, t2 ∈ [1, e] such that t1 < t2. Then we
obtain

|Ψx(t2) − Ψx(t1)| ≤
1
λ
|φx (t2) − φx (t1)| + |Hx (ξ, β)| |g (t2 − 1) − g (t1 − 1)| . (4.32)
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We can show that

|φx (t2) − φx (t1)| =

∣∣∣∣∣∣
∫ t2

1
g (t2 − s)Jα

1
[
fx
]
(s)ds −

∫ t1

1
g (t1 − s)Jα

1
[
fx
]
(s)ds

∣∣∣∣∣∣ (4.33)

≤

∫ t1

1
|g (t2 − s) − g (t1 − s)|

∣∣∣Jα
1
[
fx
]
(s)

∣∣∣ ds +

∫ t2

t1
|g (t2 − s)|

∣∣∣Jα
1
[
fx
]
(s)

∣∣∣ ds

≤ L
∫ t1

1
|g (t2 − s) − g (t1 − s)| Jα

1 [1] (s) ds + L
∫ t2

t1
|g (t2 − s)| Jα

1 [1] (s) ds

≤ L
∫ t1

1

∣∣∣∣∣∣λ
∫ t2

t1
cos λ (τ − s) dτ

∣∣∣∣∣∣Jα
1 [1] (s) ds + L

∫ t2

t1
Jα

1 [1] (s) ds

≤
L

Γ (1 + α)

[
λ |t2 − t1|

∫ t1

1
(ln s)α ds +

∫ t2

t1
(ln s)α ds

]
.

Hence
|φx (t2) − φx (t1)| ≤

L
Γ (2 + α)

[
λ |t2 − t1|

∣∣∣tα+1
1 − 1

∣∣∣ +
∣∣∣tα+1

2 − tα+1
1

∣∣∣] . (4.34)

It is easy to find that

|g (t2 − 1) − g (t1 − 1)| =

∣∣∣∣∣∣λ
∫ t2

t1
cos λ (τ − 1) dτ

∣∣∣∣∣∣ ≤ λ |t2 − t1| .

Therefore by (4.28), (4.32), (4.33) and (4.34) we have

|Ψx(t2) − Ψx(t1)| ≤
1
λ
|φx (t2) − φx (t1)| + |Hx (ξ, β)| |g (t2 − 1) − g (t1 − 1)| (4.35)

≤
L

Γ (2 + α)

[
|t2 − t1|

∣∣∣tα+1
1 − 1

∣∣∣ +
1
λ

∣∣∣tα+1
2 − tα+1

1

∣∣∣]
+ λL

βρα (ξ) + ρα (e)
|∆|Γ (1 + α)

|t2 − t1| .

We have also,∣∣∣Dα
1 [Ψx] (t2) −Dα

1 [Ψx] (t1)
∣∣∣ ≤ 1

λ

∣∣∣Dα
1
[
φx

]
(t2) −Dα

1
[
φx

]
(t1)

∣∣∣ (4.36)

+ |Hx (ξ, β)|
∣∣∣Dα

1
[
g (t2 − 1)

]
−Dα

1
[
g (t1 − 1)

]∣∣∣ .
Thus, we obtain∣∣∣Dα

1
[
φx

]
(t2) −Dα

1
[
φx

]
(t1)

∣∣∣ ≤ ∣∣∣∣∣∣
∫ t2

1
Dα

1
[
g (τ − 1)

]
(s)Jα

1
[
fx
]
(t2 − s + 1) ds

−

∫ t1

1
Dα

1
[
g (τ − 1)

]
(s)Jα

1
[
fx
]
(t1 − s + 1) ds

∣∣∣∣∣∣
≤

∫ t1

1

∣∣∣Dα
1
[
g (τ − 1)

]
(s)

∣∣∣ ∣∣∣Jα
1
[
fx
]
(t2 − s + 1) − Jα

1
[
fx
]
(t1 − s + 1)

∣∣∣ ds

+

∫ t2

t1

∣∣∣Dα
1
[
g (τ − 1)

]
(s)

∣∣∣Jα
1
[
fx
]
(t2 − s + 1) ds.
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We find that∣∣∣Jα
1
[
fx
]

(t2 − s + 1) − Jα
1
[
fx
]
(t1 − s + 1)

∣∣∣ (4.37)

≤ L
∣∣∣Jα

1 [1] (t2 − s + 1) − Jα
1 [1] (t1 − s + 1)

∣∣∣
=

L
Γ (α)

∣∣∣∣∣∣∣
∫ t2−s+1

1

(
ln

t2 − s + 1
τ

)α−1 dτ
τ
−

∫ t1−s+1

1

(
ln

t1 − s + 1
τ

)α−1 dτ
τ

∣∣∣∣∣∣∣
=

L
Γ (α)

∫ t1−s+1

1

∣∣∣∣∣∣∣
(
ln

t2 − s + 1
τ

)α−1

−

(
ln

t1 − s + 1
τ

)α−1
∣∣∣∣∣∣∣ dτ
τ

+
L

Γ (α)

∫ t2−s+1

t1−s+1

(
ln

t2 − s + 1
τ

)α−1 dτ
τ

≤
L

Γ (1 + α)

[
2
(
ln

t2 − s + 1
t1 − s + 1

)α
+ (ln t2 − s + 1)α − (ln t1 − s + 1)α

]
.

Note that ∣∣∣Jα
1
[
fx
]
(t2 − s + 1) − Jα

1
[
fx
]
(t1 − s + 1)

∣∣∣ ,
is independent of x. Therefore∣∣∣Dα

1
[
φx

]
(t2) −Dα

1
[
φx

]
(t1)

∣∣∣ ≤ L
Γ (1 + α)

∫ t1

1

[
2
(
ln

t2 − s + 1
t1 − s + 1

)α
(4.38)

+ (ln (t2 − s + 1))α − (ln (t1 − s + 1))α
]
ds

+
λL (σα (t2) − σα (t1))
Γ (2 − α) Γ (1 + α)

.

In accordance with (4.35), (4.36), (4.37) and (4.38), we deduce that

‖Ψx(t2) − Ψx(t1)‖ +
∥∥∥Dα

1 [Ψx] (t2) −Dα
1 [Ψx] (t1)

∥∥∥→ 0,

as |t2 − t1| → 0. Hence the sets of functions {Ψx(t) : x ∈ Br} and{
Dα

1 [Ψx] (t) : x ∈ Br

}
,

are bounded in Br and equicontinuous on [1, e]. Thus, by the Arzelá–Ascoli Theorem, the mapping Ψ

is completely continuous on E.
Step 4: In the last step, it remains to show that the set defined by

Λ =
{
x ∈ E : x = µΨx for some 0 < µ < 1

}
,

is bounded. Let x be a solution. Then, for t ∈ [1, e] and using the computations in proving that Ψ is
bounded, we have |x (t)| = |µ (Ψx) (t)|. Let x ∈ Λ, x = µΨx for some 0 < µ < 1. Thus, by (4.29), for
each t ∈ [1, e], we have

‖x‖ = µ ‖Ψx‖ ≤ ‖Ψx‖ ≤ Q1L, (4.39)

for µ ∈ (0, 1). On the other hand, by (4.31), we have∥∥∥Dα
1 [x]

∥∥∥ = µ
∥∥∥Dα

1 [Ψx]
∥∥∥ ≤ Q2L. (4.40)
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It follows from (4.39) and (4.40) that ‖x‖E = ‖x‖ +
∥∥∥Dα

1 [x]
∥∥∥ ≤ QL < ∞, where Q defined by (3.18).

This implies that the set Λ is bounded independently of µ ∈ (0, 1). Therefore, Λ is bounded. As a
conclusion of Schaefer fixed point theorem, we deduce that Ψ has at least one fixed point, which is a
solution of (3.14). The proof is completed. �

Remark 4.6. Let ε > 0 and choose a number η > 0 such that

ε >
2L

λΓ (2 + α)
min

{
κ1 (η) , κ2 (η)

}
+ 2λL

βρα (ξ) + ρα (e)
|∆|Γ (1 + α)

η, (4.41)

where

κ1 (η) = λη
(
eα+1 − 1

)
+ e (α + 1) ηα,

κ2 (η) = λη
(
ηα+1 − 1

)
+

(
(2η)α+1

− 1
)
.

Assume t1, t2 ∈ [1, e]; t1 < t2 such that t2 − t1 ≤ η. It obvious that t2 > η and there are two possibilities
for t1 and η.
Case 1: For η ≤ t1 < t2 ≤ e, by means of mean value theorem of differentiation implies that there exists
t ∈ (t1, t2), such that

tα+1
2 − tα+1

1 = (α + 1) (t2 − t1) tα ≤ η (α + 1) ttα−1 ≤ e (α + 1) ηα,

whence, we obtain

|φx (t2) − φx (t1)| ≤
L

Γ (2 + α)

[
λη

(
eα+1 − 1

)
+ e (α + 1) ηα

]
=

L
Γ (2 + α)

κ1 (η) .

Case 2: For 1 ≤ t1 < η < t2 ≤ e and so t2 < 2η. These imply that

|φx (t2) − φx (t1)| ≤
L

Γ (2 + α)

[
λη

(
ηα+1 − 1

)
+

(
(2η)α+1

− 1
)]

=
L

Γ (2 + α)
κ2 (η) .

Combining Case 1 and 2, we obtain

|φx (t2) − φx (t1)| ≤
L

Γ (2 + α)
min

{
κ1 (η) , κ2 (η)

}
.

Now, it is obvious by (4.35) and (4.41) that |Ψx(t2) − Ψx(t1)| ≤ ε
2 . A similar argument can be applied

to obtain ∣∣∣Dα
1 [Ψx] (t2) −Dα

1 [Ψx] (t1)
∣∣∣ ≤ ε

2
.

Corollary 4.7. Suppose that the conditions of Theorem 4.5 hold, with Q is defined as (4.16). Then,
problem (3.14) has at least one solution defined on [1, e].
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5. Results of stability

For the study of Hyers-Ulam-Rassias and generalized Ulam-Hyers-Rassias stabilities of
problem (1.1) on a compact interval [1, e], we adopt the following definitions [22, 35, 49, 58, 59].

Definition 5.1. Problem (1.1) is Ulam-Hyers-Rassias stable with respect to ϕ ∈ C ([1, e] ,R+) if for
each ε > 0 and each solution x̃ of the inequality∣∣∣∣Dα

1

(
D2 + λ2

)
x̃(t) − f (t, x̃(t),Dα

1 [x̃] (t))
∣∣∣∣ ≤ εϕ(t), (5.1)

for t ∈ [1, e], there exists a real number cϕ > 0 and a solution x of problem (1.1) such that

|x̃(t) − x(t)| ≤ εcϕϕ(t),

for t ∈ [1, e]. Particularly, in the case that ϕ is identity function on [1, e], problem (1.1) is called
Ulam-Hyers stable. Moreover, if there exists ψ ∈ C (R+,R+) , ψ(0) = 0, such that |x̃(t) − x(t)| ≤ ψ(ε),
for t ∈ [1, e], then problem (1.1) is called generalized Ulam-Hyers stable.

Definition 5.2. Problem (1.1) is generalized Ulam-Hyers-Rassias stable with respect to a function
ϕ ∈ C ([1, e] ,R+) if for each solution x̃ of the inequality∣∣∣∣Dα

1

(
D2 + λ2

)
x̃(t) − f (t, x̃(t),Dα

1 [x̃] (t))
∣∣∣∣ ≤ ϕ (t) , (5.2)

for t ∈ [1, e], there exist a real number cϕ > 0 and a solution x of problem (1.1) such that |x̃(t) − x(t)| ≤
cϕϕ (t), for t ∈ [1, e].

Remark 5.3. A function x̃ ∈ C is a solution of the inequality (5.1) if and only if there exists a function
h ∈ C (which depends on x̃) such that for all t ∈ [1, e],

(i) |h (t)| ≤ εϕ (t).
(ii) Dα

1

(
D2 + λ2

)
x̃(t) = f (t, x̃(t),Dα

1 [x̃] (t)) + h (t).

Lemma 5.4. Let 0 < α < 1, if x̃ ∈ C is a solution of the inequality (5.1)(or (5.2)) then x̃ is a solution
of the following integral inequality∣∣∣∣∣x̃(t) −

1
λ
φx̃ (t) − Hx̃ (ξ, β) g (t − 1)

∣∣∣∣∣ ≤ εω(t), (5.3)

for t ∈ [1, e], where
x̃(1) = 0 = D2 x̃ (1) , x̃(e) = βx̃(ξ), (5.4)

for ξ ∈ (1, e] and

ω(t) =
1
λ

∫ t

1
Jα

1
[
ϕ
]
(s) ds +

β

|∆|

∫ ξ

1
Jα

1
[
ϕ
]
(s) ds +

1
|∆|

∫ e

1
Jα

1
[
ϕ
]
(s) ds.

Proof. By using Remark 5.3-ii, we have

Dα
1

(
D2 + λ2

)
x̃(t) = f (t, x̃(t),Dα

1 [x̃] (t)) + h (t) .
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In accordance with Lemma 3.4, we deduce x̃(t) = 1
λ
φx̃,h (t) + Hx̃,h (ξ, β) g (t − 1), where

φx̃,h (t) =

∫ t

1
g (t − s)Jα

1
[
fx̃ + h

]
(s) ds

and Hx̃,h (ξ, β) = 1
∆

(
βφx̃,h (ξ) − φx̃,h (e)

)
. Hence

x̃(t) =
1
λ
φx̃ (t) + Hx̃ (ξ, β) g (t − 1) +

1
λ

∫ t

1
g (t − s)Jα

1 [h] (s) ds

+ g (t − 1)
β

∆

∫ ξ

1
g (ξ − s)Jα

1 [h] (s) ds −
1
∆

g (t − 1)
∫ e

1
g (e − s)Jα

1 [h] (s) ds.

Accordingly, we easily deduce equation (5.3). �

By virtue of Remark 5.3-i, it can be easily seen that∣∣∣φx̃,h (t) − φx (t)
∣∣∣ ≤ |φx̃ (t) − φx (t)| +

∣∣∣∣∣∣
∫ t

1
g (t − s)Jα

1 [h] (s) ds

∣∣∣∣∣∣
≤ |φx̃ (t) − φx (t)| + ε

∫ t

1
Jα

1
[
ϕ
]
(s) ds.

Similar arguments can be applied as in (4.3) to deduce that

|φx̃ (t) − φx (t)| ≤
Nρα (t)

Γ (1 + α)
‖x̃ − x‖E .

Now, it is obvious that∣∣∣φx̃,h (t) − φx (t)
∣∣∣ ≤ Nρα (t)

Γ (1 + α)
‖x̃ − x‖E + ε

∫ t

1
Jα

1
[
ϕ
]
(s) ds, (5.5)

and ∣∣∣Hx̃,h (ξ, β) − Hx (ξ, β)
∣∣∣ ≤ 1
|∆|

(
β
∣∣∣φx̃,h (ξ) − φx (ξ)

∣∣∣ +
∣∣∣φx (e) − φx̃,h (e)

∣∣∣) (5.6)

≤
N

|∆|Γ (1 + α)
(βρα (ξ) + ρα (e)) ‖x̃ − x‖E

+
ε

|∆|

(
β

∫ ξ

1
Jα

1
[
ϕ
]
(s) ds +

∫ e

1
Jα

1
[
ϕ
]
(s) ds

)
.

Theorem 5.5. Assume that the conditions of Theorem 4.1 and (5.1), (5.4) hold. Then, problem (1.1) is
Ulam-Hyers-Rassias stable with respect to positive constant functions. Particularly, problem (1.1) is
Ulam-Hyers stable and generalized Ulam-Hyers stable.

Proof. Using Theorem 4.1, there exists a unique solution x ∈ C of problem (1.1) that is given by
integral equation (3.11). Let x̃ ∈ C be any solution of the inequality (5.1), then by (5.5) and (5.6), we
have

|x̃(t) − x (t)| =
∣∣∣∣∣1λφx̃,h (t) + Hx̃,h (ξ, β) g (t − 1) −

1
λ
φx (t) − Hx (ξ, β) g (t − 1)

∣∣∣∣∣
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≤
1
λ

∣∣∣φx̃,h (t) − φx (t)
∣∣∣ +

∣∣∣Hx̃,h (ξ, β) − Hx (ξ, β)
∣∣∣ |g (t − 1)|

≤
Nρα (t)

Γ (1 + α)
‖x̃ − x‖E + ε

[1
λ

∫ t

1
Jα

1
[
ϕ
]
(s) ds

+
β

|∆|

∫ ξ

1
Jα

1
[
ϕ
]
(s) ds +

1
|∆|

∫ e

1
Jα

1
[
ϕ
]
(s) ds

]
,

where x (t) and ρ (t) are as in (3.8) and (3.15). Thus

‖x̃ − x‖E ≤
εΓ (1 + α)

Γ (1 + α) − NMρ

[1
λ

∫ e

1
Jα

1
[
ϕ
]
(s) ds

+
β

|∆|

∫ ξ

1
Jα

1
[
ϕ
]
(s) ds +

1
|∆|

∫ e

1
Jα

1
[
ϕ
]
(s) ds

]
,

since by (3.18), we get 0 < NMρ

Γ(1+α) < 1. Then, for each t ∈ [1, e],

|x̃(t) − x (t)| ≤ ε
[1
λ

∫ t

1
Jα

1
[
ϕ
]
(s) ds +

β

|∆|

(
1 +

Nρα (t)
Γ (1 + α) − NMρ

) ∫ ξ

1
Jα

1
[
ϕ
]
(s) ds

+

(
1
|∆|

+
1
λ

Nρα (t)
Γ (1 + α) − NMρ

+
1
|∆|

Nρα (t)
Γ (1 + α) − NMρ

) ∫ e

1
Jα

1
[
ϕ
]
(s) ds

]
.

Accordingly, to satisfy the inequality |x̃(t) − x (t)| ≤ εcϕϕ (t), we have to pose that ϕ is a constant
function on [1, e]. Hence, if ϕ(t) = c > 0, t ∈ [1, e], then any finite positive constant

cϕ ≥
cρα (e)

λΓ (1 + α)
+

cβρα (ξ)
|∆|Γ (1 + α)

[
1 +

Nρα (e)
Γ (1 + α) − NMρ

]
+

cρα (e)
Γ (1 + α)

[
1
|∆|

+
1
λ

Nρα (t)
Γ (1 + α) − NMρ

+
1
|∆|

Nρα (e)
Γ (1 + α) − NMρ

]
,

will satisfy the problem. Thus, the fractional boundary value problem (1.1) is Ulam-Hyers-Rassias
with respect to a constant function. The Ulam-Hyers stability can be obtained by putting ϕ = 1, and
hence generalized Ulam-Hyers stable with ψ as identity function. �

In the next result, we prove the (generalized) Ulam-Hyers-Rassias stability in terms of a function.

Theorem 5.6. Assume that the conditions of Theorem 4.1 and (5.1) hold. Then, problem (1.1) is
Ulam-Hyers-Rassias stable with respect to ϕ provided that

ϕ(t) ≥
β

|∆|Γ (α)

∫ ξ

1
ρα−1

(
ξ

s

)
ϕ (s) ds +

1
|∆|Γ (α)

∫ e

1
ρα−1

(e
s

)
ϕ (s) ds (5.7)

+
1

λΓ (α)

∫ t

1
ρα−1

( t
s

)
ϕ (s) ds,

and supt∈[1,e] p(t) < 1, where

p(t) =

∫ e

1

(
βN1

|∆|Γ (α)
ρα−1

(
ξ

s

)
+
βN2

|∆|
+

N1

|∆|Γ (α)
ρα−1

(e
s

)
+

N2

|∆|

)
× exp

(
N1

λΓ (α)

∫ s

α

ρα−1

( s
τ

)
dτ +

N2

λ
(s − 1)

)
ds.
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Proof. Let us denote by x ∈ C the unique solution of the problem (1.1). Let x̃ ∈ C be a solution of the
inequality (5.1), with

x̃(1) = x(1), x̃ (e) = x (e) . (5.8)

By modifying the estimate (5.5), we have∣∣∣φx̃,h (t) − φx (t)
∣∣∣ ≤ N1

∫ t

1
Jα

1 [|x̃ − x|] (s) ds (5.9)

+ N2

∫ t

1
Jα

1D
α
1 [|x̃ − x|] (s) ds +

∫ t

1
Jα

1 [h] (s) ds.

The above inequality implies∣∣∣Hx̃,h (ξ, β) − Hx (ξ, β)
∣∣∣ ≤ 1
|∆|

[
β
∣∣∣φx̃,h (ξ) − φx (ξ)

∣∣∣ +
∣∣∣φx̃,h (e) − φx (e)

∣∣∣] (5.10)

≤
βN1

|∆|

∫ ξ

1
Jα

1 [|x̃ − x|] (s) ds +
βN2

|∆|

∫ ξ

1
|x̃ (s) − x (s)| ds

+
N1

|∆|

∫ e

1
Jα

1 [|x̃ − x|] (s) ds +
N2

|∆|

∫ e

1
|x̃ (s) − x (s)| ds

+
β

|∆|

∫ ξ

1
Jα

1 [h] (s) ds +
1
|∆|

∫ e

1
Jα

1 [h] (s) ds.

Taking into account (2.12), (5.9) and (5.10), lead to

|x̃(t) − x (t)| ≤
1
λ

∣∣∣φx̃,h (t) − φx (t)
∣∣∣ +

∣∣∣Hx̃,h (ξ, β) − Hx (ξ, β)
∣∣∣ |g (t − 1)|

≤
N1

λ

∫ t

1
Jα

1 [|x̃ − x|] (s) ds +
βN1

|∆|

∫ ξ

1
Jα

1 [|x̃ − x|] (s) ds

+
N1

|∆|

∫ e

1
Jα

1 [|x̃ − x|] (s) ds +
N2

λ

∫ t

1
|x̃ (s) − x (s)| ds

+
βN2

|∆|

∫ ξ

1
|x̃ (s) − x (s)| ds +

N2

|∆|

∫ e

1
|x̃ (s) − x (s)| ds

+
1
λ

∫ t

1
Jα

1 [h] (s) ds +
β

|∆|

∫ ξ

1
Jα

1 [h] (s) ds +
1
|∆|

∫ e

1
Jα

1 [h] (s) ds

≤

∫ t

1

(
N1

λΓ (α)
ρα−1

( t
s

)
+

N2

λ

)
|x̃ (s) − x (s)| ds

+

ξ∫
1

(
βN1

|∆|Γ (α)
ρα−1

(
ξ

s

)
+
βN2

|∆|

)
|x̃ (s) − x (s)| ds

+

e∫
1

(
N1

|∆|Γ (α)
ρα−1

(e
s

)
+

N2

|∆|

)
|x̃ (s) − x (s)| ds

+
1

Γ (α)

∫ e

1

(
β

|∆|
ρα−1

(
ξ

s

)
+

1
|∆|
ρα−1

(e
s

)
+

1
λ
ρα−1

( t
s

))
h (s) ds.
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Hence

|x̃(t) − x (t)| ≤ k +

∫ t

1
ã(t, s) |x̃ (s) − x (s)| ds +

e∫
1

b̃(t, s) |x̃ (s) − x (s)| ds,

where

k =
1

Γ (α)

∫ e

1

(
β

|∆|
ρα−1

(
ξ

s

)
+

1
|∆|
ρα−1

(e
s

)
+

1
λ
ρα−1

(e
s

) )
h (s) ds,

and

ã(t, s) =

(
N1

λΓ (α)
ρα−1

( t
s

)
+

N2

λ

)
,

b̃(t, s) =
βN1

|∆|Γ (α)
ρα−1

(
ξ

s

)
+
βN2

|∆|
+

N1

|∆|Γ (α)
ρα−1

(e
s

)
+

N2

|∆|
.

In virtue of Lemma 2.8, we deduce that

|x̃(t) − x (t)| ≤
k

1 − p(t)
exp

(∫ t

1
a(t, s)ds

)
,

for t ∈ [1, e]. Problem (1.1) is Ulam-Hyers-Rassias stable with respect to ϕ ≥ 1
ε
|h|, ϕ must satisfy the

inequality (5.7). In this case, we get |x̃(t) − x (t)| ≤ cϕεϕ(t), where

cϕ = max
t∈[1,e]

[
1

1 − p(t)
exp

(∫ t

1

(
N1

λΓ (α)
ρα−1

( t
s

)
+

N2

λ

)
ds

)]
.

This completes the proof. �

Theorem 5.7. Assume the conditions of Theorem 4.1 and (5.2) hold. Then, problem (1.1) is generalized
Ulam-Hyers-Rassias stable with respect to ϕ provided for any t ∈ [1, e] that

ϕ(t) ≥
1
λ

∫ t

1
Jα

1
[
ϕ
]
(s) ds +

β

|∆|

∫ ξ

1
Jα

1
[
ϕ
]
(s) ds +

1
|∆|

∫ e

1
Jα

1
[
ϕ
]
(s) ds (5.11)

+
1

Γ (1 + α) − NMρ

[
N ‖ϕ‖ ρ (t)

(
ρα (e)
λ

+
βρα (ξ)
|∆|

+
ρα (e)
|∆|

)]
+

1(
Γ (1 + α) − NMρ

)[Γ (2 − α)
(
Γ (1 + α) − NMρ

)
− N

(
Mσ + λ

(βρα (ξ) + ρα (e))
|∆|

e2−α
) ]−1

× N2 ‖ϕ‖

(
ρα (e)
λ

+
βρα (ξ)
|∆|

+
ρα (e)
|∆|

) (
Mσ + λ

(βρα (ξ) + ρα (e))
|∆|

e2−α
)
ρ (t)

+ Nρ (t)
[
Γ (2 − α)

(
Γ (1 + α) − NMρ

)
− N

(
Mσ + λ

(βρα (ξ) + ρα (e))
|∆|

e2−α
) ]−1

×

[ ∫ t

1
s (ln s)1−α

Jα
1
[
ϕ
]
(t − s + 1) ds

+
λβe2−α

|∆|

∫ ξ

1
Jα

1
[
ϕ
]
(s) ds +

λe2−α

|∆|

∫ e

1
Jα

1
[
ϕ
]
(s) ds

]
.
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Proof. Let us denote by x ∈ C ([1, e] ,R) the unique solution of the problem (1.1). Let x̄ ∈ C be a
solution of the inequality (5.2), with (5.8). It follows

|φx̄ (t) − φx (t)| =

∣∣∣∣∣∣
∫ t

1
g (t − s)Jα

1
[
fx̄ − fx

]
(s) ds

∣∣∣∣∣∣
≤ N1

∫ t

1
Jα

1 [|x̄ − x|] (s) ds + N2

∫ t

1
Jα

1

[∣∣∣Dα
1 [x̄] −Dα

1 [x]
∣∣∣] (s) ds

≤ N1

∫ t

1
Jα

1 [|x̄ − x|] (s) ds +
N2ρα (t)
Γ (1 + α)

∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥ .

On the other hand, we have, for each t ∈ [1, e],

|Hx̃ (ξ, β) − Hx (ξ, β)| ≤
1
|∆|

[
β |φx̃ (ξ) − φx (ξ)| + |φx̃ (e) − φx (e)|

]
≤

N2 (ρα (e) + βρα (ξ))
|∆|Γ (1 + α)

∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥

+
βN1

|∆|

∫ ξ

1
Jα

1 [|x̄ − x|] (s) ds +
N1

|∆|

∫ e

1
Jα

1 [|x̄ − x|] (s) ds.

Hence by Lemma 5.4, for each t ∈ [1, e], we get

|x̄(t) − x (t)| ≤
∣∣∣∣∣x̄(t) −

1
λ
φx̄ (t) − Hx̄ (ξ, β) g (t − 1)

∣∣∣∣∣ +
1
λ
|φx̄ (t) − φx (t)|

+ |Hx̄ (ξ, β) − Hx (ξ, β)| |g (t − 1)|

≤ ω(t) +
N1

λ

∫ t

1
Jα

1 [|x̄ − x|] (s) ds +
βN1

|∆|

∫ ξ

1
Jα

1 [|x̄ − x|] (s) ds

+
N1

|∆|

∫ e

1
Jα

1 [|x̄ − x|] (s) ds +
N2ρα (t)
λΓ (1 + α)

∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥

+
N2 (ρα (e) + βρα (ξ))
|∆|Γ (1 + α)

∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥

≤ ω(t) +
N1ρ (t)

Γ (1 + α)
‖x̄ − x‖ +

N2ρ (t)
Γ (1 + α)

∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥

≤ Ω +
N1Mρ

Γ (1 + α)
‖x̄ − x‖ +

N2Mρ

Γ (1 + α)

∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥ ,

where
Ω =

‖ϕ‖ ρα (e)
λ

+
β ‖ϕ‖ ρα (ξ)
|∆|

+
‖ϕ‖ ρα (e)
|∆|

.

Then (see (3.17))

‖x̄ − x‖ ≤
ΩΓ (1 + α)

Γ (1 + α) − NMρ

+
NMρ

Γ (1 + α) − NMρ

∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥ .

Accordingly, we get

|x̄(t) − x (t)| ≤ ω(t) +
ΩNρ (t)

Γ (1 + α) − NMρ

+
Nρ (t)

Γ (1 + α) − NMρ

∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥ .
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We are going now to get an estimate for
∥∥∥Dα

1 [x̄] −Dα
1 [x]

∥∥∥ . It is obvious that∣∣∣Dα
1 [x̄] (t) −Dα

1 [x] (t)
∣∣∣ ≤ 1

λ

∣∣∣Dα
1
[
φx̄,h

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣
+

∣∣∣Hx̄,h (ξ, β) − Hx (ξ, β)
∣∣∣ ∣∣∣Dα

1
[
g (t − 1)

]∣∣∣ ,
where∣∣∣Dα

1
[
φx̄,h

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣ =

∣∣∣∣∣∣
∫ t

1
Dα

1
[
g (t − 1)

]
(s)Jα

1
[
fx̄ − fx + h

]
(t − s + 1) ds

∣∣∣∣∣∣
≤ N1

∫ t

1

∣∣∣Dα
1
[
g (t − 1)

]
(s)

∣∣∣Jα
1 [|x̄ − x|] (t − s + 1) ds

+ N2

∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥ ∫ t

1

∣∣∣Dα
1
[
g (t − 1)

]
(s)

∣∣∣Jα
1 [1] (t − s + 1) ds

+

∫ t

1

∣∣∣Dα
1
[
g (t − 1)

]
(s)

∣∣∣Jα
1 [|h|] (t − s + 1) ds

≤
λNΩσα (t)

Γ (2 − α)
(
Γ (1 + α) − NMρ

)
+

λNσα (t)

Γ (2 − α)
(
Γ (1 + α) − NMρ

) ∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥

+
λ

Γ (2 − α)

∫ t

1
s (ln s)1−α

Jα
1 [|h|] (t − s + 1) ds.

Also, we get∣∣∣Hx̃,h (ξ, β) − Hx (ξ, β)
∣∣∣ ≤ β

|∆|

(
|φx̃ (ξ) − φx (ξ)| +

∫ ξ

1
Jα

1 [|h|] (s) ds
)

+
1
|∆|

(
|φx̃ (e) − φx (e)| +

∫ e

1
Jα

1 [|h|] (s) ds
)

≤
ΩN (βρα (ξ) + ρα (e))

|∆|
(
Γ (1 + α) − NMρ

) +
N (βρα (ξ) + ρα (e))

|∆|
(
Γ (1 + α) − NMρ

) ∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥

+
β

|∆|

∫ ξ

1
Jα

1 [|h|] (s) ds +
1
|∆|

∫ e

1
Jα

1 [|h|] (s) ds.

Hence, we deduce that∣∣∣Dα
1 [x̄] (t) −Dα

1 [x] (t)
∣∣∣ ≤ 1

λ

∣∣∣Dα
1
[
φx̄,h

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣
+

∣∣∣Hx̄,h (ξ, β) − Hx (ξ, β)
∣∣∣ ∣∣∣Dα

1
[
g (t − 1)

]∣∣∣
≤

NΩ
(
σα (t) + λt (ln t)1−α (βρα(ξ)+ρα(e))

|∆|

)
Γ (2 − α)

(
Γ (1 + α) − NMρ

)
+

N
(
σα (t) + λt (ln t)1−α (βρα(ξ)+ρα(e))

|∆|

)
Γ (2 − α)

(
Γ (1 + α) − NMρ

) ∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥
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+
1

Γ (2 − α)

∫ t

1
s (ln s)1−α

Jα
1 [|h|] (t − s + 1) ds

+
λt

Γ (2 − α)
(ln t)1−α β

|∆|

∫ ξ

1
Jα

1 [|h|] (s) ds

+
λt

Γ (2 − α)
(ln t)1−α 1

|∆|

∫ e

1
Jα

1 [|h|] (s) ds

≤
NΩ

(
Mσ + λ (βρα(ξ)+ρα(e))

|∆|
e2−α

)
Γ (2 − α)

(
Γ (1 + α) − NMρ

)
+

N
(
Mσ + λ (βρα(ξ)+ρα(e))

|∆|
e2−α

)
Γ (2 − α)

(
Γ (1 + α) − NMρ

) ∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥

+
1

Γ (2 − α)

∫ t

1
s (ln s)1−α

Jα
1 [|h|] (t − s + 1) ds

+
λβt

|∆|Γ (2 − α)
(ln t)1−α

∫ ξ

1
Jα

1 [|h|] (s) ds

+
λt

|∆|Γ (2 − α)
(ln t)1−α

∫ e

1
Jα

1 [|h|] (s) ds.

Then

∥∥∥Dα
1 [x̄] −Dα

1 [x]
∥∥∥ ≤ NΩ

(
Mσ + λ (βρα(ξ)+ρα(e))

|∆|
e2−α

)
Γ (2 − α)

(
Γ (1 + α) − NMρ

)
− N

(
Mσ + λ (βρα(ξ)+ρα(e))

|∆|
e2−α

)
+

(
Γ (1 + α) − NMρ

)
Γ (2 − α)

(
Γ (1 + α) − NMρ

)
− N

(
Mσ + λ (βρα(ξ)+ρα(e))

|∆|
e2−α

)
×

(∫ e

1
s (ln s)1−α

Jα
1 [|h|] (e − s + 1) ds

+
λβe2−α

|∆|

∫ ξ

1
Jα

1 [|h|] (s) ds +
λe2−α

|∆|

∫ e

1
Jα

1 [|h|] (s) ds
)
.

If |h| ≤ ϕ, we get

|x̄(t) − x (t)| ≤
1
λ

∫ t

1
Jα

1
[
ϕ
]
(s) ds +

β

|∆|

∫ ξ

1
Jα

1
[
ϕ
]
(s) ds +

1
|∆|

∫ e

1
Jα

1
[
ϕ
]
(s) ds

+
ΩNρ (t)

Γ (1 + α) − NMρ

+
Nρ (t)

Γ (1 + α) − NMρ

×

 NΩ
(
Mσ + λ (βρα(ξ)+ρα(e))

|∆|
e2−α

)
Γ (2 − α)

(
Γ (1 + α) − NMρ

)
− N

(
Mσ + λ (βρα(ξ)+ρα(e))

|∆|
e2−α

)
+

(
Γ (1 + α) − NMρ

)
Γ (2 − α)

(
Γ (1 + α) − NMρ

)
− N

(
Mσ + λ (βρα(ξ)+ρα(e))

|∆|
e2−α

)
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×

[∫ t

1
s (ln s)1−α

Jα
1
[
ϕ
]
(t − s + 1) ds

+
λβe2−α

|∆|

∫ ξ

1
Jα

1
[
ϕ
]
(s) ds +

λe2−α

|∆|

∫ e

1
Jα

1
[
ϕ
]
(s) ds

]
.

Hence by the given condition (5.11), the equation (1.1) is generalized Ulam-Hyers-Rassias stable with
respect to ϕ. �

6. Dependence of solution on the parameters

For f Lipschitz in the second and the third variables, the solution’s dependence on the order of the
differential operator, the boundary values and the nonlinear term f are discussed in this section. We
show that the solutions of two equations with neighbouring orders will (under suitable conditions on
their right hand sides f ) lie close to one another.

Theorem 6.1. Suppose that the conditions of Theorem 4.1 hold. Let x (t), xε (t) be the solutions,
respectively, of problems (1.1) and

Dα−ε
1

(
D2 + λ2

)
x(t) = f

(
t, x(t),Dα

1 [x] (t)
)
, (6.1)

for t ∈ (0, 1) and ε > 0, with the boundary conditions (1.1)-b, where 0 < α − ε < α < 1. Then there
exists a constant kε > 0 such that

‖x − xε‖E ≤ kε ‖ f ‖∗ , (6.2)

where ‖ f ‖∗ = supε
∥∥∥ fxε

∥∥∥ and fxε (t) := f
(
t, xε(t),Dα

1 [xε] (t)
)
.

Proof. By Lemma 3.4 and equation (3.11), we can obtain

xε (t) =
1
λ
φxε (t) + Hxε (ξ, β) g (t − 1) ,

is the solution of (6.1) with the boundary conditions in (1.1), where

φxε (t) =

∫ t

1
g (t − s)Jα−ε

1
[
fxε

]
(s) ds

and Hxε (ξ, β) = 1
∆

(
βφxε (ξ) + φxε (e)

)
. Then

∣∣∣φxε (t) − φx (t)
∣∣∣ =

∣∣∣∣∣ ∫ t

1
g (t − s)Jα−ε

1
[
fxε

]
(s) ds −

∫ t

1
g (t − s)Jα

1
[
fx
]
(s) ds

∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ t

1
g (t − s)Jα

1
[
fxε − fx

]
(s) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ t

1
g (t − s)

[
Jα−ε

1
[
fxε

]
(s) − Jα

1
[
fxε

]
(s)

]
ds

∣∣∣∣∣∣
≤

∥∥∥ fxε − fx

∥∥∥ ∫ t

1
|g (t − s)| Jα

1 [1] (s) ds
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+
∥∥∥ fxε

∥∥∥ ∫ t

1
|g (t − s)|

∣∣∣Jα−ε
1 [1] (s) − Jα

1 [1] (s)
∣∣∣ ds

≤
N ‖x − xε‖E
Γ (1 + α)

∫ t

1
(ln s)α ds +

∥∥∥ fxε

∥∥∥ ∫ t

1

∣∣∣∣∣∣ (ln s)α−ε

Γ (1 + α − ε)
−

(ln s)α

Γ (1 + α)

∣∣∣∣∣∣ ds.

This leads to ∣∣∣φxε (t) − φx (t)
∣∣∣ ≤ N

Γ (1 + α)
ρα (t) ‖x − xε‖E + %ε (t)

∥∥∥ fxε

∥∥∥ ,
with

%ε (t) =

∫ t

1

∣∣∣∣∣∣ (ln s)α−ε

Γ (1 + α − ε)
−

(ln s)α

Γ (1 + α)

∣∣∣∣∣∣ ds.

In a similar manner, we can get∣∣∣Hxε (ξ, β) − Hx (ξ, β)
∣∣∣ ≤ N

Γ (1 + α)
1
|∆|

[
βρα (ξ) + ρα (e)

]
‖x − xε‖E

+
1
|∆|

[
β%ε (ξ) + %ε (e)

] ∥∥∥ fxε

∥∥∥ .
Then

|x (t) − xε (t)| ≤
N

Γ (1 + α)
ρ (t) ‖x − xε‖E + % (t)

∥∥∥ fxε

∥∥∥ , (6.3)

with % (t) = 1
λ
%ε (t) + 1

|∆|

[
β%ε (ξ) + %ε (e)

]
. On the other hand,

∣∣∣Dα
1 [xε] (t) −Dα

1 [x] (t)
∣∣∣ ≤ 1

λ

∣∣∣Dα
1
[
φxε

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣
+

∣∣∣Hxε (ξ, β) − Hx (ξ, β)
∣∣∣ ∣∣∣Dα

1
[
g (t − 1)

]∣∣∣ .
By (4.8), we have

∣∣∣Dα
1
[
φxε

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣ =

∣∣∣∣∣∣
∫ t

1
Dα

1
[
g (t − 1)

]
(s)

[
Jα−ε

1
[
fxε

]
− Jα

1
[
fx
]]

(t − s + 1) ds

∣∣∣∣∣∣
=

∣∣∣∣∣ ∫ t

1
Dα

1
[
g (t − 1)

]
(s)

×
[
Jα−ε

1
[
fxε

]
− Jα

1
[
fx
]
+Jα

1
[
fxε

]
− Jα

1
[
fxε

]]
(t − s + 1) ds

∣∣∣∣∣.
∣∣∣Dα

1
[
φxε

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣ ≤ ∣∣∣∣∣∣
∫ t

1
Dα

1
[
g (t − 1)

]
(s)Jα

1
[
fxε − fx

]
(t − s + 1) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ t

1
Dα

1
[
g (t − 1)

]
(s)

(
Jα−ε

1
[
fxε

]
− Jα

1
[
fxε

])
(t − s + 1) ds

∣∣∣∣∣∣
≤ N ‖x − xε‖E

∫ t

1

∣∣∣Dα
1
[
g (t − 1)

]
(s)

∣∣∣Jα
1 [1] (t − s + 1) ds

+
∥∥∥ fxε

∥∥∥ ∫ t

1

∣∣∣Dα
1
[
g (t − 1)

]
(s)

∣∣∣ ∣∣∣(Jα−ε
1 [1] − Jα

1 [1]
)

(t − s + 1)
∣∣∣ ds.
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Then ∣∣∣Dα
1
[
φxε

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣ ≤ Nσα (t) ‖x − xε‖E + υε (t)
∥∥∥ fxε

∥∥∥ ,
with

υε (t) =

∫ t

1

∣∣∣Dα
1
[
g (t − 1)

]
(s)

∣∣∣ ∣∣∣Jα−ε
1 [1] − Jα

1 [1] (t − s + 1)
∣∣∣ ds. (6.4)

Then the expression above becomes∣∣∣Dα
1 [xε] (t)− Dα

1 [x] (t)
∣∣∣ ≤ 1

λ
Nσα (t) ‖x − xε‖E + υε (t)

∥∥∥ fxε

∥∥∥
+

N
Γ (1 + α)

1
|∆|

[
βρα (ξ) + ρα (e)

]
‖x − xε‖E

+
1
|∆|

[
β%ε (ξ) + %ε (e)

] ∥∥∥ fxε

∥∥∥ ∣∣∣Dα
1
[
g (t − 1)

]∣∣∣
≤ N

[
1
λ
σα (t) +

1
Γ (1 + α)

1
|∆|

[
βρα (ξ) + ρα (e)

] ∣∣∣Dα
1
[
g (t − 1)

]∣∣∣] ‖x − xε‖E

+

[
1
λ
υε (t) +

1
|∆|

[
β%ε (ξ) + %ε (e)

] ∣∣∣Dα
1
[
g (t − 1)

]∣∣∣] ∥∥∥ fxε

∥∥∥ .
Then ∣∣∣Dα

1 [xε] (t) −Dα
1 [x] (t)

∣∣∣ ≤ NC22 (t) ‖x − xε‖E + C33 (t)
∥∥∥ fxε

∥∥∥ , (6.5)

with

C22 (t) =

[
1
λ
σα (t) +

1
Γ (1 + α)

1
|∆|

[
βρα (ξ) + ρα (e)

] ∣∣∣Dα
1
[
g (t − 1)

]∣∣∣] ,
C33 (t) =

[
1
λ
υε (t) +

1
|∆|

[
β%ε (ξ) + %ε (e)

] ∣∣∣Dα
1
[
g (t − 1)

]∣∣∣] . (6.6)

Moreover, from (6.3), (6.5), we deduce that

|x (t) − xε (t)| +
∣∣∣Dα

1 [xε] (t) −Dα
1 [x] (t)

∣∣∣
≤ N

[
1

Γ (1 + α)
ρ (t) + C22 (t)

]
‖x − xε‖E +

[
% (t) + C33 (t)

] ∥∥∥ fxε

∥∥∥ .
Finally, we get the inequality

‖x − xε‖E ≤
supt∈[1,e]

[
% (t) + C33 (t)

]
1 − N supt∈[1,e]

[
1

Γ(1+α)ρ (t) + C22 (t)
] ‖ f ‖∗ ,

which is exactly the required inequality (6.2), where

kε =
supt∈[1,e]

[
% (t) + C33 (t)

]
1 − N supt∈[1,e]

[
1

Γ(1+α)ρ (t) + C22 (t)
] . (6.7)

�
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Theorem 6.2. Suppose that the conditions of Theorem 4.1 hold. Let x (t) , xε (t) be the solutions,
respectively, of the problems (1.1) and

Dα
1

(
D2 + λ2

)
x(t) = f (t, x(t),Dα

1 [x] (t) + εhε (t) ,

for t ∈ (1, e) and hε ∈ C, with boundary conditions (1.1)-b, where ε < 0. Then ‖x − xε‖E = O (ε).

Proof. In accordance with Lemma 3.4, we have

φxε (t) =

∫ t

1
g (t − s)Jα

1
[
fxε + εhε

]
(s) ds

and ∣∣∣φxε (t) − φx (t)
∣∣∣ =

∣∣∣∣∣∣
∫ t

1
g (t − s)Jα

1
[
fxε + εhε

]
(s) ds −

∫ t

1
g (t − s)Jα

1
[
fx
]
(s) ds

∣∣∣∣∣∣ (6.8)

≤

∣∣∣∣∣∣
∫ t

1
g (t − s)Jα

1
[
fxε − fx

]
(s) ds

∣∣∣∣∣∣ + ε

∣∣∣∣∣∣
∫ t

1
g (t − s)Jα

1 [hε] (s) ds

∣∣∣∣∣∣
≤

1
Γ (1 + α)

(∥∥∥ fxε − fx

∥∥∥ + ε ‖hε‖
) ∫ t

1
(ln s)α ds

≤
N ‖x − xε‖E + ε ‖hε‖

Γ (1 + α)
ρα (t) .

and ∣∣∣Hx (ξ, β) − Hxε (ξ, β)
∣∣∣ ≤ 1
|∆|

[
β
∣∣∣φxε (ξ) − φx (ξ)

∣∣∣ +
∣∣∣φxε (e) − φx (e)

∣∣∣] (6.9)

≤
1
|∆|

N ‖x − xε‖E + ε ‖hε‖
Γ (1 + α)

[
βρα (ξ) + ρα (e)

]
.

From (6.8) and (6.9), we derive

|x (t) − xε (t)| ≤
ρ (t)

Γ (1 + α)
(N ‖x − xε‖E + ε ‖hε‖) .

On the other hand,∣∣∣Dα
1
[
φxε

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣
=

∣∣∣∣∣∣
∫ t

1
Dα

1
[
g (t − 1)

]
(s)

(
Jα

1
[
fxε + εhε

]
− Jα

1
[
fx
])

(t − s + 1) ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ t

1
Dα

1
[
g (t − 1)

]
(s)Jα

1
[
fxε − fx

]
(t − s + 1) ds

∣∣∣∣∣∣
+ ε

∣∣∣∣∣∣
∫ t

1
Dα

1g (t − 1) (s)Jα
1 [hε] (t − s + 1) ds

∣∣∣∣∣∣
≤ (N ‖x − xε‖E + ε ‖hε‖)

∫ t

1

∣∣∣Dα
1
[
g (t − 1)

]
(s)

∣∣∣Jα
1 [1] (t − s + 1) ds
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and ∣∣∣Dα
1
[
φxε

]
(t) −Dα

1
[
φx

]
(t)

∣∣∣ ≤ R11(t)
Γ (1 + α)

(N ‖x − xε‖E + ε ‖hε‖) ,

where R11 is given by (4.9). Hence, we obtain∣∣∣Dα
1 [xε] (t) −Dα

1 [x] (t)
∣∣∣ ≤ R11(t)

λΓ (1 + α)
(N ‖x − xε‖E + ε ‖hε‖)

+
1
|∆|

N ‖x − xε‖E + ε ‖hε‖
Γ (1 + α)

[
βρα (ξ) + ρα (e)

] ∣∣∣Dα
1
[
g (t − 1)

]∣∣∣ ,
and

|x (t) − xε (t)| +
∣∣∣Dα

1 [xε] (t) −Dα
1 [x] (t)

∣∣∣
≤

N
Γ (1 + α)

ρ (t) +

[
βρα (ξ) + ρα (e)

] ∣∣∣Dα
1
[
g (t − 1)

]∣∣∣
|∆|

+
R11(t)
λ

 ‖x − xε‖E

+
ε ‖hε‖

Γ (1 + α)

ρ (t) +

[
βρα (ξ) + ρα (e)

] ∣∣∣Dα
1
[
g (t − 1)

]∣∣∣
|∆|

+
R11(t)
λ

 .
Consequently

‖x − xε‖E ≤ ε
NQ

1 − NQ
‖h‖∗ ,

where Q is given by (3.18) and ‖h‖∗ = sup0<ε ‖hε‖. It is obvious that ‖x − xε‖E = O (ε). �

Let us introduce small perturbation in the boundary conditions of (1.1) such that

x(1) = 0 = D2x (1) , x(e) = βx(ξ) + ε, (6.10)

for ξ ∈ (1, e].

Theorem 6.3. Assume the conditions of Theorem 4.1 hold. Let x (t), xε (t) be respective solutions, of
the problems (1.1) and the boundary conditions (1.1)-a with (6.10). Then

‖x − xε‖E = O (ε) .

Proof. Similar arguments as in the proof of Lemma 3.4, may lead to the solution of equations (1.1)-a
and (6.10) that has the following form

xε(t) =
1
λ

∫ t

1
sin λ (t − s)Jα

1
[
fxε

]
ds

+
β

∆
sin λ (t − 1)

∫ ξ

1
sin λ (ξ − s)Jα

1
[
fxε

]
ds

−
1
∆

sin λ (t − 1)
∫ e

1
sin λ (e − s)Jα

1
[
fxε

]
ds + ε

λ sin λ (t − 1)
∆ cos λ

.

Therefore
xε (t) =

1
λ
φxε (t) + Hxε (ξ, β) g (t − 1) + ε

λ sin λ (t − 1)
∆ cos λ

,
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and ∆ cos λ , 0, where

φxε (t) =

∫ t

1
g (t − s)Jα

1
[
fxε

]
(s) ds

and Hxε (ξ, β) = 1
∆

(
βφxε (ξ) + φxε (e)

)
. As before, we find that

|x (t) − xε (t)| ≤
Nρ (t)

Γ (1 + α)
‖x − xε‖E +

ελ

|∆|

∣∣∣∣∣sin λ (t − 1)
cos λ

∣∣∣∣∣ ,
and ∣∣∣Dα

1 [xε] (t) −Dα
1 [x] (t)

∣∣∣ ≤ R11(t)
λΓ (1 + α)

N ‖x − xε‖E + ε

∣∣∣∣∣∣λDα
1 sin λ (t − 1)
∆ cos λ

∣∣∣∣∣∣
+

1
|∆|

N ‖x − xε‖E
Γ (1 + α)

[
βρα (ξ) + ρα (e)

] ∣∣∣Dα
1
[
g (t − 1)

]∣∣∣ .
Hence

|x (t) −xε (t)| +
∣∣∣Dα

1 [xε] (t) −Dα
1 [x] (t)

∣∣∣
≤

N
Γ (1 + α)

[
ρ (t) +

[
βρα (ξ) + ρα (e)

] ∣∣∣Dα
1
[
g (t − 1)

]∣∣∣
|∆|

+
R11(t)
λ

]
‖x − xε‖E

+
ελ

|∆ cos λ|

[
|sin λ (t − 1)| +

λ

Γ (2 − α)
t (ln t)1−α

]
.

Consequently

‖x − xε‖E ≤
ελ

|∆ cos λ| (1 − NQ)

[
1 +

λe2−α

Γ (2 − α)

]
.

It is obvious that ‖x − xε‖E = O (ε). �

7. Illustrative examples and applications

In this section, we present some examples to illustrate the validity and applicability of the main
results.

Example 7.1. Consider problem (1.1) with

f (t, x, x̃) =
1/6

1 + |x| + |x̃|
. (7.1)

Then f fulfills the Lipschitz condition (H1) such that λ = 2, β = 2, ξ = 3
2 ,

N = max {N1,N2} =
1
6
.

In Table 1, we show values of α, t and Q. Thus NQ < 1. Hence, by Theorem 4.1, the problem (1.1)
with (7.1) has a unique solution on [1, e].
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Table 1. Some values of α, t and Q.

α 1 1 1 0.75 0.25 0.5 0.5 0.5

t 1 2 e e e e 2 1

Q 1.38 1.35 2.94 3.58 4.58 4.15 1.90 0.20

Example 7.2. Consider problem (1.1) with

f (t, x, x̃) =
5
8

(sin x + cos x) + x̃ (7.2)

or
f (t, x, x̃) =

1
4

(sin x + cos x) +
7
6

x̃. (7.3)

Then f fulfills the Lipschitz condition (H1), where λ = 4, β = 2, ξ = 3
2 , N = max {N1,N2} = 5

4 or
7
6 . In Table 2, we show values of α, t, Q, 5

4 Q and 7
6 Q. Thus, the condition (4.1) holds. Again, taking

N = max {N1,N2} = 5
4 or 7

6 , we have NQ < 1. Note that all the assumptions of the Theorem 4.3 holds.
Therefore problem (1.1) has a unique solution on E.

Table 2. Some values of α, t, Q, 5
4 Q and 7

6 Q.

α 1.000 1.000 0.75 0.50 0.25

t 1.030 1.002 1.03 1.03 1.03

Q 0.860 0.780 0.57 0.44 0.39

5Q/4 1.008 > 1 0.980 0.72 0.56 0.49

7Q/6 0.940 < 1 0.910 0.67 0.52 0.46

Example 7.3. Consider problem (1.1) with

f (t, x, x̃) = d1(t) sin [d2(t) (x + x̃)] + d3(t) cos [d4(t) (x + x̃)] , (7.4)

for di ∈ C [1, e] with i = 1, 2, 3, 4, that fulfils (H1) with

N1 = N2 = |d1(t)d2(t)| + |d3(t)d4(t)| = 1,

for example d1(t) = d3(t) = 1
4 , d2(t) = d4(t) = 2. Thus, we can put β = 2, ξ = 3

2 , N = 1, L0 = 1
4 . In

Table 3, one can find some values of α, λ, t, Q and r, where r and Q are as defined in Theorem 4.3.

Table 3. Some values of α, λ, t, Q and r.

α 1.00 1.00 0.750 0.750 0.500 0.500 0.25 0.250

λ 1.35 7.76 7.760 9.600 7.760 9.600 7.80 9.600

t 1.00 1.50 1.500 1.000 1.500 1.000 2.00 1.000

Q 0.89 0.78 0.250 0.120 0.270 0.150 0.79 0.180

r ≥ 2.03 0.89 0.084 0.035 0.093 0.045 0.94 0.054
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Hence, by Theorem 4.3, problem (1.1) with (7.4) has a unique solution on Br.

Example 7.4. (Illustrative example on stability) Consider the FLE problem (1.1) with Hadamard
fractional derivatives involving nonlocal boundary conditions:

D
3
8
1

(
D2 + π2

)
x(t) = f

(
t, x(t),D

3
8
1 [x] (t)

)
, t ∈

(
1, 15

4

)
,

D2x (1) = x(1) = 0,

x(15
4 ) = 2x(11

5 ),

(7.5)

with

f (t, x, x̃) =
x2

5(t + 1)2(|x| + 3)
+

|x|
5(t + 1)2 +

sin x̃
4(t + 3)2 − 2, (7.6)

where α = 3
8 , λ = π, β = 2 and ξ = 11

5 . It is obvious that

sin π
(
15
4
− 1

)
= 0.7071 , −1.1756 = 2 sin π

(
11
5
− 1

)
,

So
∆ = λ (sin λ (e − 1) − β sin λ (ξ − 1)) = 5.9146 , 0.

See the Figure 1. Also, we have

| f (t, x1, x̃1) − f (t, x2, x̃2)| ≤
16
135
|x1 − x2| +

1
49
|x̃1 − x̃2| ,

for each t ∈
[
1, 15

4

]
and all xi, x̃i ∈ R, here N1 = 16

135 and N2 = 1
49 . Put ϕ(t) = t2

t2+1 and

N = max
{

16
135

,
1

49

}
=

16
135

.

β
0 2 4 6 8 10 12 14 16 18 20

∆

0

5

10

15

20

25

30

35

40

∆ = λ (sinλ (e− 1)− β sinλ (ξ − 1))

∆

Figure 1. Numerical results of ∆ where β = 1, . . . , 20 in Example 7.4.
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By using Eq (2.11), we obtain

ρα(t) ≤
1

3
8 + 1

(
15
4

) 3
8 +1

= 4.4770

and using MatLab program,

ρα

(
15
4

)
=

∫ 15
4

1
(ln s)α ds = 2.4371,

ρα

(
11
5

)
=

∫ 11
5

1
(ln s)α ds = 0.8463.

Also, by applying Eq (3.17), we obtain

Mρ =
1
π

+
3

|5.9146|
= 0.8255,

Then we get

cϕ ≥
cρα (e)

λΓ (1 + α)
+

cβρα (ξ)
|∆|Γ (1 + α)

[
1 +

Nρα (e)
Γ (1 + α) − NMρ

]
+

cρα (e)
Γ (1 + α)

[
1
|∆|

+
1
λ

Nρα (t)
Γ (1 + α) − NMρ

+
1
|∆|

Nρα (e)
Γ (1 + α) − NMρ

]
.

Then the assumptions of Theorem 5.5 are satisfied. Then, problem (1.1) is Ulam-Hyers stable and
generalized Ulam-Hyers stable.

Example 7.5. (Illustrative example on solution dependence) Consider the FLE problem (1.1) with
Hadamard fractional derivatives involving nonlocal boundary conditions:

D
7
9
1

(
D2 +

(
4π
3

)2
)

x(t) = f
(
t, x(t),D

7
9
1 [x] (t)

)
, t ∈

(
1, 12

5

)
,

D2x (1) = x(1) = 0,

x( 12
5 ) = 7

3 x(9
4 ),

(7.7)

and

D
7
9−ε

1

(
D2 +

(4π
3

)2)
x(t) = f

(
t, x(t),D

7
9
1 [x] (t)

)
, (7.8)

for t ∈ (0, 1) and ε > 0 with

f (t, x, x̃) =
|x + 4|(sin2(πt) + 14)

5 + t
+

(x̃2 + 4)(sin2(3πt) + 6)
(t + 2)(|x̃ + 1|)

+
|x̃|(cos2(3πt) + 2)

(t + 0.5)2 +
13
4
,

(7.9)
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where α = 7
9 , λ = 4π

3 , β = 7
3 , ξ = 9

4 and 0 < 7
9 − ε < α < 1. It is obvious that

sin π
(
15
4
− 1

)
= 0.7071 , −1.1756 = 2 sin π

(
11
5
− 1

)
,

So
∆ = λ (sin λ (e − 1) − β sin λ (ξ − 1)) = 6.7606 , 0.

See Figure 2. Also, we have

| f (t, x1, x̃1) − f (t, x2, x̃2)| ≤
4

121
|x1 − x2| +

2
75
|x̃1 − x̃2| ,

for each t ∈
[
1, 12

5

]
and all xi, x̃i ∈ R, here N1 = 4

121 and N2 = 2
75 . Put ϕ(t) = t2

t2+1 ,

N = max
{

4
121

,
2

75

}
.

β
0 2 4 6 8 10 12 14 16 18 20

∆

0

10

20

30

40

50

60

70

80

∆ = λ (sinλ (e− 1)− β sinλ (ξ − 1))

∆

Figure 2. Numerical results of ∆ where β = 1, . . . , 20 in Example 7.5.

By using Eq (2.11), we obtain

ρα(t) ≤
1

7
9 + 1

(
12
5

) 7
9 +1

= 2.6671

and

ρα

(
12
5

)
=

∫ 12
5

1
(ln s)α ds = 0.7953,
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ρα

(
9
4

)
=

∫ 9
4

1
(ln s)α ds = 0.6639.

Also, by applying Eq (3.17), we obtain

Mρ =
1
π

+
3

|6.7606|
= 0.7620,

Then for ε = 0.1, by using MatLab program, we get

%ε (e) = %ε

(
12
5

)
=

∫ t

1

∣∣∣∣∣∣∣∣ (ln s)
7
9−ε

Γ
(
1 + 7

9 − ε
) − (ln s)α

Γ (1 + α)

∣∣∣∣∣∣∣∣ ds = 0.1886,

%ε (ξ) = %ε

(
9
4

)
=

∫ t

1

∣∣∣∣∣∣∣∣ (ln s)
7
9−ε

Γ
(
1 + 7

9 − ε
) − (ln s)α

Γ (1 + α)

∣∣∣∣∣∣∣∣ ds = 0.1761

and

% (t) =
3

4π
%ε (t) +

1
|6.7606|

[
7 × 0.1761

3
+ %ε (0.1886)

]
.

Then the assumptions of Theorem 6.1 are satisfied. In addition to, by applying Eqs (6.6) and (6.7), we
can calculate C22(t), C33(t) and kε .

Table 4. Numerical results of Dα
1

(
D2 + λ2

)
x(t) = f (t, x(t),Dα

1 [x] (t)) in Example 7.5 for

α = 1
7 , 1

2 , 7
9 , here x(t) = ln(t) and (a) = Dα

1

(
D2 + λ2

)
x(t), (b) = f

(
t, x(t),Dα

1 [x] (t)
)
.

α = 1
7 α = 1

2 α = 7
9

n tN x(tN) (a) (b) (a) (b) (a) (b)

0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 1.0296 0.0292 −0.6481 20.4865 −2.0421 20.3037 −5.7442 20.6579
2 1.0601 0.0584 0.3210 20.6028 1.2297 20.4569 2.3563 20.9298
3 1.0915 0.0875 1.1548 20.8158 3.1716 20.6972 5.8459 21.1952
4 1.1238 0.1167 1.9214 21.0045 4.6113 20.9107 7.9468 21.4028
5 1.1571 0.1459 2.6447 21.0604 5.7818 21.0022 9.4115 21.4832
...

...
...

...
...

...
...

...
...

20 1.7926 0.5836 11.5237 19.1220 14.8965 19.3122 16.5953 19.4690
21 1.8456 0.6128 12.0495 19.0026 15.3004 19.1885 16.8158 19.3276
22 1.9003 0.642 12.5704 18.5841 15.6925 18.7749 17.0254 18.8997
23 1.9566 0.6712 13.0867 18.0950 16.0739 18.2893 17.2254 18.3996
24 2.0145 0.7004 13.5986 17.8788 16.4453 18.0647 17.4166 18.1580
25 2.0742 0.7296 14.1063 18.0394 16.8076 18.2061 17.5999 18.2808
26 2.1356 0.7587 14.6102 18.2910 17.1613 18.4376 17.7761 18.4949
27 2.1988 0.7879 15.1104 18.2508 17.5070 18.3843 17.9457 18.4272
28 2.2639 0.8171 15.6071 17.9090 17.8453 18.0343 18.1094 18.0647
29 2.3310 0.8463 16.1005 17.6773 18.1766 17.7921 18.2675 17.8109
30 2.4000 0.8755 16.5908 17.8398 18.5014 17.9399 18.4206 17.9478

Now, we describ discretization method and use Theorem 2.3 for this example. Fix n ≥ 1 for N ∈
{1, · · · , n}, define

tN = a exp(∆T ) = exp(∆T ),
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with

∆T =
1
n

ln
b
a

=
1
n

ln
12
5

and [a, b] = [1, 12
5 ].

tN
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(
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x(t) = ln(tN ), (n = 30)
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(a)Dα
1

(
D2 + λ2

)
x(t)

tN
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f
(t
,x

(t
),
D

α 1
[x
](
t)
)
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25

x(t) = ln(tN ), (n = 30)

$α=1/7$

$α=1/2$

$α=7/9$

(b) f
(
t, x(t),Dα

1 {x}(t)
)

Figure 3. Numerical results of Dα
1

(
D2 + λ2

)
x(t) and f

(
t, x(t),Dα

1 [x] (t)
)

where x(t) = ln t
and α = 1

7 , 1
2 , 7

9 in Example 7.5, respectively.

Also, (
ταk

)
= k1−α − (k − 1)1−α = k1− 7

9 − (k − 1)1− 7
9 = k

2
9 − (k − 1)

2
9

and

ζ =
(∆T )1−α

a[1 − exp(−∆T )]Γ(2 − α)
=

(
1
n ln 12

5

) 2
9[

1 − exp
(
−1
n ln 12

5

)]
Γ
(

2
9

) .
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Thus, for f
(
t, x(t),D

7
9
1 [x] (t)

)
, we get

D
7
9
1 [x] (tN) = D̃

7
9
1 [x] (tN) + O

(
1
n

ln
12
5

)
,

where

D̃
7
9
1 [x] (tN) =

x(a)
Γ(1 − α)

(
ln

tN

a

)−α
+ ζ

N∑
k=1

(
ταN−k+1

) x(tk) − x(tk−1)
exp(k∆T )

.tk

=
x(1)

Γ(1 − 7
9 )

(ln tN)−
7
9 + ζ

N∑
k=1

(
τ

7
9
N−k+1

) x(tk) − x(tk−1)

exp
(

k
n ln 12

5

) .tk

=
x(1)

Γ
(

2
9

) (ln tN)−
7
9 + ζ

N∑
k=1

(
τ

7
9
N−k+1

) x(tk) − x(tk−1)

exp
(

k
n ln 12

5

) .tk,

tN
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Figure 4. Numerical results of (a) = Dα
1

(
D2 + λ2

)
x(t) and (b) = f (t, x(t),Dα

1 [x] (t)) where
x(t) = ln t in Example 7.5, respectively.
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8. Conclusions

The Langevin equation has been proposed to describe dynamical processes in a fractal medium in
which the fractal and memory properties with a dissipative memory kernel are incorporated. However,
it has been realized that the classical Langevin equation failed to describe the complex systems. Thus,
the consideration of LDE in frame of fractional derivatives becomes compulsory. As a result of this
interest, several results have been revealed and different versions of LDE have been under study. In this
paper, we have presented some results dealing with the existence and uniqueness of solutions for
boundary value problem of nonlinear Langevin equation involving Hadamard fractional order. As
a first step, the boundary value problem is transformed to a fixed point problem by applying the tools
of Hadamard fractional calculus. Based on this, the existence results are established by means of the
Schaefer’s fixed point theorem and Banach contraction principle.

We claim that the results of this paper is new and generalize some earlier results. For instance, by
taking α = 1 in the results of this paper which can be considered a special case of a simple Jerk
Chaotic circuit equation see [33]. The paper presented a discuss on the Ulam-Hyers-Rassias and
generalized Ulam-Hyers-Rassias stabilities of the solution of the FLD using the generalization for the
Gronwall inequality. We present an example to demonstrate the consistency to the theoretical
findings. We also analyze the continuous dependence of solutions all on its right side function, initial
value condition and the fractional order for FDE. Using these results, the properties of the solution
process can be discussed through numerical simulation. We hope to consider this problem in a future
work.
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Supplementary

Algorithm 1: The proposed method for the FLE problem with Hadamard fractional derivatives involving nonlocal boundary

conditions (7.7) in Example 7.5 which we use the conditions of Theorem 2.3 there in.

1 function [ParamMatrix]= discretization method3(alpha, a, e, lambda, n, x t)
2 [xalpha, yalpha]=size(alpha);
3 DeltaT=log(e/a)/n;
4 ParamMatrix(1, 1) = 0;
5 ParamMatrix(1, 2) = a;
6 for j=3:2+7*yalpha
7 ParamMatrix(1, j) = 0;
8 end;
9

10 column=3;
11 j=1;
12 while j≤yalpha
13 for N=1:n
14 ParamMatrix(N+1, 1) = N;
15 tN=a*exp(N*DeltaT);
16 ParamMatrix(N+1, 2) = tN;
17 end;
18 for N=1:n
19 zeta = round(DeltaTˆ(1-alpha(j))/(a * (1- exp((-1)*DeltaT) )*gamma(2-alpha(j))), 6);
20 ParamMatrix(N+1, column) = zeta;
21 ParamMatrix(N+1, column+5) =round(eval(subs(x t, ParamMatrix(N+1, 2))), 6);
22 s=0;
23 k=1;
24 while k≤N
25 taukalpha= (N-k+1)ˆ(1-alpha(j)) - (N-k)ˆ(1-alpha(j));
26 y2=eval(subs(x t, ParamMatrix(k+1, 2)));
27 y1=eval(subs(x t, ParamMatrix(k, 2)));
28 s = s + taukalpha*(y2-y1)*ParamMatrix(k+1, 2)/exp(k*DeltaT);
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29 k=k+1;
30 end;
31 A=eval(subs(x t, a))* (log(ParamMatrix(N+1, 2)/a))ˆ((-1)*alpha(j));
32 HadamardD xtN= round(A + zeta*s, 6);
33 ParamMatrix(N+1, column+1) = HadamardD xtN;
34 end;
35 for N=1:n
36 s=0;
37 k=1;
38 while k≤N
39 taukalpha= (N-k+1)ˆ(1-alpha(j)) - (N-k)ˆ(1-alpha(j));
40 y2=lambdaˆ2* eval(subs(x t, ParamMatrix(k+1, 2)));
41 y1=lambdaˆ2* eval(subs(x t, ParamMatrix(k, 2)));
42 s = s + taukalpha*(y2-y1)*ParamMatrix(k+1, 2)/exp(k*DeltaT);
43 k=k+1;
44 end;
45 A=eval(subs(x t, a))* (log(ParamMatrix(N+1, 2)/a))ˆ((-1)*alpha(j));
46 HadamardD xtN = round(A + zeta*s, 6);
47 ParamMatrix(N+1, column+2) = HadamardD xtN;
48 end;
49 for N=1:n
50 s=0;
51 k=1;
52 while k≤N
53 taukalpha= (N-k+1)ˆ(1-alpha(j)) - (N-k)ˆ(1-alpha(j));
54 y2=eval(subs(diff(x t,2), ParamMatrix(k+1, 2)));
55 y1=eval(subs(diff(x t,2), ParamMatrix(k, 2)));
56 s = s + taukalpha*(y2-y1)*ParamMatrix(k+1, 2)/exp(k*DeltaT);
57 k=k+1;
58 end;
59 A=eval(subs(diff(x t,2), a))* (log(ParamMatrix(N+1, 2)/a))ˆ((-1)*alpha(j));
60 HadamardD xtN= round(A + zeta*s, 5);
61 ParamMatrix(N+1, column+3) = HadamardD xtN;
62 ParamMatrix(N+1, column+4) = ParamMatrix(N+1, column+2)+ParamMatrix(N+1, column+3);
63 ParamMatrix(N+1, column+6) = abs(ParamMatrix(N+1, column+5) +4)*((sin(pi*ParamMatrix(N+1, 2) ))ˆ2+14)/(5+ParamMatrix(N+1, 2)) + ((ParamMatrix(N+1, column+1))ˆ2+4)*((sin(3*pi*ParamMatrix(N+1, 2) ))ˆ2 +6) / ((ParamMatrix(N+1, 2) +2) * (abs(ParamMatrix(N+1, column+1)+1) ) ) + abs(ParamMatrix(N+1, column+1)) * ((cos(pi*ParamMatrix(N+1, 2) ))ˆ2+10)/( (ParamMatrix(N+1, 2)+0.5)ˆ2) + 13/4;
64 end;
65 j=j+1;
66 column=column+7;
67 end;
68 end
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