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1. Introduction

Associating graphs to algebraic structures and studying their algebraic properties employing the
methods in graph theory has been an interesting topic for mathematicians in the last decades and
continuously arousing people’s wide attention. For instance, Cayley graphs of groups [14], power
graphs of groups ([2, 15, 24]), zero-divisor graphs of semigroups [17], zero-divisor graphs of
commutative rings [5], total graphs of rings [1], unit graphs of rings [6], zero-divisor graphs of
modules [9]. Bosák initiated the study of the intersection graphs of semigroups in [10]. Later,
Csákány and Pollák defined the intersection graph of subgroups of a finite group and studied the
graphic properties in [16]. In the recent years, several interesting properties of the intersection graphs
of subgroups of groups have been obtained in the literature. In 1975, Zelinka investigated the
intersection graphs of subgroups of finite abelian groups [33]. Akbari, Heydari and Maghasedi
obtained some properties of the intersection graphs of subgroups of solvable groups in [7]. Shen
classified finite groups with disconnected intersection graphs of subgroups in [29]. Ma gave an upper
bound for the diameter of intersection graphs of finite simple groups in [23]. Rajkumar and Devi
defined the intersection graph of cyclic subgroups of groups and obtained the clique number of
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intersection graph of subgroups of some non-abelian groups [26, 27]. Recall that, for a finite group G,
the intersection graph of subgroups of G, denoted by Γ(G), is a graph with all non-trivial subgroups of
G as its vertices and two distinct vertices H and K are adjacent in Γ(G) if and only if H ∩ K , 1.

The thickness of a graph, as a topological invariant of a graph, was first defined by Tutte in [30]. The
problem is the same as determining whether K9 is biplanar or not, that is, a union of two planar graphs
and it was showed in [11]. Tutte generalized the problem by defining the concept of the thickness
of a graph. It is an important research object in topological graph theory, and it also has important
applications to VLSI design and network design (see [4, 28]). Outerthickness seems to be studied first
in Geller’s unpublished manuscript, where it was shown that θ0(K7) is 3 by similar exhaustive search as
in the case of the thickness of K9. It is known that determining the thickness of a graph is NP-hard [22].
Until now, there are only a few results on the thickness of graphs. The attention has been focused on
finding upper bounds of thickness and outerthickness. In 1964, Beineke, Frank and Moon obtained
the thickness of the complete bipartite graph [13]. Beineke and Harary obtained the thickness of the
complete graph ([3, 12]). Chartrand, Geller and Hedetniemi conjectured that planar graph has an edge
partition into two outerplanar graphs in [21]. Guy and Nowwkowski obtained the outerthickness of the
complete graph and complete bipartite graph in [19, 20]. In [18], Ding et al. proved that every planar
graph has an edge partition into two outerplanar graphs.

For the planarity of intersection graph of subgroups of a finite group, Ahmadi and Taeri, Kayacan
and Yaraneri independently classified all finite groups with planar intersection graphs in [8, 25],
respectively. By their main theorem, it is easy to obtain the planarity of intersection graph of
subgroups of a finite abelian group.

Theorem 1.1. [8, 25] Let G be a finite abelian group. Then Γ(G) is planar if and only if G is one of the
following groups: Zpα(α = 2, 3, 4, 5),Zpαq(α = 1, 2),Zpqr,Zp ⊕ Zp,Z2 ⊕ Z2p, where p, q, r are distinct
primes.

Motivated by the above theorem, the aim of this paper is to classify finite abelian groups whose
thickness and outerthickness of intersection graphs of subgroups are 1 and 2, respectively. We also
investigate the thickness and outerthickness of intersection graphs of subgroups of some finite non-
abelian groups in the last section.

2. Preliminaries

Let us recall some basic definitions and notations in graph theory. Let Γ be a graph with vertex
set V(Γ) and edge set E(Γ), and all graphs in this paper are simple graphs, that are, undirect, no loops
and no multiple edges. We use Kn to denote the complete graph on n vertices and Km,n to denote the
complete bipartite graph with one partition consisting of m vertices and another partition consisting of
n vertices. The degree of a vertex v in Γ, denoted by degΓ(v), is the number of vertices incident to v.
If degΓ(v) = k, then the vertex is denoted by vk. A subgraph Γ′ of Γ is provided V(Γ′) ⊆ V(Γ) and
E(Γ′) ⊆ E(Γ). A clique of a graph Γ is a complete subgraph of Γ. A maximal clique of a graph is a
clique such that adding any vertex into the clique cannot be a clique. The clique number of a graph Γ

is the number of vertices in a maximal clique in Γ with maximum size and it is denoted by ω(Γ). A
subgraph H of Γ is a spanning subgraph of Γ if V(H) = V(Γ). The union of graphs Γ1 and Γ2 is the
graph Γ1∪Γ2 with vertex set V(Γ1)∪V(Γ2) and edge set E(Γ1)∪E(Γ2). Let Γ1 +Γ2 be a graph obtained

AIMS Mathematics Volume 6, Issue 3, 2590–2606.



2592

from the union Γ1 ∪ Γ2 by adding edges between each vertex in Γ1 and each vertex in Γ2. If Γ2 has
exactly one vertex v, we shall use Γ1 + v instead of Γ1 + Γ2. A graph is planar if it can be drawn in a
plane such that no two edges intersect expect at their end vertices. An outerplanar graph is a planar
graph that can be embedded in the plane without crossings in such a way that all the vertices lie in
the boundary of the unbounded face of the embedding. Recall that the thickness of a graph Γ, denoted
by θ(Γ), is the minimum number of planar subgraphs whose union is Γ. Similarly, the outerthickness
θ0(Γ) is obtained where the planar subgraphs are replaced by outerplanar subgraphs in the previous
definition. Obviously, the thickness of a planar graph is 1 and the outerthickness of an outerplanar
graph is 1.

The following lemmas are obvious and are used frequently later.

Lemma 2.1. [32, Lemma 2.1] If Γ1 is a subgraph of Γ2, then θ(Γ1) ≤ θ(Γ2) and θ0(Γ1) ≤ θ0(Γ2).

Lemma 2.2. [12, 19, 3] (1) θ(Kn) =
{ b n+7

6 c n , 9, 10
3 n = 9, 10

.

(2) θ0(Kn) =
{ d n+1

4 e n , 7
3 n = 7

.

where dxe denotes the least integer greater than or equal to x, bxc denotes the largest integer greater
than or equal to x

By Lemma 2.2, one can see that θ(Kn) ≥ 3 for n ≥ 9, θ0(Kn) ≥ 3 for n ≥ 7.
From Euler’s formula, a planar graph Γ has at most 3|V | − 6 edges and an outerpalnar graph Γ has

at most 2|V | − 3 edges, furthermore, one can get the lower bound for the thickness and outerthickness
of a graph as follows.

Lemma 2.3. [13] If Γ = (V, E) is a graph with |V | = n and |E| = m, then θ(Γ) ≥ d m
3n−6e and θ0(Γ) ≥

d m
2n−3e.

Lemma 2.4. Let Γ be a graph. If θ(Γ) = k, then θ(Γ + vk) = k. In particular, if Γ is a complete graph,
then θ(Γ + vt) = k(1 ≤ t ≤ 2k).

Proof. If Γ is a planar graph, then Γ + v1 is clearly a planar graph. If Γ is not a planar graph, then we
may assume that {Γ1,Γ2, · · · ,Γk} is a planar decomposition of Γ, where each Γi is a spanning subgraph
of Γ, then Γi + v1 are planar graphs. Hence {Γ1 + v1,Γ2 + v1, · · · ,Γk + v1} is a decomposition of Γ + vk.
Thus, θ(Γ + vk) ≤ k. By Lemma 2.1, θ(Γ + vk) ≥ θ(Γ) = k and thus θ(Γ + vk) = k. In particular, if Γ is a
complete graph, then θ(Γ + vt) = k(1 ≤ t ≤ 2k). �

Lemma 2.5. [31] A graph is outerplanar if and only if it has no subgraph homeomorphic to K4 or K2,3.

3. Classification of finite abelian groups

The aim of this section is to classify finite abelian groups whose intersection graphs have thickness
and outerthickness 1 and 2. We first consider the case of finite cyclic groups.

Theorem 3.1. Let G = Zn be a cyclic group of order n and Γ(G) is not an empty graph. Then the
following statements are hold.
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(1) θ(Γ(G)) = 1 if and only if G is one following groups:

Zpα(α = 2, 3, 4, 5),Zp1 pα2
(α = 1, 2),Zp1 p2 p3 ,

where p1, p2, p3 and p are distinct primes.
(2) θ(Γ(G)) = 2 if and only if G is one following groups:

Zpα(α = 6, 7, 8, 9),Zp1 pα2
(α = 3, 4),Zp2

1 pα2
(α = 2, 3),Zp1 p2 p2

3
,Zp1 p2 p3 p4 ,

where p1, p2, p3, p4 and p are distinct primes.

Proof. Suppose that n = pα1
1 pα2

2 · · · p
αs
s with α1 ≤ α2 ≤ · · · ≤ αs. Then we have V(Γ(Zn)) =

s∏
i=1

(αi+1)−2.

We complete our proofs by discussing the number of prime divisors of n.
Case 1. s ≥ 5. It is clear that

〈p1〉, 〈p2〉, 〈p3〉, 〈p4〉, 〈p1 p2〉, 〈p1 p3〉, 〈p1 p4〉, 〈p1 p2 p3〉, 〈p1 p2 p3 p4〉

are nine non-trivial subgroups of G. Note that any pair of these nine subgroups has non-trivial
intersection. So they form a complete graph K9, which is a subgraph of Γ(G). Thus, ω(Γ(G)) ≥ 9. By
Lemma 2.1, θ(Γ(G)) ≥ θ(K9) = 3.

Case 2. s = 4. If α4 ≥ 2, then G has at least nine non-trivial subgroups, namely,

〈p1〉, 〈p2〉, 〈p3〉, 〈p4〉, 〈p1 p2〉, 〈p1 p3〉, 〈p1 p4〉, 〈p1 p2 p3〉, 〈p1 p2 p3 p4〉.

Note that any pair of these nine subgroups has non-trivial intersection. So they form a complete graph
K9, which is a subgraph of Γ(G). Thus, θ(Γ(G)) ≥ θ(K9) = 3 by Lemma 2.1. If α4 = 1, then
G ' Zp1 p2 p3 p4 . So, G has totally 14 non-trivial subgroups, namely,

〈p1〉, 〈p2〉, 〈p3〉, 〈p4〉, 〈p1 p2〉, 〈p1 p3〉, 〈p1 p4〉, 〈p2 p3〉, 〈p2 p4〉,

〈p3 p4〉, 〈p1 p2 p3〉, 〈p1 p2 p4〉, 〈p1 p3 p4〉, 〈p2 p3 p4〉.

Note that 〈p1〉, 〈p2〉, 〈p3〉, 〈p1 p2〉, 〈p1 p3〉, 〈p2 p3〉, 〈p1 p2 p3〉 form K7 as a subgraph of Γ(G). So
ω(Γ(Zp1 p2 p3 p4)) ≥ 7 and V(Γ(Zp1 p2 p3 p4)) = 14. By Lemma 2.1 and Lemma 2.2,
2 = θ(K7) ≤ θ(Γ(Zp1 p2 p3 p4)) ≤ θ(K14) = 3. A planar decomposition of Γ(Zp1 p2 p3 p4) shown in Figure 1
deduces that θ(Γ(Zp1 p2 p3 p4)) = 2.
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Figure 1. A planar decomposition of Γ(Zp1 p2 p3 p4).
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Case 3. s = 3. If α3 ≥ 3, then

〈p1〉, 〈p2〉, 〈p3〉, 〈p2
3〉, 〈p1 p2〉, 〈p1 p3〉, 〈p2 p3〉, 〈p1 p2 p3〉, 〈p1 p2

3〉

are nine non-trivial subgroups of G. Any pair of these nine subgroups has non-trivial intersection. So
they form K9, which is a subgraph of Γ(G). By Lemma 2.1, θ(Γ(G)) ≥ θ(K9) = 3. If α2 = α3 = 2, then

〈p1〉, 〈p2〉, 〈p3〉, 〈p2
3〉, 〈p1 p2〉, 〈p1 p3〉, 〈p2 p3〉, 〈p1 p2 p3〉, 〈p1 p2

3〉

are nine non-trivial subgroups of G. Any pair of these nine subgroups has non-trivial intersection.
They also form K9 as a subgraph of Γ(G). So θ(Γ(G)) ≥ θ(K9) = 3 by Lemma 2.1.

If α1 = α2 = 1, α3 = 2, then G has totally ten non-trivial subgroups, namely,

〈p1〉, 〈p2〉, 〈p3〉, 〈p2
3〉, 〈p1 p2〉, 〈p1 p3〉, 〈p1 p2

3〉, 〈p2 p3〉, 〈p2 p2
3〉, 〈p1 p2 p3〉.

Note that 〈p1〉, 〈p2〉, 〈p3〉, 〈p1 p2〉, 〈p1 p3〉, 〈p2 p3〉, 〈p1 p2 p3〉 form K7 as a subgraph of Γ(G). Then
ω(Γ(G)) ≥ 7 and V(Γ(G)) = 10. By Lemma 2.1 and Lemma 2.2, 2 = θ(K7) ≤ θ(Γ(G)) ≤ θ(K10) = 3.
We can give a planar decomposition of Γ(Zp1 p2 p2

3
) as shown in Figure 2. Thus, θ(Γ(G) = 2.
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Figure 2. A planar decomposition of Γ(Zp1 p2 p2
3
).

If α1 = α2 = α3 = 1, by Theorem 1.1, Γ(Zp1 p2 p3) is a planar graph. So θ(Γ(Zp1 p2 p3)) = 1.
Case 4. s = 2. In this case, it easy to see that Γ(G) � Kα1α2−1 + (Kα1 ∪ Kα2). Then ω(Γ(Zpα1

1 pα2
2

)) =

α1α2 − 1 + α2. If α1α2 − 1 + α2 ≥ 9, then θ(Γ(G)) ≥ θ(K9) = 3. So α1α2 − 1 + α2 ≤ 8 and implies that
α2 ≤ 4.

If α2 = 4, then α1 = 1. So, Γ(G) ' K3 + (K4 ∪ K1). By Lemma 2.1 and Lemma 2.2, 2 = θ(K7) ≤
θ(Γ(Zp1 p4

2
)) ≤ θ(K8) = 2. This deduces that θ(Γ(Zp1 p4

2
)) = 2.

If α2 = 3, then α1 ≤ 2. If α1 = 2, then Γ(G) ' K5 + (K3 ∪ K2), By Lemma 2.1 and Lemma 2.2,
2 = θ(K8) ≤ θ(Γ(Zp2

1 p3
2
)) ≤ θ(K10) = 3. A planar decomposition of Γ(Zp2

1 p3
2
) as shown in Figure 3

deduces that θ(Γ(Zp2
1 p3

2
)) = 2. If α1 = 1, then Γ(G) ' K2 + (K3 ∪ K1). By Lemma 2.1 and Lemma 2.2,

2 = θ(K5) ≤ θ(Γ(Zp1 p3
2
)) ≤ θ(K6) = 2. So, θ(Γ(Zp1 p3

2
)) = 2.
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Figure 3. A planar decomposition of Γ(Zp2
1 p3

2
).

If α2 = α1 = 2, then Γ(G) ' K3 + (K2 ∪ K2). By Lemma 2.1 and Lemma 2.2, 2 = θ(K5) ≤
θ(Γ(Zp2

1 p2
2
)) ≤ θ(K7) = 2. Thus, θ(Γ(Zp2

1 p2
2
)) = 2.

If α2 = 2 and α1 = 1 or α1 = α2 = 1, then by Theorem 1.1, Γ(Zp1 p2) and Γ(Zp1 p2
2
) are planar graphs.

So, θ(Γ(Zp1 p2)) = θ(Γ(Zp1 p2
2
)) = 1.

Case 5. s = 1. In this case, Γ(Zpα) ' Kα−1. By Lemma 2.2, it deduces that if α = 2, 3, 4, 5, then
θ(Γ(Zpα)) = 1; and if α = 6, 7, 8, 9, then θ(Γ(Zpα)) = 2.

This completes the proof. �

For the outerthickness of Γ(G) of a cyclic group G, we have following theorem.

Theorem 3.2. Let G = Zn be a cyclic group of order n and Γ(G) is not an empty graph. Then the
following statements are hold.

(1) θ0(Γ(G)) = 1 if and only if G is one following groups: Zpα(α = 2, 3, 4), Zp1 pα2
(α = 1, 2), Zp1 p2 p3 ,

where p1, p2, p3 and p are primes.
(2) θ0(Γ(G)) = 2 if and only if G is one following groups: Zpα(α = 5, 6, 7), Zp2

1 p2
2
, Zp1 p3

2
, where p1,

p2 and p are primes.

Proof. Suppose that n = pα1
1 pα2

2 · · · p
αs
s with α1 ≤ α2 ≤ · · · ≤ αs. According to the proof of

Theorem 3.1, if s ≥ 4, then θ0(Γ(G)) ≥ 3. We proceed with three cases.
Case 1. s = 3. Again according to the proof of Theorem 3.1, if θ0(Γ(G)) ≤ 2, then G ' Zp1 p2 p3 .

In this case, it is clear that Γ(G) contains no subgraph homeomorphic to K4 or K2,3. By Lemma 2.5,
Γ(Zp1 p2 p3) is an outerplanar graph. So, θ0(Γ(Zp1 p2 p3)) = 1.

Case 2. s = 2. In this case, Γ(G) ' Kα1α2−1 + (Kα1 ∪ Kα2). Then ω(Γ(G)) = α1α2 − 1 + α2. If
α1α2 − 1 + α2 ≥ 7, then θ0(Γ(G)) ≥ 3. So α1α2 − 1 + α2 ≤ 6. This deduces that α2 ≤ 3.

If α2 = 3, then α1 = 1. So Γ(G) ' K2 + (K3 ∪ K1). By Lemma 2.1 and Lemma 2.2, 2 = θ0(K5) ≤
θ0(Γ(Zp1 p3

2
)) ≤ θ0(K6) = 2. Hence θ0(Γ(Zp1 p3

2
)) = 2.

If α2 = 2, α1 = 2, then Γ(G) ' K3 + (K2 ∪ K2). By Lemma 2.1 and Lemma 2.2, 2 = θ0(K5) ≤
θ0(Γ(Zp2

1 p2
2
)) ≤ θ0(K7) = 3. An outerplanar decomposition of Γ(Zp2

1 p2
2
) as shown in Figure 4 deduces

that θ0(Γ(Zp2
1 p2

2
)) = 2.
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Figure 4. An outerplanar decomposition of Γ(Zp2
1 p2

2
).

If α2 = 2, α1 = 1, then Γ(G) ' K1 + (K2 ∪ K1). It is clear that Γ(G) contains no subgraph
homeomorphic to K4 or K2,3. By Lemma 2.5, Γ(Zp1 p2

2
) is an outerplanar graph. Then, θ0(Γ(Zp1 p2

2
)) = 1.

If α1 = α2 = 1, then Γ(G) ' K2. So, Γ(Zp1 p2) is an outerplanar graph and thus θ0(Γ(Zp1 p2)) = 1.
Case 3. s = 1. In this case, Γ(Zpα) ' Kα−1. By Lemma 2.2, it deduces that if α = 2, 3, 4, then

θ0(Γ(Zpα)) = 1; and if α = 5, 6, 7, then θ0(Γ(Zpα)) = 2. The proof is complete. �

Now, we consider the case of finite non-cyclic groups. Let G be a finite Abelian group but not a
cyclic group. Then by fundamental theorem of finite abelian group, we have G ' G1 ⊕G2 ⊕ · · · ⊕Gs,
where Gi(i = 1, 2, · · · , s) is a cyclic group of prime power order.

Lemma 3.3. Let G ' G1 ⊕G2 ⊕ · · · ⊕Gs, where s ≥ 2 and Gi(i = 1, 2, · · · , s) is a cyclic group of prime
power order. If s ≥ 4, then θ(Γ(G)) ≥ 3.

Proof. Set
H1 = 〈(1, 0, 0, 0, . . . , 0)〉,H2 = 〈(1, 0, 0, 0, . . . , 0), (0, 1, 0, 0, . . . , 0)〉,

H3 = 〈(1, 0, 0, 0, . . . , 0), (0, 0, 1, 0, . . . , 0)〉,H4 = 〈(1, 0, 0, 0, . . . , 0), (0, 0, 0, 1, . . . , 0)〉,

H5 = 〈(1, 0, 0, 0, . . . , 0), (0, 1, 1, 0, . . . , 0)〉,H6 = 〈(1, 0, 0, 0, . . . , 0), (0, 1, 0, 1, . . . , 0)〉,

H7 = 〈(1, 0, 0, 0, . . . , 0), (0, 0, 1, 1, . . . , 0)〉,H8 = 〈(1, 0, 0, 0, . . . , 0), (0, 1, 1, 1, . . . , 0)〉,

H9 = 〈(1, 0, 0, 0, . . . , 0), (0, 1, 0, 0, . . . , 0), (0, 0, 1, 0, . . . , 0), (0, 1, 1, 0, . . . , 0)〉.

Then they are nine non-trivial subgroups of G. Note that any pair of these nine subgroups has non-
trivial intersection. So they form K9, which is a subgraph of Γ(G). Thus, θ(Γ(G)) ≥ θ(K9) = 3.

Theorem 3.4. Let G be a finite non-cyclic abelian group. Then the following statements are hold.
(1) θ(Γ(G)) = 1 if and only if G is one following groups: Z2 ⊕ Z2p, Zp ⊕ Zp, where p is a prime.
(2) θ(Γ(G)) = 2 if and only if G is one following groups: Z3 ⊕ Z3q, Z5 ⊕ Z5q, Z4 ⊕ Z4, Z2 ⊕ Z8,

Z2 ⊕ Z2 ⊕ Z2, where q is a prime.

Proof. Let the number of distinct prime factors of order of |G| be s. By Lemma 3.3, we know that if
θ(Γ(G)) ≤ 2, then s ≤ 3. By assumption that G is not cyclic, we have three cases for our discussion.

Case 1. G ' Zpα ⊕ Zpβ ⊕ Zpγ , p is a prime.
Case 2. G ' Zpα ⊕ Zpβ ⊕ Zqγ , p, q are distinct primes.
Case 3. G ' Zpα ⊕ Zpβ , p is a prime.
For the Case 1, if there is at least one in {α, β, γ} greater than 1, then we may assume γ ≥ 2. Set
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A1 = 〈(0, 0, 1), (0, 1, 0)〉, A2 = 〈(0, 0, 1), (1, 0, 0)〉, A3 = 〈(1, 1, 0), (1, 1, 1)〉,

A4 = 〈(0, 1, 0), (1, 0, 0)〉, A5 = 〈(0, 1, 0), (1, 0, 1)〉, A6 = 〈(1, 0, 0), (0, 1, 1)〉,

A7 = 〈(1, 1, 0), (0, 1, 1)〉, A8 = 〈(0, 0, p), (0, 1, 0)〉, A9 = 〈(0, 0, p), (1, 0, 0)〉.

It is easy to see that they are nine non-trivial subgroups of G. Note that any pair of these nine subgroups
has non-trivial intersection. So they form K9, which is a subgraph of Γ(G). Thus, θ(Γ(G)) ≥ θ(K9) = 3.

Now, we consider the case of α = β = γ = 1. If p ≥ 3, we let

B1 = 〈(0, 0, 1), (0, 1, 0)〉, B2 = 〈(0, 0, 1), (1, 0, 0)〉, B3 = 〈(0, 0, 1), (1, 1, 0)〉,

B4 = 〈(0, 0, 1), (−1, 1, 0)〉, B5 = 〈(0, 1, 0), (1, 0, 0)〉, B6 = 〈(0, 1, 0), (1, 0, 1)〉,

B7 = 〈(0, 1, 0), (−1, 0, 1)〉, B8 = 〈(0, 1, 1), (1, 0, 0)〉, B9 = 〈(0, 1, 1), (1, 0, 1)〉.

They also form K9 and θ(Γ(G)) ≥ θ(K9) = 3.
If p = 2, then G ' Z2 ⊕ Z2 ⊕ Z2. G has totally 14 non-trivial subgroups, namely,

C1 = 〈(0, 0, 1), (0, 1, 0)〉,C2 = 〈(0, 0, 1), (1, 0, 0)〉,C3 = 〈(1, 1, 0), (1, 1, 1)〉,

C4 = 〈(0, 1, 0), (1, 0, 0)〉,C5 = 〈(0, 1, 0), (1, 0, 1)〉,C6 = 〈(1, 0, 0), (0, 1, 1)〉,

C7 = 〈(1, 1, 0), (0, 1, 1)〉,C8 = 〈(0, 0, 1)〉,C9 = 〈(1, 0, 0)〉,C10 = 〈(1, 1, 0)〉,

C11 = 〈(0, 1, 0)〉,C12 = 〈(1, 0, 1)〉,C13 = 〈(0, 1, 1)〉,C14 = 〈(1, 1, 1)〉.

It is easy to see that Γ(G) = K7 + 7v3. By Lemma 2.4, we get θ(Γ(G)) = θ(K7) = 2.
For the Case 2, we may assume α ≤ β. If β ≥ 2, we let

D1 = 〈(0, p, 0)〉,D2 = 〈(0, 1, 0), (0, 0, 1)〉,D3 = 〈(0, 1, 0), (1, 0, 0)〉,

D4 = 〈(0, 1, 0)〉,D5 = 〈(0, p, 0), (0, 0, 1)〉,D6 = 〈(0, p, 0), (1, 0, 0)〉,

D7 = 〈(1, 1, 0)〉,D8 = 〈(0, p, 0), (0, 0, 1), (1, 0, 0)〉,D9 = 〈(0, p, 0), (0, 0, 1), (1, 1, 0)〉.

Note that Di ∩ D j = D1 for all i , j. So, they form a K9 and θ(Γ(G)) ≥ θ(K9) = 3.
If γ ≥ 2, then we let

E1 = 〈(0, 0, q)〉, E2 = 〈(0, 0, 1), (1, 0, 0)〉, E3 = 〈(0, 0, 1), (1, 1, 0)〉,

E4 = 〈(0, 0, q), (0, 1, 0)〉, E5 = 〈(0, 0, q), (1, 0, 0)〉, E6 = 〈(0, 0, q), (1, 1, 0)〉,

E7 = 〈(0, 0, 1)〉, E8 = 〈(0, 0, 1), (0, 1, 0)〉, E9 = 〈(0, 0, q), (0, 1, 0), (1, 0, 0)〉.

Note that Ei ∩ E j = E1 for all i , j. So, they form a K9 and θ(Γ(G)) ≥ θ(K9) = 3.
Now, let G ' Zp ⊕ Zp ⊕ Zq. Then all non-trivial subgroups of G are:
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I = 〈(0, 0, 1), (0, 1, 0)〉,

Mi = 〈(0, 0, 1), (1, i, 0)〉, where 0 ≤ i ≤ p − 1,

T = 〈(0, 1, 0), (1, 0, 0)〉,K = 〈(0, 1, 0)〉,

N j = 〈(1, j, 0)〉, where 0 ≤ j ≤ p − 1.

It is not difficult to see that Γ(G) = (Kp+3 − e) + (p + 1)v2. If p ≥ 7, then θ(Γ(G)) ≥ θ(K9) = 3. So,
p ≤ 5. By Lemma 2.2, if p = 2, then θ(Γ(G)) = 1; and if p = 3, 5, then θ(Γ(G)) = 2.

For the Case 3, G ' Zpα ⊕ Zpβ . We may assume that β ≥ α. If α ≥ 2 and β ≥ 3, then we set

F1 = 〈(0, pα)〉, F2 = 〈(0, p)〉, F3 = 〈(0, 1)〉, F4 = 〈(0, 1), (1, 0)〉, F5 = 〈(0, p), (1, 0)〉,

F6 = 〈(0, 1), (p, 0)〉, F7 = 〈(p, 1)〉, F8 = 〈(0, p), (p, 0)〉, F9 = 〈(p, p)〉.

They are non-trivial subgroups of G. Also, F1 = Fi ∩ F j for all i , j. It follows that they form K9 as a
subgraph of Γ(G). Thus, θ(Γ(G)) ≥ θ(K9) = 3.

If α = β = 2, then G ' Zp2⊕Zp2 . Now, G has totally p+1 subgroups of order p, i.e., 〈(0, p)〉, 〈(p, 0)〉,
〈(p, p)〉, · · · 〈(p2− p, p)〉; G has totally p2 + p+1 subgroups of order p2, i.e., Q = 〈(0, p), (p, 0)〉, 〈(1, 0)〉,
〈(0,−1)〉, 〈(1,−1)〉, · · · 〈(p2 − 1,−1)〉; 〈(1, p)〉, 〈(1, 2p)〉, 〈(1, 3p)〉, · · · 〈(1, p2 − p)〉; G has totally p + 1
subgroups of order p3, i.e., 〈(0, 1), (p, 0)〉, 〈(0, p), (1, 0)〉, 〈(0, p), (p, 0), (1, 1)〉, 〈(0, p), (p, 0), (1, 2)〉,
· · · 〈(0, p), (p, 0), (1, p − 1)〉. It is not difficult to see that Γ(Zp2 ⊕ Zp2) ' Kp+2 + (p + 1)Kp+1. So,
ω(Γ(Zp2 ⊕ Zp2)) = 2p + 3,V(Γ(Zp2 ⊕ Zp2)) = p2 + 3p + 3. If p ≥ 3, then ω(Γ(G)) ≥ 9 and θ(Γ(G)) ≥ 3.
So p = 2. By Lemma 2.1 and Lemma 2.2, 2 = θ(K7) ≤ θ(Γ(Z4 ⊕ Z4) ≤ θ(K13) = 3. On the other hand,
a planar decomposition of Γ(Z4 ⊕ Z4) shown in Figure 5 gives θ(Γ(Z4 ⊕ Z4)) = 2.
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Figure 5. A planar decomposition of Γ(Z4 ⊕ Z4).

If α = 1, then G ' Zp ⊕ Zpβ . All subgroups of G can be listed below.
〈(0, 1)〉, 〈(1, 1)〉, · · · 〈(p − 1, 1)〉,
〈(0, p)〉, 〈(1, p)〉, · · · 〈(p − 1, p)〉,
〈(0, p2)〉, 〈(1, p2)〉, · · · 〈(p − 1, p2)〉,
· · · · · ·

〈(0, pβ−1)〉, 〈(1, pβ−1)〉, · · · 〈(p − 1, pβ−1)〉.
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It is clear that Γ(G) ' Kβ−1 + (Kpβ−p+1 ∪ pK1). So Kβp+β−p is a subgraph of Γ(G). If β ≥ 4, then
ω(Γ(G)) ≥ 9 and θ(Γ(G)) ≥ 3. So, β ≤ 3.

If β = 3, then p = 2 and G ' Z2 ⊕ Z8. So Γ(G) ' K2 + (K5 ∪ 2K1) and θ(Γ(Z2 ⊕ Z8) ≥ θ(K7) = 2.
By Lemma 2.4, θ(Γ(Z2 ⊕ Z8)) = θ(K7) = 2.

If β = 2, then p ≤ 5. If p = 2, then G ' Z2 ⊕ Z4 and Γ(G) ' K1 + (K3 ∪ 2K1). So, θ(Γ(Z2 ⊕

Z4)) ≥ θ(K4) = 1. By Lemma 2.4, θ(Γ(Z2 ⊕ Z4)) = θ(K4) = 1. If p = 3, then G ' Z3 ⊕ Z9 and
Γ(G) ' K1 + (K4 ∪ 3K1). Thus, θ(Γ(Z3 ⊕ Z9)) ≥ θ(K5) = 2. By Lemma 2.4, θ(Γ(Z3 ⊕ Z9)) = θ(K5) = 2.
If p = 5, then G ' Z5 ⊕ Z25 and Γ(G) ' K1 + (K6 ∪ 5K1). Thus, θ(Γ(Z5 ⊕ Z25)) ≥ θ(K7) = 2. By
Lemma 2.4, then θ(Γ(Z5 ⊕ Z25)) = θ(K7) = 2.

If β = 1, then G ' Zp ⊕ Zp. So, Γ(G) ' (p + 1)K1. By Theorem 1.1, θ(Γ(Zp ⊕ Zp)) = 1.
This completes our proof. �

Theorem 3.5. Let G be a finite non-cyclic abelian group. Then the following statements are hold.
(1) θ0(Γ(G)) = 1 if and only if G ' Zp ⊕ Zp, where p is a prime.
(2) θ0(Γ(G)) = 2 if and only if G ' Z2 ⊕ Z2p or Z3 ⊕ Z3p, where p is a prime.

Proof. Suppose G ' G1 ⊕G2 ⊕G3 ⊕ · · · ⊕Gs, where s ≥ 2 and Gi(i = 1, 2, 3, · · · , s) are cyclic groups.
According to the proof of Theorem 3.4, if θ0(Γ(G)) ≤ 2, then G ' Zp ⊕ Zp or G ' Zp ⊕ Zp ⊕ Zq or
G ' Zp ⊕ Zp2 .

Case 1. G ' Zp ⊕ Zp. In this case, Γ(G) ' (p + 1)K1. It is clear that Γ(G) contains no subgraph
homeomorphic to K4 or K2,3. By Lemma 2.5, Γ(Zp⊕Zp) is an outerplanar graph, then θ0(Γ(Zp⊕Zp)) = 1.

Case 2. G ' Zp ⊕ Zp ⊕ Zq. Again by the proof of Theorem 3.4, we know that ω(Γ(Zp ⊕ Zp ⊕ Zq)) =

p+2. If p ≥ 5, then θ0(Γ(G)) ≥ θ0(K7) = 3. So p = 2, 3. If p = 2, then G ' Z2⊕Z2q. It is easy to see that
Γ(Z2⊕Z2q) = (K5−e)+3v2. By Lemma 2.1 and Lemma 2.2, 2 = θ0(K4) ≤ θ0(Γ(Z2⊕Z2q)) ≤ θ0(K5) = 2.
Thus, θ0(Γ(Z2⊕Z2q)) = 2. If p = 3, then G ' Z3⊕Z3q. It is easy to see that Γ(Z3⊕Z3q) = (K6−e)+4v2.
By Lemma 2.1 and Lemma2.2, 2 = θ0(K5) ≤ θ0(Γ(Z3 ⊕ Z3q)) ≤ θ0(K6) = 2. So θ0(Γ(Z3 ⊕ Z3q)) = 2.

Case 3. G ' Zp ⊕ Zp2 . In this case, Γ(Zp ⊕ Zp2) ' K1 + (Kp+1 + pK1). Thus, ω(Γ(G)) = p + 2. If
ω(Γ(G)) ≥ 7, then θ0(G) ≥ 3. Thus, p = 2, 3. If p = 2, then G ' Z2 ⊕ Z4 and Γ(G) ' K1 + (K3 ∪ 2K1).
By Lemma 2.4, θ0(Γ(Z2 ⊕ Z4)) = θ0(K4) = 2. If p = 3, then G ' Z3 ⊕ Z9 and Γ(G) ' K1 + (K4 ∪ 3K1).
By Lemma 2.4, θ0(Γ(Z3 ⊕ Z9)) = θ0(K5) = 2.

The proof is complete. �

Combine Theorems 3.1–3.5, we get the following theorem.

Theorem 3.6. Let G be a finite abelian group and let p1, p2, p3, p4 and p be primes. Then the following
statements are hold.

(1) θ(Γ(G)) = 1 if and only if G is one following groups:

Zpα(α = 2, 3, 4, 5),Zp1 pα2
(α = 1, 2),Zp1 p2 p3 ,Z2 ⊕ Z2p,Zp ⊕ Zp.

(2) θ(Γ(G)) = 2 if and only if G is one following groups:

Zpα(α = 6, 7, 8, 9),Zp1 pα2
(α = 3, 4),Zp2

1 pα2
(α = 2, 3),Zp1 p2 p2

3
,Zp1 p2 p3 p4 ,

Z3 ⊕ Z3p,Z5 ⊕ Z5p,Z4 ⊕ Z4,Z2 ⊕ Z8,Z2 ⊕ Z2 ⊕ Z2.
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(3) θ0(Γ(G)) = 1 if and only if G is one following groups:

Zpα(α = 2, 3, 4),Zp1 pα2
(α = 1, 2),Zp1 p2 p3 ,Zp ⊕ Zp.

(4) θ0(Γ(G)) = 2 if and only if G is one following groups:

Zpα(α = 5, 6, 7),Zp2
1 p2

2
,Zp1 p3

2
,Z2 ⊕ Z2p,Z3 ⊕ Z3p.

4. Some finite non-abelian groups

In this section, we investigate the thickness and outerthickness of intersection graphs of subgroups
of some finite non-abelian groups. For a positive integer n, τ(n) denotes the number of positive divisor
of n; σ(n) denotes the sum of all the positive divisors of n. S n and An are denoted the symmetric group
and alternating group of degree n acting on {1, 2, 3, · · · , n}, respectively.

For any integer n ≥ 3, the dihedral group of order 2n is defined by

Dn = {a, b|an = b2 = 1, ab = ba−1}.

For any integer n ≥ 2, the generalized quaternion group of order 4n is defined by

Qn = {a, b|a2n = b4 = 1, an = b2, b−1ab = a−1}.

For any prime p and integer α ≥ 3, the modular group of order pα is defined by

Mpα = {a, b|apα−1
= bp = 1, bab−1 = apα−2+1}.

For any integer n ≥ 4, the quasi-dihedral group of order 2n is defined by

QD2n = {a, b|a2α−1
= b2 = 1, bab−1 = a2α−2−1}.

Lemma 4.1. [27] The following statements are hold.
(1) For n ≥ 3, n = pα1

1 pα2
2 · · · p

αk
k , V(Γ(Dn)) = τ(n) +σ(n)−2 and ω(Γ(Dn)) = σ(n)−n−1 +

∏k
i=1 αi.

(2) Let n ≥ 2 be an integer and 2n = 2α1 pα2
2 · · · p

αk
k , where p2, . . . , pk are distinct odd primes and

αi ≥ 1. Then V(Γ(Qn)) = τ(2n) + σ(n) − 2 and ω(Γ(Qn)) = σ(n) − 1 + α1
∏k

i=2(αi + 1).
(3) For α ≥ 4, V(Γ(QD2α)) = α + 3(2α−1 − 1) and ω(Γ(QD2α)) = α + 2α−1 − 3.

Theorem 4.2. Let G = S n. Then the following statements are hold.
(1) If n = 3, then θ(Γ(G)) = 1.
(2) If n ≥ 4, then θ(Γ(G)) ≥ 3.

Proof. If G = S 3, then it is easy to see that Γ(S 3) ' 4K1, which is a planar graph. So, θ(Γ(G)) = 1. If
n ≥ 4, then we set

S 1 = {(1), (12), (34), (12)(34)},
S 2 = {(1), (12), (13), (23), (123), (132)},
S 3 = {(1), (12), (14), (24), (124), (142)},
S 4 = {(1), (13), (14), (34), (134), (143)},
S 5 = {(1), (23), (24), (34), (234), (243)},
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S 6 = {(1), (13), (24), (13)(24), (14)(23), (12)(34), (1234), (1432)},
S 7 = {(1), (14), (23), (13)(24), (14)(23), (12)(34), (1243), (1342)},
S 8 = {(1), (13), (24), (13)(24), (14)(23), (12)(34), (1324), (1423)},
S 9 = {(1), (123), (132), (124), (142), (134), (143), (234), (243), (13)(24), (14)(23), (12)(34)}.
Then they are nine non-trivial subgroups of S n and form a complete graph K9 as a subgraph of

Γ(S n). Thus, θ(Γ(G)) ≥ θ(K9) ≥ 3. �

Theorem 4.3. Let G = An. Then the following statements are hold.
(1) θ(Γ(G)) = 1 if and only if n = 4.
(2) If n ≥ 5, then θ(Γ(G)) ≥ 3.

Proof. If G ' A4, then Γ(A4) ' 4K1 ∪ K1,3, which is a planar graph. So, θ(Γ(G)) = 1. If n ≥ 5, we let
L1 = {(1), (12345), (13524), (14253), (15432), (12)(35), (13)(45), (14)(23), (15)(24), (25)(34)},
L2 = {(1), (12453), (13542), (14325), (15234), (12)(34), (13)(25), (14)(35), (15)(24), (23)(45)},
L3 = {(1), (12354), (13425), (14532), (15243), (12)(34), (13)(45), (14)(25), (15)(23), (24)(35)},
L4 = {(1), (12435), (13254), (14523), (15342), (12)(45), (13)(24), (14)(35), (15)(23), (25)(34)},
L5 = {(1), (12534), (13245), (14352), (15423), (12)(45), (13)(25), (14)(23), (15)(34), (24)(35)},
L6 = {(1), (12543), (13452), (14235), (15324), (12)(35), (13)(24), (14)(25), (15)(34), (23)(45)},
L7 = {(1), (123), (124), (134), (234), (132), (142), (143), (243), (13)(24), (14)(23), (12)(34)},
L8 = {(1), (123), (125), (135), (235), (132), (152), (153), (253), (12)(35), (13)(25), (15)(23)},
L9 = {(1), (124), (125), (145), (245), (142), (152), (154), (254), (12)(45), (14)(25), (15)(24)}.
Then they are nine non-trivial subgroups of An and form a complete graph K9 as a subgraph of

Γ(An). Thus, θ(Γ(G)) ≥ θ(K9) ≥ 3. �

Theorem 4.4. Let G = Dn(n ≥ 3) be the dihedral group of order 2n. Then the following statements
are hold.

(1) θ(Γ(G)) = 1 if and only if G ' D4 or Dp, where p is an odd prime.
(2) θ(Γ(G)) = 2 if and only if G ' D6,D9, D25 or D10.

Proof. For n ≥ 3, let n = pα1
1 pα2

2 · · · p
αk
k with α1 ≤ α2 ≤ · · · ≤ αk. By Lemma 4.1, we know that

ω(Γ(Dn)) = σ(n) − n − 1 +
∏k

i=1 αi. If k ≥ 2 and αk ≥ 2, then ω(Γ(Dn)) ≥ p1 + pk + p1 pk ≥ 11. Thus,
if θ(Γ(G)) ≤ 2, then n = p1 p2 or n = pα.

If n = p1 p2, then by Lemma 4.1, ω(Γ(Dn)) = σ(n)−n−1 +
∏k

i=1 αi = p1 + p2 + 1. If p1 + p2 + 1 ≥ 9,
then θ(Γ(Dn)) ≥ 3. Thus, if θ(Γ(Dn)) ≤ 2, then p1 + p2 + 1 ≤ 8. Thus, p1 = 2, p2 = 3 or p1 = 2, p2 = 5.

If p1 = 2, p2 = 3, then ω(Γ(D6)) = 6. So, θ(Γ(D6)) ≥ θ(K6) = 2. Note that degΓ(D6)(〈aib〉) =

τ(6) − 2 = 2 and V(〈aib〉) = 6. By Lemma 2.4, θ(Γ(D6)) = θ(Γ(D6) − 6v2). On the other hand,
V(Γ(D6) − 6v2) = τ(6) − 1 + σ(6) − 6 − 1 = 8, then 2 = θ(K6) ≤ θ(Γ(D6) − 6v2) ≤ θ(K8) = 2. Hence,
θ(Γ(D6)) = 2.

If p1 = 2 and p2 = 5, then ω(Γ(D10)) = 8. So, θ(Γ(D10)) ≥ θ(K8) = 2. Note that degΓ(D10)(〈aib〉) =

τ(10) − 2 = 2 and V(〈aib〉) = n = 10. By Lemma 2.4, θ(Γ(D10)) = θ(Γ(D10) − 10v2). As V(Γ(D10) −
10v2) = τ(10) − 1 + σ(10) − 10 − 1 = 10, we have 2 = θ(K8) ≤ θ(Γ(D10) − 10v2) ≤ θ(K10) = 3. On the
other hand, a planar decomposition of Γ(D10) − 10v2 as shown in Figure 6 deduces that θ(Γ(D10)) = 2.
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Figure 6. A planar decomposition of Γ(D10) − 10v2.

If n = pα, then by Lemma 4.1, ω(Γ(Dn)) =
pα−p
p−1 +α. If ω(Γ(Dn)) ≥ 9, then θ(Γ(Dn)) ≥ 3. So, α ≤ 2.

If α = 1, then Γ(Dp) ' (p + 1)K1 and thus θ(Γ(Dp)) = 1. If α = 2, then ω(Γ(Dp2)) = p + 2.
Note that degΓ(Dp2 )(〈aib〉) = τ(p2) − 2 = 1, V(〈aib〉) = n = p2, and V(Γ(Dp2)) = τ(n) + σ(n) − 2 =

1 + p + p2 + 3 − 2 = p2 + p + 2. So, Γ(Dp2) = Kp+2 + p2v1. By Lemma 2.4, θ(Γ(Dp2)) = θ(Kp+2). Since
p + 2 ≥ 9 deduces θ(Γ(Dp2)) ≥ 3, we have p + 2 ≤ 8, that is, p = 2, 3, 5. By Lemma 2.2, we get if
p = 2, then θ(Γ(D4)) = 1; and if p = 3, 5, then θ(Γ(D9)) = θ(Γ(D25)) = 2. �

Theorem 4.5. Let G = Qn. Then the following statements are hold.
(1) θ(Γ(G)) = 1 if and only if G = Q2.
(2) θ(Γ(G)) = 2 if and only if G ' Q3 or Q5.

Proof. Let n ≥ 2 be an integer and 2n = 2α1 pα2
2 · · · p

αk
k , where pi are distinct primes and αi ≥ 1. By

Lemma 4.1, ω(Γ(Qn)) = σ(n)− 1 +α1
∏k

i=2(αi + 1). If k ≥ 2, then ω(Γ(Qn)) ≥ 1 + p1 + p2 + p1 p2 − 1 +

1 × 2 × 2 = 4 + p1 + p2 + p1 p2 > 4 + 2 + 3 + 2 × 3 > 9 and θ(Γ(Qn)) > 3. So, if θ(Γ(Qn)) ≤ 2, then we
have n = pα.

If n = 2α, ω(Γ(Q2α)) = σ(n) − 1 + α1
∏k

i=2(αi + 1) = 2α+1 − 1 + α,V(Γ(Q2α)) = τ(2n) + σ(n) − 2 =

2α+1−1+α, then Γ(Q2α) is a complete graph. If 2α+1−1+α ≥ 9, then θ(Γ(Qn)) ≥ 3. So, if θ(Γ(Qn)) ≤ 2,
then 2α+1 − 1 + α ≤ 8 and thus α = 1. In this case, θ(Γ(Q2)) = 1.

If n = pα and p , 2, then ω(Γ(Qn)) = σ(n)− 1 +α1
∏k

i=2(αi + 1) = 1 + p + p2 + · · ·+ pα−1 + pα + 1×
(α + 1) − 1 =

pα+1−1
p−1 + α ≥ 9, then θ(Γ(Qn)) ≥ 3. So, if θ(Γ(Qn)) ≤ 2, then pα+1−1

p−1 + α ≤ 8, then α = 1.
For α = 1, ω(Γ(Qn)) = σ(n)− 1 +α1

∏k
i=2(αi + 1) = p + 2 and V(Γ(Qn)) = τ(2n) +σ(n)− 2 = p + 3.

So, θ(Kp+2) ≤ θ(Γ(Qn)) ≤ θ(Kp+3). If ω(Γ(Qn)) = p + 2 ≥ 9, then θ(Γ(Qn)) ≥ 3. So, if θ(Γ(Qn)) ≤ 2,
then p + 2 ≤ 8, then p = 3, 5.

By Lemma 2.1 and Lemma 2.2, 2 = θ(K5) ≤ θ(Γ(Q3)) ≤ θ(K6) = 2 and 2 = θ(K7) ≤ θ(Γ(Q5)) ≤
θ(K8) = 2, then θ(Γ(Q3)) = θ(Γ(Q5)) = 2. �

Theorem 4.6. Let G = QD2α . Then θ(Γ(G)) ≥ 3.

Proof. For α ≥ 4, by Lemma 4.1, we have ω(Γ(QD2α)) = α + 2α−1 − 3 ≥ 9. Thus, θ(Γ(QD2α)) ≥
θ(K9) = 3. �

Theorem 4.7. Let G ' Mpα . Then the following statements are hold.
(1) θ(Γ(G)) = 1 if and only if G = M8.
(2) θ(Γ(G)) = 2 if and only if G ' M27,M125 or M16.

Proof. If pα = 8, then Γ(M8) ' Γ(D4). So θ(Γ(M8)) = 1. If pα , 8, then Γ(Mpα) ' Γ(Zp ⊕ Zpα−1).
If θ(Γ(G)) ≤ 2, then by the proof of Theorem 3.5, we know α = 3, 4. If α = 3, then Γ(Mp3) '
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K1 + (Kp+1 ∪ pK1). By θ(Γ(G)) ≤ 2, we get p = 3, 5. By Lemma 2.4, θ(Γ(M27)) = θ(K5) = 2 and
θ(Γ(M125)) = θ(K7) = 2. If α = 4, then p = 2. By Theorem 3.5, θ(Γ(M16)) = θ(Γ(Z2 ⊕ Z8)) = 2. �

Theorem 4.8. Let G = S n. Then the following statements are hold.
(1) If n = 3, then θ0(Γ(G)) = 1.
(2) If n ≥ 4, then θ0(Γ(G)) ≥ 3.

Proof. If G = S 3, then Γ(S 3) ' 4K1, which is an outerplanar graph. So θ0(Γ(S 3)) = 1. By the proof of
Theorem 4.2, if n ≥ 4, then θ0(Γ(G)) ≥ θ0(Γ(K9)) = 3. �

Theorem 4.9. Let G ' An. Then the following statements are hold.
(1) If n = 4, then θ0(Γ(G)) = 1.
(2) If n ≥ 5, then θ0(Γ(G)) ≥ 3.

Proof. Note that Γ(A4) ' 4K1 ∪ K1,3. It is clear that Γ(A4) contains no subgraph homeomorphic to K4

or K2,3. By Lemma 2.5, Γ(A4) is an outerplanar graph. So θ0(Γ(A4)) = 1. By the proof of Theorem 4.3,
if n ≥ 5, then θ0(Γ(G)) ≥ θ0(K9) = 3. �

Theorem 4.10. Let G ' Dn. Then the following statements are hold.
(1) θ0(Γ(G)) = 1 if and only if G ' Dp, where p is a prime.
(2) θ0(Γ(G)) = 2 if and only if G is one following groups: D4, D6, D9.

Proof. For n ≥ 3, let n = pα1
1 pα2

2 · · · p
αk
k with α1 ≤ α2 ≤ · · · ≤ αk. According to the proof of

Theorem 4.4, if θ0(Γ(Dn)) ≤ 2, then n = p1 p2 or pα.
If n = p1 p2, thenω(Γ(Dn)) = σ(n)−n−1+

∏k
i=1 αi = p1+p2+1. If p1+p2+1 ≥ 7, then θ0(Γ(Dn)) ≥ 3.

So, if θ0(Γ(Dn)) ≤ 2, then p1 + p2 + 1 ≤ 6, that is, p1 = 2, p2 = 3. As ω(Γ(D6)) = 2 + 3 + 1 = 6,
we know θ0(Γ(D6)) ≥ θ0(K6) = 2. An outerplanar decomposition of Γ(D6) − 6v2 as shown in Figure 7
gives θ0(Γ(D6)) = 2.

12

3

4

5
6

78 1

2 3
4

5
6

7

8
Figure 7. An outerplanar decomposition of Γ(D6 − 6v2).

If n = pα, then ω(Γ(Dn)) = σ(n) − n − 1 +
∏k

i=1 αi = p + p2 + · · · + pα−1 + α =
pα−p
p−1 + α ≥ 7, then

θ0(Γ(Dn)) ≥ 3. So, if θ0(Γ(Dn)) ≤ 2, then pα−p
p−1 + α ≤ 6, so α = 1, 2.

If α = 1, then Γ(Dp) ' (p + 1)K1. So, θ0(Γ(Dp)) = 1.
If α = 2, Γ(Dp2) = Kp+2 + p2v1. By Lemma 2.4, θ0(Γ(Dp2)) = θ0(Kp+2). As p + 2 ≥ 7, then

θ0(Γ(Dp2)) ≥ 3. So, if θ0(Γ(Dp2)) ≤ 2, then p + 2 ≤ 6, then p = 2, 3. By Lemma 2.2, we get if p = 2,
then θ0(Γ(D4)) = θ0(K4) = 2; and if p = 3, then θ0(Γ(D9)) = θ0(K5) = 2. �
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Theorem 4.11. Let G ' Qn. Then the following statements are hold.
(1) θ0(Γ(G)) ≥ 2.
(2) θ0(Γ(G)) = 2 if and only if G ' Q2 or Q3.

Proof. According the proof of Theorem 4.5, if θ0(Γ(Qn)) ≤ 2, then n = pα.
If n = 2α, again by the proof of Theorem 4.5, we have Γ(Q2α) = K2α+1−1+α. If 2α+1 − 1 + α ≥ 7, then

θ0(Γ(Qn)) ≥ 3. So θ0(Γ(Qn)) ≤ 2, then 2α+1 − 1 + α ≤ 6, so α = 1. In this case, θ0(Γ(Q2)) = 2.
If n = pα and p , 2, then ω(Γ(Qn)) =

pα+1−1
p−1 + α ≥ 7 deduces θ0(Γ(Qn)) ≥ 3. So, if θ0(Γ(Qn)) ≤ 2,

then pα+1−1
p−1 + α ≤ 6 and α = 1.

In this case, ω(Γ(Qn)) = σ(n)−1+α1
∏k

i=2(αi +1) = p+2 and V(Γ(Qn)) = τ(2n)+σ(n)−2 = p+3.
So, θ0(Kp+2) ≤ θ0(Γ(Qn)) ≤ θ0(Kp+3). Ifω(Γ(Qn)) = p+2 ≥ 7, then θ0(Γ(Qn)) ≥ 3. So, if θ0(Γ(Qn)) ≤ 2,
then p + 2 ≤ 6, so p = 3. By Lemma 2.1 and Lemma 2.2, 2 = θ0(K5) ≤ θ0(Γ(Q3)) ≤ θ0(K6) = 2, then
θ0(Γ(Q3)) = 2. �

Theorem 4.12. Let G ' QD2α . Then θ0(Γ(G) ≥ 3.

Proof. For α ≥ 4, by Lemma 4.1, we have ω(Γ(QD2α)) = α + 2α−1 − 3 ≥ 9. Thus, θ0(Γ(QD2α)) ≥
θ0(K9) = 3. �

Theorem 4.13. Let G = Mpα . Then the following statements are hold.
(1) θ0(Γ(G)) ≥ 2.
(2) θ0(Γ(G)) = 2 if and only if G ' M8 or M27.

Proof. If pα = 8, then Γ(M8) ' Γ(D4). By Theorem 4.4, θ0(Γ(M8)) = 2. If pα , 8, then Γ(Mpα) '
Γ(Zp ⊕ Zpα−1). By the proof of Theorem 4.7, we get α = 3, p = 3. In this case, we have θ0(Γ(M27)) =

2. �

5. Conclusions and further work

In this paper, we classify all finite abelian groups whose thickness and outerthickness of subgroup
intersection graphs are 1 and 2, respectively. We also investigate the thickness and outerthickness of
subgroup intersection graphs for some finite non-abelian groups. The method is finding a forbidden
subgraph of Γ(G), like K9 and then determining the remaining cases. The key point is how to separate
Γ(G) into two planar graphs. Next, one can consider to determine all finite abelian groups G whose
Γ(G) has thickness or outerthickness 3. For a general finite group G, how to determine the thickness
and outerthickness of Γ(G) is a challenge. Of course, investigating other properties of Γ(G) is a valuable
exploration.
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