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Abstract: Graph labeling is an assignment of (usually) positive integers to elements of a graph
(vertices and/or edges) satisfying certain condition(s). In the last two decades, graph labeling research
received much attention from researchers. This articles is about edge irregularity strength for some
classes of plane graphs. Edge irregularity strength denoted by es(G), was introduced by Ahmad et al.
in 2014 as a modification of the well known irregularity strength by Chartrand in 1988. In this paper,
the exact value of the edge irregularity strength for some clases of plane graphs is determined.
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1. Introduction

Let G be a connected, simple and undirected graph with vertex set V(G) and edge set E(G). Graph
labeling is a mapping of elements of the graph, i.e. vertex and/or edges to a set of numbers (usually
positive integers), called labels. If the domain is the vertex-set or the edge-set, the labeling is called
vertex labeling or edge labeling respectively. Similarly if the domain is V(G)∪ E(G), then the labeling
is called total labeling. In 1988, Chartrand et al. [19] defined irregular labeling for a graph G as an
assignment of labels from the set of natural numbers to the edges of G such that the sums of the labels
assigned to the edges of each vertex are different. The minimum value of the largest label of an edge
over all existing irregular labelings is known as the irregularity strength of G, and it is denoted by s(G).
The work of Chartrand et al. [19] opened a new horizon for graph theorists with a lot of research in
this domain as confessed by the numerous articles investigating s(G) for various families of graphs
(see [7, 10, 18, 20, 21, 26, 27]).

In 2007, Baca et al. in [15] investigated two modifications of the irregularity strength of graphs,
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namely total edge irregularity strength denoted by tes(G), and total vertex irregularity strength denoted
by tvs(G). Results on the total vertex irregularity strength and the total edge irregularity strength can
be found in [1, 2, 4, 8, 11, 16, 23, 25, 27–30].

Motivated by the work of Chartrand et al. [19], Ahmad et al. in [3] introduced edge irregular k-
labelings of graphs. A vertex k-labeling of graph G φ : V(G) → {1, 2, · · · , k} can be defined as an
edge irregular k-labeling for G if for every two different edges e and f it is wφ(e) , wφ( f ), where the
weight wφ(e) of an edge e = xy ∈ E(G) is defined as wφ(xy) = φ(x) + φ(y). The minimum k for which
the graph G has an edge irregular k−labeling is called the edge irregularity strength of G, denoted by
es(G). In the same work [3], the authors proved a general lower bound of es(G) and then determined
exact values for several families of graphs such as paths, stars, double stars and Cartesian product of
two paths. Over the last years, es(G) has been investigated for different families of graphs including
trees with the help of algorithmic solutions and amalgamated families of graph through corona product
and Toeplitz graphs [5, 6, 9, 12–14, 31–35].

A lot of work has focused on graph labeling and that is evident from the recent survey by
Gallian [22]. Still there is great potential of expansion in this area. That is why in this paper, we
determine the exact value of edge irregularity strength for some classes of plane graphs. A planar
graph is a graph that can be drawn on the plane in such a way that its edges do no intersect and only
meet at their endpoints. A plane graph is a particular drawing of a planar graph on the Euclidean plane.

2. Main results

The following theorem establishes a general lower bound for the edge irregularity strength of a
graph G (see [3]).

Theorem 1. [3] Let G = (V, E) be a simple graph with maximum degree ∆. Then

es(G) ≥ max
{⌈
|E| + 1

2

⌉
,∆

}
.

We first discuss edge irregularity strength of plane graph Cn that is defined in [17] as follows: Let
P1, P2 and P3 be paths on vertices a1, a2, . . . , an; b1, b2, . . . , b2n and c1, c2, . . . , cn, respectively. Form
the graph Cn from the disjoint union P1 ∪ P2 ∪ P3 by adding the edges {aib2i−1, cib2i : 1 ≤ i ≤ n}.
Graph Cn is shown in Figure 1.

In the following theorem, we determine the exact value of the edge irregularity strength of Cn.

Theorem 2. Let n be an integer with n ≥ 3. Then es(Cn) = 3n − 1.

Proof. Let Cn be the graph with vertex set V(Cn) = {ai, ci : 1 ≤ i ≤ n} ∪ {bi : 1 ≤ i ≤ 2n} and edge set
E(Cn) = {aiai+1, cici+1 : 1 ≤ i ≤ n − 1} ∪ {bibi+1 : 1 ≤ i ≤ 2n − 1} ∪ {aib2i−1, cib2i : 1 ≤ i ≤ n}. The
maximum degree of Cn is ∆(Cn) = 3. The order and size of graph Cn is 4n and 6n − 3, respectively.
From Theorem 1, we have es(Cn) ≥ max

{
d 6n−2

2 e, 3
}

=
⌈

6n−2
2

⌉
= 3n− 1. To prove the equality, it suffices

to prove the existence of an optimal edge irregular (3n − 1)-labeling.
We construct the labeling ψ1 : V(Cn)→ {1, 2, 3, . . . , 3n − 1} in the following way:
ψ1(ai) = 2n − 1 + i for 1 ≤ i ≤ n, ψ1(ci) = i for 1 ≤ i ≤ n,
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Figure 1. The plane graph Cn.

ψ1(bi) =


i
2 , for i even, 1 ≤ i ≤ 2n

2n + i−1
2 , for i odd, 1 ≤ i ≤ 2n.

The edge weights are as follows:

wψ1(aiai+1) = 4n + 2i − 1, for 1 ≤ i ≤ n − 1

wψ1(bibi+1) = 2n + i, for 1 ≤ i ≤ 2n − 1

wψ1(cici+1) = 2i + 1, for 1 ≤ i ≤ n − 1

wψ1(aib2i−1) = 4n − 2 + 2i, for 1 ≤ i ≤ n

wψ1(cib2i) = 2i, for 1 ≤ i ≤ n

We can see that all vertex labels are at most 3n − 1. The edge weights under the labeling ψ1 are
distinct for all pairs of distinct edges and the labeling ψ1 provides the upper bound on es(Cn), i.e
es(Cn) ≤ 3n − 1. Combining with the lower bound, we conclude that es(Cn) = 3n − 1. This completes
the proof. �

Let An denotes the plane graph consisting of faces of length s where s = 3, 4, 5 and one external
infinite face. Note that graph An is similar to Cn if one adds edges b2i−1b2i+1. The vertex set is V(An) =

{ai, bi, ci, di : 1 ≤ i ≤ n} and the edge set is E(An) = {aiai+1, cici+1, didi+1, bici+1 : 1 ≤ i ≤ n − 1} ∪
{aibi, bici, cidi : 1 ≤ i ≤ n}. Moreover |V(An)| = 4n and |E(An)| = 7n − 4, see [11, 24]. The graph An is
shown in Figure 2.

In the following theorem, we determine the exact value of the edge irregularity strength of An.

Theorem 3. Let n be an integer with n ≥ 3. Then es(An) = d 7n−3
2 e.
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Figure 2. The plane graph An.

Proof. Let An be the graph with vertex set V(An) and edge set E(An) as defined previously. The
maximum degree of An is ∆(An) = 5. From Theorem 1, we have that es(An) ≥ max

{
d 7n−3

2 e, 5
}

=
⌈

7n−3
2

⌉
.

To prove the equality, it suffices to prove the existence of an optimal edge irregular
⌈

7n−3
2

⌉
-labeling. Let

ψ2 : V(An)→ {1, 2, . . . ,
⌈

7n−3
2

⌉
} such that

ψ2(ai) =


1, for i = 1

b i−2
2 c + 3i, for 2 ≤ i ≤ n

ψ2(bi) =


1, for i = 1

b i−1
2 c + 3i − 1, for 2 ≤ i ≤ n

ψ2(ci) =


2, for i = 1

b i−1
2 c + 3i − 2, for 2 ≤ i ≤ n

ψ2(di) =


2, for i = 1

3b i−2
2 c + 2i + 2, for 2 ≤ i ≤ n

The edge weights are as follows:

wψ2(aiai+1) =


7, for i = 1

7i + 1, for 2 ≤ i ≤ n

wψ2(cici+1) =


6, for i = 1

7i − 2, for 2 ≤ i ≤ n − 1

wψ2(didi+1) =


8, for i = 1

7i, for 2 ≤ i ≤ n − 1

wψ2(bici+1) =


5, for i = 1

7i − 1, for 2 ≤ i ≤ n − 1
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wψ2(aibi) =


2, for i = 1

7i − 3, for 2 ≤ i ≤ n

wψ2(cibi) = 2b
i − 1

2
c + 6i − 3, for 1 ≤ i ≤ n

wψ2(cidi) =


4, for i = 1

2
(
b i−2

2 c + 3i − 1
)
, for 2 ≤ i ≤ n

We can see that all vertex labels are at most d 7n−3
2 e. The edge weights under the labeling ψ2 are

distinct for all pairs of distinct edges and the labeling ψ2 provides the upper bound on es(An), i.e
es(An) ≤ d7n−3

2 e. Combining with the lower bound, we conclude that es(An) = d 7n−3
2 e. This completes

the proof. �

A quadrilateral snake Qn is a plane graph obtained from a path b1, b2, . . . , bn by adding new vertices
a1, a2, a3 . . . , a2(n−1) and new edges a2i−1a2i, respectively and joining a2i−1 to b − i and a2i to bi+1. The
double quadrilateral snake D(Qn) is obtained from Qn by adding new vertices c1, c2, . . . , c2(n−1) and
new edges c2i−1c2i, c2i−1bi and c2ibi+1 for 1 ≤ i ≤ n − 1. It is clear that |V(D(Qn))| = 5n − 4 and
|E(D(Qn))| = 7(n − 1). The graph D(Qn) is shown in Figure 3.

Figure 3. The plane graph D(Qn).

Theorem 4. Let n be an integer with n ≥ 3. Then es(D(Qn)) =
⌈

7n−6
2

⌉
.

Proof. Let D(Qn) be the plane graph with vertex set V(D(Qn)) = {ai, ci : 1 ≤ i ≤ n}∪{bi : 1 ≤ i ≤ n
2 +1}

and edge set E(D(Qn)) = {a2i−1a2i, c2i−1c2i : 1 ≤ i ≤ n
2 } ∪ {bibi+1 : 1 ≤ i ≤ n

2 } ∪ {a2i−1bi : 1 ≤ i ≤
n
2 +1}∪{a2ibi+1 : 1 ≤ i ≤ n

2 }∪{c2ibi+1 : 1 ≤ i ≤ n
2 }∪{c2i−1bi : 1 ≤ i ≤ n

2 +1} where n ≥ 3. The maximum
degree of D(Qn) is ∆(D(Qn)) = 6. From Theorem 1, we have that es(D(Qn)) ≥ max

{
d 7n−6

2 e, 6
}

=
⌈

7n−6
2

⌉
.

To prove the equality, it suffices to prove the existence of an optimal edge irregular
⌈

7n−6
2

⌉
-labeling.

Let ψ3 : V(D(Qn))→ {1, 2, . . . ,
⌈

7n−6
2 e

}
be the vertex labeling such that

ψ3(ai) = 2i − b
i
4
c − 1, for 1 ≤ i ≤ 2n − 2

ψ3(bi) = 3i +

⌊
i − 1

2

⌋
− 2, for 1 ≤ i ≤ n

ψ3(ci) = 2i − b
i
4
c, for 1 ≤ i ≤ 2n − 2
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The edge weight are as follows:

wψ3(a2i−1a2i) = 7i − 3, for 1 ≤ i ≤ n − 1,

wψ3(a2i−1bi) = 7i − 5, for 1 ≤ i ≤ n − 1,

wψ3(a2ibi+1) = 7i, for 1 ≤ i ≤ n − 1,

wψ3(bibi+1) = 7i − 2, for 1 ≤ i ≤ n − 1,

wψ4(c2i−1c2i) = 7i − 1, for 1 ≤ i ≤ n − 1,

wψ3(c2i−1bi) = 7i − 4, for 1 ≤ i ≤ n − 1,

wψ3(c2ibi+1) = 7i + 1, for 1 ≤ i ≤ n − 1.

We can see that all vertex labels are at most d 7n−6
2 e. The edge weights under the labeling ψ3 are

distinct for all pairs of distinct edges and the labeling ψ3 provides the upper bound on es(D(Qn)), i.e.
es(D(Qn)) ≤ d 7n−6

2 e. Combining with the lower bound, we conclude that es(D(Qn)) = d 7n−6
2 e. This

completes the proof. �

3. Remarks and Conclusion

The problem studied in this paper is about edge irregularity strength of three classes of plane graphs.
According to result for lower bound of es(G) in Theorem 1 and all three upper bounds in Theorems 2,
3 and 4, we obtain the exact value for edge irregularity strength of these graphs.

The graphs considered in this paper are quite restricted. From our understanding, the es(G) is indeed
hard to compute for general graph G, or even for planar graphs. As families of planar graphs, we expect
to study outerplanar graphs, planar graphs with bounded maximum degree, or with faces of small size,
planar 2-trees, planar 3-trees, etc. They are common graph families in the literature of graph labeling
and provide insight for other families of planar graphs that include them.

Presented graphs have bounded tree-width and path-width. Although this might be a mere
observation, one can find a path decomposition such that the induced subgraphs in each partitions
are identical (except possibly for the last one) and have dE

n e edges. For example, for D(Qn) the path
decomposition is defined by associating the 2-connected components to the nodes of the path. Two
consecutive subgraphs have one vertex in common (cutvertex) and each subgraph has 7 edges (recall
that E(D(Qn)) = 7n − 7. One can compute the labeling for the first subgraph and propagate by linearly
increasing the labels. If the edge irregularity is satisfied for the first two subgraphs, then it should hold
for the entire graph. Such an approach (if correct) could potentially broaden the targeted graphs.
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