Research article

Thickness of the subgroup intersection graph of a finite group

Huadong Su ${ }^{1, *}$ and Ling Zhu ${ }^{2}$
${ }^{1}$ School of Science, Beibu Gulf University, Qinzhou, Guangxi, 535011, P. R. China
${ }^{2}$ School of Artificial Intelligence, Jiangxi University of Applied Science, Nanchang, Jiangxi, 330100, P.R, China

* Correspondence: Email: huadongsu@ sohu.com; Tel: +07772808395.

Abstract

Let G be a finite group. The intersection graph of subgroups of G is a graph whose vertices are all non-trivial subgroups of G and in which two distinct vertices H and K are adjacent if and only if $H \cap K \neq 1$. In this paper, we classify all finite abelian groups whose thickness and outerthickness of subgroup intersection graphs are 1 and 2, respectively. We also investigate the thickness and outerthickness of subgroup intersection graphs for some finite non-abelian groups.

Keywords: thickness; outerthickness; subgroup intersection graph; finite group
Mathematics Subject Classification: 05C25, 05C10, 20D60

1. Introduction

Associating graphs to algebraic structures and studying their algebraic properties employing the methods in graph theory has been an interesting topic for mathematicians in the last decades and continuously arousing people's wide attention. For instance, Cayley graphs of groups [14], power graphs of groups ([2, 15, 24]), zero-divisor graphs of semigroups [17], zero-divisor graphs of commutative rings [5], total graphs of rings [1], unit graphs of rings [6], zero-divisor graphs of modules [9]. Bosák initiated the study of the intersection graphs of semigroups in [10]. Later, Csákány and Pollák defined the intersection graph of subgroups of a finite group and studied the graphic properties in [16]. In the recent years, several interesting properties of the intersection graphs of subgroups of groups have been obtained in the literature. In 1975, Zelinka investigated the intersection graphs of subgroups of finite abelian groups [33]. Akbari, Heydari and Maghasedi obtained some properties of the intersection graphs of subgroups of solvable groups in [7]. Shen classified finite groups with disconnected intersection graphs of subgroups in [29]. Ma gave an upper bound for the diameter of intersection graphs of finite simple groups in [23]. Rajkumar and Devi defined the intersection graph of cyclic subgroups of groups and obtained the clique number of
intersection graph of subgroups of some non-abelian groups [26, 27]. Recall that, for a finite group G, the intersection graph of subgroups of G, denoted by $\Gamma(G)$, is a graph with all non-trivial subgroups of G as its vertices and two distinct vertices H and K are adjacent in $\Gamma(G)$ if and only if $H \cap K \neq 1$.

The thickness of a graph, as a topological invariant of a graph, was first defined by Tutte in [30]. The problem is the same as determining whether K_{9} is biplanar or not, that is, a union of two planar graphs and it was showed in [11]. Tutte generalized the problem by defining the concept of the thickness of a graph. It is an important research object in topological graph theory, and it also has important applications to VLSI design and network design (see [4, 28]). Outerthickness seems to be studied first in Geller's unpublished manuscript, where it was shown that $\theta_{0}\left(K_{7}\right)$ is 3 by similar exhaustive search as in the case of the thickness of K_{9}. It is known that determining the thickness of a graph is NP-hard [22]. Until now, there are only a few results on the thickness of graphs. The attention has been focused on finding upper bounds of thickness and outerthickness. In 1964, Beineke, Frank and Moon obtained the thickness of the complete bipartite graph [13]. Beineke and Harary obtained the thickness of the complete graph ($[3,12]$). Chartrand, Geller and Hedetniemi conjectured that planar graph has an edge partition into two outerplanar graphs in [21]. Guy and Nowwkowski obtained the outerthickness of the complete graph and complete bipartite graph in [19, 20]. In [18], Ding et al. proved that every planar graph has an edge partition into two outerplanar graphs.

For the planarity of intersection graph of subgroups of a finite group, Ahmadi and Taeri, Kayacan and Yaraneri independently classified all finite groups with planar intersection graphs in [8, 25], respectively. By their main theorem, it is easy to obtain the planarity of intersection graph of subgroups of a finite abelian group.
Theorem 1.1. $[8,25]$ Let G be a finite abelian group. Then $\Gamma(G)$ is planar if and only if G is one of the following groups: $\mathbb{Z}_{p^{\alpha}}(\alpha=2,3,4,5), \mathbb{Z}_{p^{\alpha} q}(\alpha=1,2), \mathbb{Z}_{p q r}, \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{2 p}$, where p, q, r are distinct primes.

Motivated by the above theorem, the aim of this paper is to classify finite abelian groups whose thickness and outerthickness of intersection graphs of subgroups are 1 and 2, respectively. We also investigate the thickness and outerthickness of intersection graphs of subgroups of some finite nonabelian groups in the last section.

2. Preliminaries

Let us recall some basic definitions and notations in graph theory. Let Γ be a graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$, and all graphs in this paper are simple graphs, that are, undirect, no loops and no multiple edges. We use K_{n} to denote the complete graph on n vertices and $K_{m, n}$ to denote the complete bipartite graph with one partition consisting of m vertices and another partition consisting of n vertices. The degree of a vertex v in Γ, denoted by $\operatorname{deg}_{\Gamma}(v)$, is the number of vertices incident to v. If $d e g_{\Gamma}(v)=k$, then the vertex is denoted by v_{k}. A subgraph Γ^{\prime} of Γ is provided $V\left(\Gamma^{\prime}\right) \subseteq V(\Gamma)$ and $E\left(\Gamma^{\prime}\right) \subseteq E(\Gamma)$. A clique of a graph Γ is a complete subgraph of Γ. A maximal clique of a graph is a clique such that adding any vertex into the clique cannot be a clique. The clique number of a graph Γ is the number of vertices in a maximal clique in Γ with maximum size and it is denoted by $\omega(\Gamma)$. A subgraph H of Γ is a spanning subgraph of Γ if $V(H)=V(\Gamma)$. The union of graphs Γ_{1} and Γ_{2} is the graph $\Gamma_{1} \cup \Gamma_{2}$ with vertex set $V\left(\Gamma_{1}\right) \cup V\left(\Gamma_{2}\right)$ and edge set $E\left(\Gamma_{1}\right) \cup E\left(\Gamma_{2}\right)$. Let $\Gamma_{1}+\Gamma_{2}$ be a graph obtained
from the union $\Gamma_{1} \cup \Gamma_{2}$ by adding edges between each vertex in Γ_{1} and each vertex in Γ_{2}. If Γ_{2} has exactly one vertex v, we shall use $\Gamma_{1}+v$ instead of $\Gamma_{1}+\Gamma_{2}$. A graph is planar if it can be drawn in a plane such that no two edges intersect expect at their end vertices. An outerplanar graph is a planar graph that can be embedded in the plane without crossings in such a way that all the vertices lie in the boundary of the unbounded face of the embedding. Recall that the thickness of a graph Γ, denoted by $\theta(\Gamma)$, is the minimum number of planar subgraphs whose union is Γ. Similarly, the outerthickness $\theta_{0}(\Gamma)$ is obtained where the planar subgraphs are replaced by outerplanar subgraphs in the previous definition. Obviously, the thickness of a planar graph is 1 and the outerthickness of an outerplanar graph is 1 .

The following lemmas are obvious and are used frequently later.
Lemma 2.1. [32, Lemma 2.1] If Γ_{1} is a subgraph of Γ_{2}, then $\theta\left(\Gamma_{1}\right) \leq \theta\left(\Gamma_{2}\right)$ and $\theta_{0}\left(\Gamma_{1}\right) \leq \theta_{0}\left(\Gamma_{2}\right)$.
Lemma 2.2. [12, 19, 3] (1) $\theta\left(K_{n}\right)=\left\{\begin{array}{ll}\left\lfloor\frac{n+7}{6}\right\rfloor & n \neq 9,10 \\ 3 & n=9,10\end{array}\right.$.
(2) $\theta_{0}\left(K_{n}\right)=\left\{\begin{array}{ll}\left\lceil\frac{n+1}{4}\right\rceil & n \neq 7 \\ 3 & n=7\end{array}\right.$.
where $\lceil x\rceil$ denotes the least integer greater than or equal to $x,\lfloor x\rfloor$ denotes the largest integer greater than or equal to x

By Lemma 2.2, one can see that $\theta\left(K_{n}\right) \geq 3$ for $n \geq 9, \theta_{0}\left(K_{n}\right) \geq 3$ for $n \geq 7$.
From Euler's formula, a planar graph Γ has at most $3|V|-6$ edges and an outerpalnar graph Γ has at most $2|V|-3$ edges, furthermore, one can get the lower bound for the thickness and outerthickness of a graph as follows.

Lemma 2.3. [13] If $\Gamma=(V, E)$ is a graph with $|V|=n$ and $|E|=m$, then $\theta(\Gamma) \geq\left\lceil\frac{m}{3 n-6}\right\rceil$ and $\theta_{0}(\Gamma) \geq$ $\left\lceil\frac{m}{2 n-3}\right\rceil$.

Lemma 2.4. Let Γ be a graph. If $\theta(\Gamma)=k$, then $\theta\left(\Gamma+v_{k}\right)=k$. In particular, if Γ is a complete graph, then $\theta\left(\Gamma+v_{t}\right)=k(1 \leq t \leq 2 k)$.

Proof. If Γ is a planar graph, then $\Gamma+v_{1}$ is clearly a planar graph. If Γ is not a planar graph, then we may assume that $\left\{\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{k}\right\}$ is a planar decomposition of Γ, where each Γ_{i} is a spanning subgraph of Γ, then $\Gamma_{i}+v_{1}$ are planar graphs. Hence $\left\{\Gamma_{1}+v_{1}, \Gamma_{2}+v_{1}, \cdots, \Gamma_{k}+v_{1}\right\}$ is a decomposition of $\Gamma+v_{k}$. Thus, $\theta\left(\Gamma+v_{k}\right) \leq k$. By Lemma 2.1, $\theta\left(\Gamma+v_{k}\right) \geq \theta(\Gamma)=k$ and thus $\theta\left(\Gamma+v_{k}\right)=k$. In particular, if Γ is a complete graph, then $\theta\left(\Gamma+v_{t}\right)=k(1 \leq t \leq 2 k)$.

Lemma 2.5. [31] A graph is outerplanar if and only if it has no subgraph homeomorphic to K_{4} or $K_{2,3}$.

3. Classification of finite abelian groups

The aim of this section is to classify finite abelian groups whose intersection graphs have thickness and outerthickness 1 and 2 . We first consider the case of finite cyclic groups.

Theorem 3.1. Let $G=\mathbb{Z}_{n}$ be a cyclic group of order n and $\Gamma(G)$ is not an empty graph. Then the following statements are hold.
(1) $\theta(\Gamma(G))=1$ if and only if G is one following groups:

$$
\mathbb{Z}_{p^{\alpha}}(\alpha=2,3,4,5), \mathbb{Z}_{p_{1} p_{2}^{\alpha}}(\alpha=1,2), \mathbb{Z}_{p_{1} p_{2} p_{3}}
$$

where p_{1}, p_{2}, p_{3} and p are distinct primes.
(2) $\theta(\Gamma(G))=2$ if and only if G is one following groups:

$$
\mathbb{Z}_{p^{\alpha}}(\alpha=6,7,8,9), \mathbb{Z}_{p_{1} p_{2}^{\alpha}}(\alpha=3,4), \mathbb{Z}_{p_{1}^{2} p_{2}^{\alpha}}(\alpha=2,3), \mathbb{Z}_{p_{1} p_{2} p_{3}^{2}}, \mathbb{Z}_{p_{1} p_{2} p_{3} p_{4}},
$$

where $p_{1}, p_{2}, p_{3}, p_{4}$ and p are distinct primes.
Proof. Suppose that $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{s}$. Then we have $V\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=\prod_{i=1}^{s}\left(\alpha_{i}+1\right)-2$. We complete our proofs by discussing the number of prime divisors of n.

Case 1. $s \geq 5$. It is clear that

$$
\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{3}\right\rangle,\left\langle p_{4}\right\rangle,\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{1} p_{3}\right\rangle,\left\langle p_{1} p_{4}\right\rangle,\left\langle p_{1} p_{2} p_{3}\right\rangle,\left\langle p_{1} p_{2} p_{3} p_{4}\right\rangle
$$

are nine non-trivial subgroups of G. Note that any pair of these nine subgroups has non-trivial intersection. So they form a complete graph K_{9}, which is a subgraph of $\Gamma(G)$. Thus, $\omega(\Gamma(G)) \geq 9$. By Lemma 2.1, $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$.

Case 2. $s=4$. If $\alpha_{4} \geq 2$, then G has at least nine non-trivial subgroups, namely,

$$
\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{3}\right\rangle,\left\langle p_{4}\right\rangle,\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{1} p_{3}\right\rangle,\left\langle p_{1} p_{4}\right\rangle,\left\langle p_{1} p_{2} p_{3}\right\rangle,\left\langle p_{1} p_{2} p_{3} p_{4}\right\rangle .
$$

Note that any pair of these nine subgroups has non-trivial intersection. So they form a complete graph K_{9}, which is a subgraph of $\Gamma(G)$. Thus, $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$ by Lemma 2.1. If $\alpha_{4}=1$, then $G \simeq \mathbb{Z}_{p_{1} p_{2} p_{3} p_{4}}$. So, G has totally 14 non-trivial subgroups, namely,

$$
\begin{gathered}
\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{3}\right\rangle,\left\langle p_{4}\right\rangle,\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{1} p_{3}\right\rangle,\left\langle p_{1} p_{4}\right\rangle,\left\langle p_{2} p_{3}\right\rangle,\left\langle p_{2} p_{4}\right\rangle, \\
\left\langle p_{3} p_{4}\right\rangle,\left\langle p_{1} p_{2} p_{3}\right\rangle,\left\langle p_{1} p_{2} p_{4}\right\rangle,\left\langle p_{1} p_{3} p_{4}\right\rangle,\left\langle p_{2} p_{3} p_{4}\right\rangle .
\end{gathered}
$$

Note that $\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{3}\right\rangle,\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{1} p_{3}\right\rangle,\left\langle p_{2} p_{3}\right\rangle,\left\langle p_{1} p_{2} p_{3}\right\rangle$ form K_{7} as a subgraph of $\Gamma(G)$. So $\omega\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3} p_{4}}\right)\right) \geq 7$ and $V\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3} p_{4}}\right)\right)=14$. By Lemma 2.1 and Lemma 2.2, $2=\theta\left(K_{7}\right) \leq \theta\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3} p_{4}}\right)\right) \leq \theta\left(K_{14}\right)=3$. A planar decomposition of $\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3} p_{4}}\right)$ shown in Figure 1 deduces that $\theta\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3} p_{4}}\right)\right)=2$.

Figure 1. A planar decomposition of $\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3} p_{4}}\right)$.

Case 3. $s=3$. If $\alpha_{3} \geq 3$, then

$$
\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{3}\right\rangle,\left\langle p_{3}^{2}\right\rangle,\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{1} p_{3}\right\rangle,\left\langle p_{2} p_{3}\right\rangle,\left\langle p_{1} p_{2} p_{3}\right\rangle,\left\langle p_{1} p_{3}^{2}\right\rangle
$$

are nine non-trivial subgroups of G. Any pair of these nine subgroups has non-trivial intersection. So they form K_{9}, which is a subgraph of $\Gamma(G)$. By Lemma 2.1, $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$. If $\alpha_{2}=\alpha_{3}=2$, then

$$
\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{3}\right\rangle,\left\langle p_{3}^{2}\right\rangle,\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{1} p_{3}\right\rangle,\left\langle p_{2} p_{3}\right\rangle,\left\langle p_{1} p_{2} p_{3}\right\rangle,\left\langle p_{1} p_{3}^{2}\right\rangle
$$

are nine non-trivial subgroups of G. Any pair of these nine subgroups has non-trivial intersection. They also form K_{9} as a subgraph of $\Gamma(G)$. So $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$ by Lemma 2.1.

If $\alpha_{1}=\alpha_{2}=1, \alpha_{3}=2$, then G has totally ten non-trivial subgroups, namely,

$$
\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{3}\right\rangle,\left\langle p_{3}^{2}\right\rangle,\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{1} p_{3}\right\rangle,\left\langle p_{1} p_{3}^{2}\right\rangle,\left\langle p_{2} p_{3}\right\rangle,\left\langle p_{2} p_{3}^{2}\right\rangle,\left\langle p_{1} p_{2} p_{3}\right\rangle .
$$

Note that $\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{3}\right\rangle,\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{1} p_{3}\right\rangle,\left\langle p_{2} p_{3}\right\rangle,\left\langle p_{1} p_{2} p_{3}\right\rangle$ form K_{7} as a subgraph of $\Gamma(G)$. Then $\omega(\Gamma(G)) \geq 7$ and $V(\Gamma(G))=10$. By Lemma 2.1 and Lemma 2.2, $2=\theta\left(K_{7}\right) \leq \theta(\Gamma(G)) \leq \theta\left(K_{10}\right)=3$. We can give a planar decomposition of $\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3}^{2}}\right)$ as shown in Figure 2. Thus, $\theta(\Gamma(G)=2$.

Figure 2. A planar decomposition of $\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3}^{2}}\right)$.

If $\alpha_{1}=\alpha_{2}=\alpha_{3}=1$, by Theorem 1.1, $\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3}}\right)$ is a planar graph. So $\theta\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3}}\right)\right)=1$.
Case 4. $s=2$. In this case, it easy to see that $\Gamma(G) \cong K_{\alpha_{1} \alpha_{2}-1}+\left(K_{\alpha_{1}} \cup K_{\alpha_{2}}\right)$. Then $\omega\left(\Gamma\left(\mathbb{Z}_{p_{1} \alpha_{1}}^{\alpha_{1}} p_{2}\right)\right)=$ $\alpha_{1} \alpha_{2}-1+\alpha_{2}$. If $\alpha_{1} \alpha_{2}-1+\alpha_{2} \geq 9$, then $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$. So $\alpha_{1} \alpha_{2}-1+\alpha_{2} \leq 8$ and implies that $\alpha_{2} \leq 4$.

If $\alpha_{2}=4$, then $\alpha_{1}=1$. So, $\Gamma(G) \simeq K_{3}+\left(K_{4} \cup K_{1}\right)$. By Lemma 2.1 and Lemma 2.2, $2=\theta\left(K_{7}\right) \leq$ $\theta\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2}^{4}}\right)\right) \leq \theta\left(K_{8}\right)=2$. This deduces that $\theta\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2}^{4}}\right)\right)=2$.

If $\alpha_{2}=3$, then $\alpha_{1} \leq 2$. If $\alpha_{1}=2$, then $\Gamma(G) \simeq K_{5}+\left(K_{3} \cup K_{2}\right)$, By Lemma 2.1 and Lemma 2.2, $2=\theta\left(K_{8}\right) \leq \theta\left(\Gamma\left(\mathbb{Z}_{p_{1}^{2} p_{2}^{3}}\right)\right) \leq \theta\left(K_{10}\right)=3$. A planar decomposition of $\Gamma\left(\mathbb{Z}_{p_{1}^{2} p_{2}^{3}}\right)$ as shown in Figure 3 deduces that $\theta\left(\Gamma\left(\mathbb{Z}_{p_{1}^{2} p_{2}^{3}}\right)\right)=2$. If $\alpha_{1}=1$, then $\Gamma(G) \simeq K_{2}+\left(K_{3} \cup K_{1}\right)$. By Lemma 2.1 and Lemma 2.2, $2=\theta\left(K_{5}\right) \leq \theta\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2}^{3}}\right)\right) \leq \theta\left(K_{6}\right)=2$. So, $\theta\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2}^{3}}\right)\right)=2$.

Figure 3. A planar decomposition of $\Gamma\left(\mathbb{Z}_{p_{1}^{2} p_{2}^{3}}\right)$.

If $\alpha_{2}=\alpha_{1}=2$, then $\Gamma(G) \simeq K_{3}+\left(K_{2} \cup K_{2}\right)$. By Lemma 2.1 and Lemma 2.2, $2=\theta\left(K_{5}\right) \leq$ $\theta\left(\Gamma\left(\mathbb{Z}_{p_{1}^{2} p_{2}^{2}}\right)\right) \leq \theta\left(K_{7}\right)=2$. Thus, $\theta\left(\Gamma\left(\mathbb{Z}_{p_{1}^{2} p_{2}}\right)\right)=2$.

If $\alpha_{2}=2$ and $\alpha_{1}=1$ or $\alpha_{1}=\alpha_{2}=1$, then by Theorem $1.1, \Gamma\left(\mathbb{Z}_{p_{1} p_{2}}\right)$ and $\Gamma\left(\mathbb{Z}_{p_{1} p_{2}^{2}}\right)$ are planar graphs. So, $\theta\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2}}\right)\right)=\theta\left(\Gamma\left(\mathbb{Z}_{p_{1 p_{2}}}\right)\right)=1$.

Case 5. $s=1$. In this case, $\Gamma\left(\mathbb{Z}_{p^{\alpha}}\right) \simeq K_{\alpha-1}$. By Lemma 2.2, it deduces that if $\alpha=2,3,4,5$, then $\theta\left(\Gamma\left(\mathbb{Z}_{p^{\alpha}}\right)\right)=1$; and if $\alpha=6,7,8,9$, then $\theta\left(\Gamma\left(\mathbb{Z}_{p^{\alpha}}\right)\right)=2$.

This completes the proof.

For the outerthickness of $\Gamma(G)$ of a cyclic group G, we have following theorem.
Theorem 3.2. Let $G=\mathbb{Z}_{n}$ be a cyclic group of order n and $\Gamma(G)$ is not an empty graph. Then the following statements are hold.
(1) $\theta_{0}(\Gamma(G))=1$ if and only if G is one following groups: $\mathbb{Z}_{p^{\alpha}}(\alpha=2,3,4), \mathbb{Z}_{p_{1} p_{2}^{\alpha}}(\alpha=1,2), \mathbb{Z}_{p_{1} p_{2} p_{3}}$, where p_{1}, p_{2}, p_{3} and p are primes.
(2) $\theta_{0}(\Gamma(G))=2$ if and only if G is one following groups: $\mathbb{Z}_{p^{\alpha}}(\alpha=5,6,7), \mathbb{Z}_{p_{1}^{2} p_{2}^{2}}, \mathbb{Z}_{p_{1} p_{2}^{3}}$, where p_{1}, p_{2} and p are primes.

Proof. Suppose that $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{s}$. According to the proof of Theorem 3.1, if $s \geq 4$, then $\theta_{0}(\Gamma(G)) \geq 3$. We proceed with three cases.

Case 1. $s=3$. Again according to the proof of Theorem 3.1, if $\theta_{0}(\Gamma(G)) \leq 2$, then $G \simeq \mathbb{Z}_{p_{1} p_{2} p_{3}}$. In this case, it is clear that $\Gamma(G)$ contains no subgraph homeomorphic to K_{4} or $K_{2,3}$. By Lemma 2.5, $\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3}}\right)$ is an outerplanar graph. So, $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2} p_{3}}\right)\right)=1$.

Case 2. $s=2$. In this case, $\Gamma(G) \simeq K_{\alpha_{1} \alpha_{2}-1}+\left(K_{\alpha_{1}} \cup K_{\alpha_{2}}\right)$. Then $\omega(\Gamma(G))=\alpha_{1} \alpha_{2}-1+\alpha_{2}$. If $\alpha_{1} \alpha_{2}-1+\alpha_{2} \geq 7$, then $\theta_{0}(\Gamma(G)) \geq 3$. So $\alpha_{1} \alpha_{2}-1+\alpha_{2} \leq 6$. This deduces that $\alpha_{2} \leq 3$.

If $\alpha_{2}=3$, then $\alpha_{1}=1$. So $\Gamma(G) \simeq K_{2}+\left(K_{3} \cup K_{1}\right)$. By Lemma 2.1 and Lemma 2.2, $2=\theta_{0}\left(K_{5}\right) \leq$ $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2}^{3}}\right)\right) \leq \theta_{0}\left(K_{6}\right)=2$. Hence $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2}^{3}}\right)\right)=2$.

If $\alpha_{2}=2, \alpha_{1}=2$, then $\Gamma(G) \simeq K_{3}+\left(K_{2} \cup K_{2}\right)$. By Lemma 2.1 and Lemma 2.2, $2=\theta_{0}\left(K_{5}\right) \leq$ $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{p_{1}^{2} p_{2}^{2}}\right)\right) \leq \theta_{0}\left(K_{7}\right)=3$. An outerplanar decomposition of $\Gamma\left(\mathbb{Z}_{p_{1}^{2} p_{2}^{2}}\right)$ as shown in Figure 4 deduces that $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{p_{1}^{2} p_{2}^{2}}\right)\right)=2$.

Figure 4. An outerplanar decomposition of $\Gamma\left(\mathbb{Z}_{p_{1}^{2} p_{2}^{2}}\right)$.
If $\alpha_{2}=2, \alpha_{1}=1$, then $\Gamma(G) \simeq K_{1}+\left(K_{2} \cup K_{1}\right)$. It is clear that $\Gamma(G)$ contains no subgraph homeomorphic to K_{4} or $K_{2,3}$. By Lemma 2.5, $\Gamma\left(\mathbb{Z}_{p_{1} p_{2}^{2}}\right)$ is an outerplanar graph. Then, $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2}}\right)\right)=1$.

If $\alpha_{1}=\alpha_{2}=1$, then $\Gamma(G) \simeq K_{2}$. So, $\Gamma\left(\mathbb{Z}_{p_{1} p_{2}}\right)$ is an outerplanar graph and thus $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{p_{1} p_{2}}\right)\right)=1$.
Case 3. $s=1$. In this case, $\Gamma\left(Z_{p^{\alpha}}\right) \simeq K_{\alpha-1}$. By Lemma 2.2, it deduces that if $\alpha=2,3,4$, then $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{p^{\alpha}}\right)\right)=1$; and if $\alpha=5,6,7$, then $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{p^{\alpha}}\right)\right)=2$. The proof is complete.

Now, we consider the case of finite non-cyclic groups. Let G be a finite Abelian group but not a cyclic group. Then by fundamental theorem of finite abelian group, we have $G \simeq G_{1} \oplus G_{2} \oplus \cdots \oplus G_{s}$, where $G_{i}(i=1,2, \cdots, s)$ is a cyclic group of prime power order.

Lemma 3.3. Let $G \simeq G_{1} \oplus G_{2} \oplus \cdots \oplus G_{s}$, where $s \geq 2$ and $G_{i}(i=1,2, \cdots, s)$ is a cyclic group of prime power order. If $s \geq 4$, then $\theta(\Gamma(G)) \geq 3$.

Proof. Set

$$
\begin{gathered}
H_{1}=\langle(1,0,0,0, \ldots, 0)\rangle, H_{2}=\langle(1,0,0,0, \ldots, 0),(0,1,0,0, \ldots, 0)\rangle, \\
H_{3}=\langle(1,0,0,0, \ldots, 0),(0,0,1,0, \ldots, 0)\rangle, H_{4}=\langle(1,0,0,0, \ldots, 0),(0,0,0,1, \ldots, 0)\rangle, \\
H_{5}=\langle(1,0,0,0, \ldots, 0),(0,1,1,0, \ldots, 0)\rangle, H_{6}=\langle(1,0,0,0, \ldots, 0),(0,1,0,1, \ldots, 0)\rangle, \\
H_{7}=\langle(1,0,0,0, \ldots, 0),(0,0,1,1, \ldots, 0)\rangle, H_{8}=\langle(1,0,0,0, \ldots, 0),(0,1,1,1, \ldots, 0)\rangle, \\
H_{9}=\langle(1,0,0,0, \ldots, 0),(0,1,0,0, \ldots, 0),(0,0,1,0, \ldots, 0),(0,1,1,0, \ldots, 0)\rangle .
\end{gathered}
$$

Then they are nine non-trivial subgroups of G. Note that any pair of these nine subgroups has nontrivial intersection. So they form K_{9}, which is a subgraph of $\Gamma(G)$. Thus, $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$.
Theorem 3.4. Let G be a finite non-cyclic abelian group. Then the following statements are hold.
(1) $\theta(\Gamma(G))=1$ if and only if G is one following groups: $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2 p}, \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$, where p is a prime.
(2) $\theta(\Gamma(G))=2$ if and only if G is one following groups: $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3 q}, \mathbb{Z}_{5} \oplus \mathbb{Z}_{5 q}, \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$, $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, where q is a prime.

Proof. Let the number of distinct prime factors of order of $|G|$ be s. By Lemma 3.3, we know that if $\theta(\Gamma(G)) \leq 2$, then $s \leq 3$. By assumption that G is not cyclic, we have three cases for our discussion.

Case 1. $G \simeq \mathbb{Z}_{p^{\alpha}} \oplus \mathbb{Z}_{p^{\beta}} \oplus \mathbb{Z}_{p^{\gamma}}, p$ is a prime.
Case 2. $G \simeq \mathbb{Z}_{p^{\alpha}} \oplus \mathbb{Z}_{p^{\beta}} \oplus \mathbb{Z}_{q^{\gamma}}, p, q$ are distinct primes.
Case 3. $G \simeq \mathbb{Z}_{p^{\alpha}} \oplus \mathbb{Z}_{p^{\beta}}, p$ is a prime.
For the Case 1, if there is at least one in $\{\alpha, \beta, \gamma\}$ greater than 1 , then we may assume $\gamma \geq 2$. Set

$$
\begin{aligned}
& A_{1}=\langle(0,0,1),(0,1,0)\rangle, A_{2}=\langle(0,0,1),(1,0,0)\rangle, A_{3}=\langle(1,1,0),(1,1,1)\rangle, \\
& A_{4}=\langle(0,1,0),(1,0,0)\rangle, A_{5}=\langle(0,1,0),(1,0,1)\rangle, A_{6}=\langle(1,0,0),(0,1,1)\rangle, \\
& A_{7}=\langle(1,1,0),(0,1,1)\rangle, A_{8}=\langle(0,0, p),(0,1,0)\rangle, A_{9}=\langle(0,0, p),(1,0,0)\rangle .
\end{aligned}
$$

It is easy to see that they are nine non-trivial subgroups of G. Note that any pair of these nine subgroups has non-trivial intersection. So they form K_{9}, which is a subgraph of $\Gamma(G)$. Thus, $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$.

Now, we consider the case of $\alpha=\beta=\gamma=1$. If $p \geq 3$, we let

$$
\begin{aligned}
B_{1} & =\langle(0,0,1),(0,1,0)\rangle, B_{2}=\langle(0,0,1),(1,0,0)\rangle, B_{3}=\langle(0,0,1),(1,1,0)\rangle, \\
B_{4} & =\langle(0,0,1),(-1,1,0)\rangle, B_{5}=\langle(0,1,0),(1,0,0)\rangle, B_{6}=\langle(0,1,0),(1,0,1)\rangle, \\
B_{7} & =\langle(0,1,0),(-1,0,1)\rangle, B_{8}=\langle(0,1,1),(1,0,0)\rangle, B_{9}=\langle(0,1,1),(1,0,1)\rangle .
\end{aligned}
$$

They also form K_{9} and $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$.
If $p=2$, then $G \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus Z_{2}$. G has totally 14 non-trivial subgroups, namely,

$$
\begin{aligned}
C_{1} & =\langle(0,0,1),(0,1,0)\rangle, C_{2}=\langle(0,0,1),(1,0,0)\rangle, C_{3}=\langle(1,1,0),(1,1,1)\rangle, \\
C_{4} & =\langle(0,1,0),(1,0,0)\rangle, C_{5}=\langle(0,1,0),(1,0,1)\rangle, C_{6}=\langle(1,0,0),(0,1,1)\rangle, \\
C_{7} & =\langle(1,1,0),(0,1,1)\rangle, C_{8}=\langle(0,0,1)\rangle, C_{9}=\langle(1,0,0)\rangle, C_{10}=\langle(1,1,0)\rangle, \\
& C_{11}=\langle(0,1,0)\rangle, C_{12}=\langle(1,0,1)\rangle, C_{13}=\langle(0,1,1)\rangle, C_{14}=\langle(1,1,1)\rangle .
\end{aligned}
$$

It is easy to see that $\Gamma(G)=K_{7}+7 v_{3}$. By Lemma 2.4, we get $\theta(\Gamma(G))=\theta\left(K_{7}\right)=2$.
For the Case 2, we may assume $\alpha \leq \beta$. If $\beta \geq 2$, we let

$$
\begin{aligned}
& D_{1}=\langle(0, p, 0)\rangle, D_{2}=\langle(0,1,0),(0,0,1)\rangle, D_{3}=\langle(0,1,0),(1,0,0)\rangle, \\
& D_{4}=\langle(0,1,0)\rangle, D_{5}=\langle(0, p, 0),(0,0,1)\rangle, D_{6}=\langle(0, p, 0),(1,0,0)\rangle, \\
& D_{7}=\langle(1,1,0)\rangle, D_{8}=\langle(0, p, 0),(0,0,1),(1,0,0)\rangle, D_{9}=\langle(0, p, 0),(0,0,1),(1,1,0)\rangle .
\end{aligned}
$$

Note that $D_{i} \cap D_{j}=D_{1}$ for all $i \neq j$. So, they form a K_{9} and $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$.
If $\gamma \geq 2$, then we let

$$
\begin{gathered}
E_{1}=\langle(0,0, q)\rangle, E_{2}=\langle(0,0,1),(1,0,0)\rangle, E_{3}=\langle(0,0,1),(1,1,0)\rangle, \\
E_{4}=\langle(0,0, q),(0,1,0)\rangle, E_{5}=\langle(0,0, q),(1,0,0)\rangle, E_{6}=\langle(0,0, q),(1,1,0)\rangle, \\
E_{7}=\langle(0,0,1)\rangle, E_{8}=\langle(0,0,1),(0,1,0)\rangle, E_{9}=\langle(0,0, q),(0,1,0),(1,0,0)\rangle .
\end{gathered}
$$

Note that $E_{i} \cap E_{j}=E_{1}$ for all $i \neq j$. So, they form a K_{9} and $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$.
Now, let $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{q}$. Then all non-trivial subgroups of G are:

$$
\begin{gathered}
I=\langle(0,0,1),(0,1,0)\rangle, \\
M_{i}=\langle(0,0,1),(1, i, 0)\rangle, \quad \text { where } 0 \leq i \leq p-1, \\
T=\langle(0,1,0),(1,0,0)\rangle, K=\langle(0,1,0)\rangle, \\
N_{j}=\langle(1, j, 0)\rangle, \text { where } 0 \leq j \leq p-1 .
\end{gathered}
$$

It is not difficult to see that $\Gamma(G)=\left(K_{p+3}-e\right)+(p+1) v_{2}$. If $p \geq 7$, then $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$. So, $p \leq 5$. By Lemma 2.2, if $p=2$, then $\theta(\Gamma(G))=1$; and if $p=3,5$, then $\theta(\Gamma(G))=2$.

For the Case 3, $G \simeq \mathbb{Z}_{p^{\alpha}} \oplus \mathbb{Z}_{p^{\beta}}$. We may assume that $\beta \geq \alpha$. If $\alpha \geq 2$ and $\beta \geq 3$, then we set

$$
\begin{gathered}
F_{1}=\left\langle\left(0, p^{\alpha}\right)\right\rangle, F_{2}=\langle(0, p)\rangle, F_{3}=\langle(0,1)\rangle, F_{4}=\langle(0,1),(1,0)\rangle, F_{5}=\langle(0, p),(1,0)\rangle, \\
F_{6}=\langle(0,1),(p, 0)\rangle, F_{7}=\langle(p, 1)\rangle, F_{8}=\langle(0, p),(p, 0)\rangle, F_{9}=\langle(p, p)\rangle .
\end{gathered}
$$

They are non-trivial subgroups of G. Also, $F_{1}=F_{i} \cap F_{j}$ for all $i \neq j$. It follows that they form K_{9} as a subgraph of $\Gamma(G)$. Thus, $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right)=3$.

If $\alpha=\beta=2$, then $G \simeq \mathbb{Z}_{p^{2}} \oplus Z_{p^{2}}$. Now, G has totally $p+1$ subgroups of order p, i.e., $\langle(0, p)\rangle,\langle(p, 0)\rangle$, $\langle(p, p)\rangle, \cdots\left\langle\left(p^{2}-p, p\right)\right\rangle ; G$ has totally $p^{2}+p+1$ subgroups of order p^{2}, i.e., $Q=\langle(0, p),(p, 0)\rangle,\langle(1,0)\rangle$, $\langle(0,-1)\rangle,\langle(1,-1)\rangle, \cdots\left\langle\left(p^{2}-1,-1\right)\right\rangle ;\langle(1, p)\rangle,\langle(1,2 p)\rangle,\langle(1,3 p)\rangle, \cdots\left\langle\left(1, p^{2}-p\right)\right\rangle ; G$ has totally $p+1$ subgroups of order p^{3}, i.e., $\langle(0,1),(p, 0)\rangle,\langle(0, p),(1,0)\rangle,\langle(0, p),(p, 0),(1,1)\rangle,\langle(0, p),(p, 0),(1,2)\rangle$, $\cdots\langle(0, p),(p, 0),(1, p-1)\rangle$. It is not difficult to see that $\Gamma\left(\mathbb{Z}_{p^{2}} \oplus Z_{p^{2}}\right) \simeq K_{p+2}+(p+1) K_{p+1}$. So, $\omega\left(\Gamma\left(\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p^{2}}\right)\right)=2 p+3, V\left(\Gamma\left(\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p^{2}}\right)\right)=p^{2}+3 p+3$. If $p \geq 3$, then $\omega(\Gamma(G)) \geq 9$ and $\theta(\Gamma(G)) \geq 3$. So $p=2$. By Lemma 2.1 and Lemma 2.2, $2=\theta\left(K_{7}\right) \leq \theta\left(\Gamma\left(\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}\right) \leq \theta\left(K_{13}\right)=3\right.$. On the other hand, a planar decomposition of $\Gamma\left(\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}\right)$ shown in Figure 5 gives $\theta\left(\Gamma\left(\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}\right)\right)=2$.

Figure 5. A planar decomposition of $\Gamma\left(Z_{4} \oplus Z_{4}\right)$.
If $\alpha=1$, then $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p^{\beta}}$. All subgroups of G can be listed below.
$\langle(0,1)\rangle,\langle(1,1)\rangle, \cdots\langle(p-1,1)\rangle$,
$\langle(0, p)\rangle,\langle(1, p)\rangle, \cdots\langle(p-1, p)\rangle$,
$\left\langle\left(0, p^{2}\right)\right\rangle,\left\langle\left(1, p^{2}\right)\right\rangle, \cdots\left\langle\left(p-1, p^{2}\right)\right\rangle$,
$\left\langle\left(0, p^{\beta-1}\right)\right\rangle,\left\langle\left(1, p^{\beta-1}\right)\right\rangle, \cdots\left\langle\left(p-1, p^{\beta-1}\right)\right\rangle$.

It is clear that $\Gamma(G) \simeq K_{\beta-1}+\left(K_{p \beta-p+1} \cup p K_{1}\right)$. So $K_{\beta p+\beta-p}$ is a subgraph of $\Gamma(G)$. If $\beta \geq 4$, then $\omega(\Gamma(G)) \geq 9$ and $\theta(\Gamma(G)) \geq 3$. So, $\beta \leq 3$.

If $\beta=3$, then $p=2$ and $G \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$. So $\Gamma(G) \simeq K_{2}+\left(K_{5} \cup 2 K_{1}\right)$ and $\theta\left(\Gamma\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}\right) \geq \theta\left(K_{7}\right)=2\right.$. By Lemma 2.4, $\theta\left(\Gamma\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}\right)\right)=\theta\left(K_{7}\right)=2$.

If $\beta=2$, then $p \leq 5$. If $p=2$, then $G \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ and $\Gamma(G) \simeq K_{1}+\left(K_{3} \cup 2 K_{1}\right)$. So, $\theta\left(\Gamma\left(\mathbb{Z}_{2} \oplus\right.\right.$ $\left.\left.\mathbb{Z}_{4}\right)\right) \geq \theta\left(K_{4}\right)=1$. By Lemma 2.4, $\theta\left(\Gamma\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}\right)\right)=\theta\left(K_{4}\right)=1$. If $p=3$, then $G \simeq \mathbb{Z}_{3} \oplus \mathbb{Z}_{9}$ and $\Gamma(G) \simeq K_{1}+\left(K_{4} \cup 3 K_{1}\right)$. Thus, $\theta\left(\Gamma\left(\mathbb{Z}_{3} \oplus \mathbb{Z}_{9}\right)\right) \geq \theta\left(K_{5}\right)=2$. By Lemma 2.4, $\theta\left(\Gamma\left(\mathbb{Z}_{3} \oplus \mathbb{Z}_{9}\right)\right)=\theta\left(K_{5}\right)=2$. If $p=5$, then $G \simeq \mathbb{Z}_{5} \oplus \mathbb{Z}_{25}$ and $\Gamma(G) \simeq K_{1}+\left(K_{6} \cup 5 K_{1}\right)$. Thus, $\theta\left(\Gamma\left(\mathbb{Z}_{5} \oplus \mathbb{Z}_{25}\right)\right) \geq \theta\left(K_{7}\right)=2$. By Lemma 2.4, then $\theta\left(\Gamma\left(\mathbb{Z}_{5} \oplus \mathbb{Z}_{25}\right)\right)=\theta\left(K_{7}\right)=2$.

If $\beta=1$, then $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$. So, $\Gamma(G) \simeq(p+1) K_{1}$. By Theorem 1.1, $\theta\left(\Gamma\left(\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}\right)\right)=1$.
This completes our proof.
Theorem 3.5. Let G be a finite non-cyclic abelian group. Then the following statements are hold.
(1) $\theta_{0}(\Gamma(G))=1$ if and only if $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$, where p is a prime.
(2) $\theta_{0}(\Gamma(G))=2$ if and only if $G \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2 p}$ or $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3 p}$, where p is a prime.

Proof. Suppose $G \simeq G_{1} \oplus G_{2} \oplus G_{3} \oplus \cdots \oplus G_{s}$, where $s \geq 2$ and $G_{i}(i=1,2,3, \cdots, s)$ are cyclic groups. According to the proof of Theorem 3.4, if $\theta_{0}(\Gamma(G)) \leq 2$, then $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$ or $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{q}$ or $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p^{2}}$.

Case 1. $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$. In this case, $\Gamma(G) \simeq(p+1) K_{1}$. It is clear that $\Gamma(G)$ contains no subgraph homeomorphic to K_{4} or $K_{2,3}$. By Lemma 2.5, $\Gamma\left(\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}\right)$ is an outerplanar graph, then $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}\right)\right)=1$.

Case 2. $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{q}$. Again by the proof of Theorem 3.4, we know that $\omega\left(\Gamma\left(\mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{q}\right)\right)=$ $p+2$. If $p \geq 5$, then $\theta_{0}(\Gamma(G)) \geq \theta_{0}\left(K_{7}\right)=3$. So $p=2$, 3. If $p=2$, then $G \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2 q}$. It is easy to see that $\Gamma\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2 q}\right)=\left(K_{5}-e\right)+3 v_{2}$. By Lemma 2.1 and Lemma 2.2, $2=\theta_{0}\left(K_{4}\right) \leq \theta_{0}\left(\Gamma\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2 q}\right)\right) \leq \theta_{0}\left(K_{5}\right)=2$. Thus, $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2 q}\right)\right)=2$. If $p=3$, then $G \simeq \mathbb{Z}_{3} \oplus \mathbb{Z}_{3 q}$. It is easy to see that $\Gamma\left(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3 q}\right)=\left(K_{6}-e\right)+4 v_{2}$. By Lemma 2.1 and Lemma2.2, $2=\theta_{0}\left(K_{5}\right) \leq \theta_{0}\left(\Gamma\left(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3 q}\right)\right) \leq \theta_{0}\left(K_{6}\right)=2$. So $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3 q}\right)\right)=2$.

Case 3. $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p^{2}}$. In this case, $\Gamma\left(\mathbb{Z}_{p} \oplus \mathbb{Z}_{p^{2}}\right) \simeq K_{1}+\left(K_{p+1}+p K_{1}\right)$. Thus, $\omega(\Gamma(G))=p+2$. If $\omega(\Gamma(G)) \geq 7$, then $\theta_{0}(G) \geq 3$. Thus, $p=2$, 3. If $p=2$, then $G \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ and $\Gamma(G) \simeq K_{1}+\left(K_{3} \cup 2 K_{1}\right)$. By Lemma 2.4, $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}\right)\right)=\theta_{0}\left(K_{4}\right)=2$. If $p=3$, then $G \simeq \mathbb{Z}_{3} \oplus \mathbb{Z}_{9}$ and $\Gamma(G) \simeq K_{1}+\left(K_{4} \cup 3 K_{1}\right)$. By Lemma 2.4, $\theta_{0}\left(\Gamma\left(\mathbb{Z}_{3} \oplus \mathbb{Z}_{9}\right)\right)=\theta_{0}\left(K_{5}\right)=2$.

The proof is complete.
Combine Theorems 3.1-3.5, we get the following theorem.
Theorem 3.6. Let G be a finite abelian group and let $p_{1}, p_{2}, p_{3}, p_{4}$ and p be primes. Then the following statements are hold.
(1) $\theta(\Gamma(G))=1$ if and only if G is one following groups:

$$
\mathbb{Z}_{p^{\alpha}}(\alpha=2,3,4,5), \mathbb{Z}_{p_{1} p_{2}^{\alpha}}(\alpha=1,2), \mathbb{Z}_{p_{1} p_{2} p_{3}}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{2 p}, \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}
$$

(2) $\theta(\Gamma(G))=2$ if and only if G is one following groups:

$$
\begin{gathered}
\mathbb{Z}_{p^{\alpha}}(\alpha=6,7,8,9), \mathbb{Z}_{p_{1} p_{2}^{\alpha}}(\alpha=3,4), \mathbb{Z}_{p_{1}^{2} p_{2}^{\alpha}}(\alpha=2,3), \mathbb{Z}_{p_{1} p_{2} p_{3}}, \mathbb{Z}_{p_{1} p_{2} p_{3} p_{4}}, \\
\mathbb{Z}_{3} \oplus \mathbb{Z}_{3 p}, \mathbb{Z}_{5} \oplus \mathbb{Z}_{5 p}, \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{8}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} .
\end{gathered}
$$

(3) $\theta_{0}(\Gamma(G))=1$ if and only if G is one following groups:

$$
\mathbb{Z}_{p^{\alpha}}(\alpha=2,3,4), \mathbb{Z}_{p_{1} p_{2}^{\alpha}}(\alpha=1,2), \mathbb{Z}_{p_{1} p_{2} p_{3}}, \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}
$$

(4) $\theta_{0}(\Gamma(G))=2$ if and only if G is one following groups:

$$
\mathbb{Z}_{p^{\alpha}}(\alpha=5,6,7), \mathbb{Z}_{p_{1}^{2} p_{2}^{2}}, \mathbb{Z}_{p_{1} p_{2}^{3}}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{2 p}, \mathbb{Z}_{3} \oplus \mathbb{Z}_{3 p}
$$

4. Some finite non-abelian groups

In this section, we investigate the thickness and outerthickness of intersection graphs of subgroups of some finite non-abelian groups. For a positive integer $n, \tau(n)$ denotes the number of positive divisor of $n ; \sigma(n)$ denotes the sum of all the positive divisors of $n . S_{n}$ and A_{n} are denoted the symmetric group and alternating group of degree n acting on $\{1,2,3, \cdots, n\}$, respectively.

For any integer $n \geq 3$, the dihedral group of order $2 n$ is defined by

$$
D_{n}=\left\{a, b \mid a^{n}=b^{2}=1, a b=b a^{-1}\right\} .
$$

For any integer $n \geq 2$, the generalized quaternion group of order $4 n$ is defined by

$$
Q_{n}=\left\{a, b \mid a^{2 n}=b^{4}=1, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\} .
$$

For any prime p and integer $\alpha \geq 3$, the modular group of order p^{α} is defined by

$$
M_{p^{\alpha}}=\left\{a, b \mid a^{\alpha^{\alpha-1}}=b^{p}=1, b a b^{-1}=a^{p^{\alpha-2}+1}\right\} .
$$

For any integer $n \geq 4$, the quasi-dihedral group of order 2^{n} is defined by

$$
Q D_{2^{n}}=\left\{a, b \mid a^{2^{\alpha-1}}=b^{2}=1, b a b^{-1}=a^{2^{\alpha-2}-1}\right\} .
$$

Lemma 4.1. [27] The following statements are hold.
(1) For $n \geq 3, n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}, V\left(\Gamma\left(D_{n}\right)\right)=\tau(n)+\sigma(n)-2$ and $\omega\left(\Gamma\left(D_{n}\right)\right)=\sigma(n)-n-1+\prod_{i=1}^{k} \alpha_{i}$.
(2) Let $n \geq 2$ be an integer and $2 n=2^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{2}, \ldots, p_{k} are distinct odd primes and $\alpha_{i} \geq 1$. Then $V\left(\Gamma\left(Q_{n}\right)\right)=\tau(2 n)+\sigma(n)-2$ and $\omega\left(\Gamma\left(Q_{n}\right)\right)=\sigma(n)-1+\alpha_{1} \prod_{i=2}^{k}\left(\alpha_{i}+1\right)$.
(3) For $\alpha \geq 4, V\left(\Gamma\left(Q D_{2^{\alpha}}\right)\right)=\alpha+3\left(2^{\alpha-1}-1\right)$ and $\omega\left(\Gamma\left(Q D_{2^{\alpha}}\right)\right)=\alpha+2^{\alpha-1}-3$.

Theorem 4.2. Let $G=S_{n}$. Then the following statements are hold.
(1) If $n=3$, then $\theta(\Gamma(G))=1$.
(2) If $n \geq 4$, then $\theta(\Gamma(G)) \geq 3$.

Proof. If $G=S_{3}$, then it is easy to see that $\Gamma\left(S_{3}\right) \simeq 4 K_{1}$, which is a planar graph. So, $\theta(\Gamma(G))=1$. If $n \geq 4$, then we set

$$
\begin{aligned}
& S_{1}=\{(1),(12),(34),(12)(34)\}, \\
& S_{2}=\{(1),(12),(13),(23),(123),(132)\}, \\
& S_{3}=\{(1),(12),(14),(24),(124),(142)\}, \\
& S_{4}=\{(1),(13),(14),(34),(134),(143)\}, \\
& S_{5}=\{(1),(23),(24),(34),(234),(243)\},
\end{aligned}
$$

$S_{6}=\{(1),(13),(24),(13)(24),(14)(23),(12)(34),(1234),(1432)\}$,
$S_{7}=\{(1),(14),(23),(13)(24),(14)(23),(12)(34),(1243),(1342)\}$,
$S_{8}=\{(1),(13),(24),(13)(24),(14)(23),(12)(34),(1324),(1423)\}$,
$S_{9}=\{(1),(123),(132),(124),(142),(134),(143),(234),(243),(13)(24),(14)(23),(12)(34)\}$.
Then they are nine non-trivial subgroups of S_{n} and form a complete graph K_{9} as a subgraph of $\Gamma\left(S_{n}\right)$. Thus, $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right) \geq 3$.

Theorem 4.3. Let $G=A_{n}$. Then the following statements are hold.
(1) $\theta(\Gamma(G))=1$ if and only if $n=4$.
(2) If $n \geq 5$, then $\theta(\Gamma(G)) \geq 3$.

Proof. If $G \simeq A_{4}$, then $\Gamma\left(A_{4}\right) \simeq 4 K_{1} \cup K_{1,3}$, which is a planar graph. So, $\theta(\Gamma(G))=1$. If $n \geq 5$, we let
$L_{1}=\{(1),(12345),(13524),(14253),(15432),(12)(35),(13)(45),(14)(23),(15)(24),(25)(34)\}$,
$L_{2}=\{(1),(12453),(13542),(14325),(15234),(12)(34),(13)(25),(14)(35),(15)(24),(23)(45)\}$,
$L_{3}=\{(1),(12354),(13425),(14532),(15243),(12)(34),(13)(45),(14)(25),(15)(23),(24)(35)\}$,
$L_{4}=\{(1),(12435),(13254),(14523),(15342),(12)(45),(13)(24),(14)(35),(15)(23),(25)(34)\}$,
$L_{5}=\{(1),(12534),(13245),(14352),(15423),(12)(45),(13)(25),(14)(23),(15)(34),(24)(35)\}$,
$L_{6}=\{(1),(12543),(13452),(14235),(15324),(12)(35),(13)(24),(14)(25),(15)(34),(23)(45)\}$,
$L_{7}=\{(1),(123),(124),(134),(234),(132),(142),(143),(243),(13)(24),(14)(23),(12)(34)\}$,
$L_{8}=\{(1),(123),(125),(135),(235),(132),(152),(153),(253),(12)(35),(13)(25),(15)(23)\}$,
$L_{9}=\{(1),(124),(125),(145),(245),(142),(152),(154),(254),(12)(45),(14)(25),(15)(24)\}$.
Then they are nine non-trivial subgroups of A_{n} and form a complete graph K_{9} as a subgraph of $\Gamma\left(A_{n}\right)$. Thus, $\theta(\Gamma(G)) \geq \theta\left(K_{9}\right) \geq 3$.

Theorem 4.4. Let $G=D_{n}(n \geq 3)$ be the dihedral group of order $2 n$. Then the following statements are hold.
(1) $\theta(\Gamma(G))=1$ if and only if $G \simeq D_{4}$ or D_{p}, where p is an odd prime.
(2) $\theta(\Gamma(G))=2$ if and only if $G \simeq D_{6}, D_{9}, D_{25}$ or D_{10}.

Proof. For $n \geq 3$, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$. By Lemma 4.1, we know that $\omega\left(\Gamma\left(D_{n}\right)\right)=\sigma(n)-n-1+\prod_{i=1}^{k} \alpha_{i}$. If $k \geq 2$ and $\alpha_{k} \geq 2$, then $\omega\left(\Gamma\left(D_{n}\right)\right) \geq p_{1}+p_{k}+p_{1} p_{k} \geq 11$. Thus, if $\theta(\Gamma(G)) \leq 2$, then $n=p_{1} p_{2}$ or $n=p^{\alpha}$.

If $n=p_{1} p_{2}$, then by Lemma 4.1, $\omega\left(\Gamma\left(D_{n}\right)\right)=\sigma(n)-n-1+\prod_{i=1}^{k} \alpha_{i}=p_{1}+p_{2}+1$. If $p_{1}+p_{2}+1 \geq 9$, then $\theta\left(\Gamma\left(D_{n}\right)\right) \geq 3$. Thus, if $\theta\left(\Gamma\left(D_{n}\right)\right) \leq 2$, then $p_{1}+p_{2}+1 \leq 8$. Thus, $p_{1}=2$, $p_{2}=3$ or $p_{1}=2, p_{2}=5$.

If $p_{1}=2, p_{2}=3$, then $\omega\left(\Gamma\left(D_{6}\right)\right)=6$. So, $\theta\left(\Gamma\left(D_{6}\right)\right) \geq \theta\left(K_{6}\right)=2$. Note that $\operatorname{deg}_{\Gamma\left(D_{6}\right)}\left(\left\langle a^{i} b\right\rangle\right)=$ $\tau(6)-2=2$ and $V\left(\left\langle a^{i} b\right\rangle\right)=6$. By Lemma 2.4, $\theta\left(\Gamma\left(D_{6}\right)\right)=\theta\left(\Gamma\left(D_{6}\right)-6 v_{2}\right)$. On the other hand, $V\left(\Gamma\left(D_{6}\right)-6 v_{2}\right)=\tau(6)-1+\sigma(6)-6-1=8$, then $2=\theta\left(K_{6}\right) \leq \theta\left(\Gamma\left(D_{6}\right)-6 v_{2}\right) \leq \theta\left(K_{8}\right)=2$. Hence, $\theta\left(\Gamma\left(D_{6}\right)\right)=2$.

If $p_{1}=2$ and $p_{2}=5$, then $\omega\left(\Gamma\left(D_{10}\right)\right)=8$. So, $\theta\left(\Gamma\left(D_{10}\right)\right) \geq \theta\left(K_{8}\right)=2$. Note that $d e g_{\Gamma\left(D_{10}\right)}\left(\left\langle a^{i} b\right\rangle\right)=$ $\tau(10)-2=2$ and $V\left(\left\langle a^{i} b\right\rangle\right)=n=10$. By Lemma 2.4, $\theta\left(\Gamma\left(D_{10}\right)\right)=\theta\left(\Gamma\left(D_{10}\right)-10 v_{2}\right)$. As $V\left(\Gamma\left(D_{10}\right)-\right.$ $\left.10 v_{2}\right)=\tau(10)-1+\sigma(10)-10-1=10$, we have $2=\theta\left(K_{8}\right) \leq \theta\left(\Gamma\left(D_{10}\right)-10 v_{2}\right) \leq \theta\left(K_{10}\right)=3$. On the other hand, a planar decomposition of $\Gamma\left(D_{10}\right)-10 v_{2}$ as shown in Figure 6 deduces that $\theta\left(\Gamma\left(D_{10}\right)\right)=2$.

Figure 6. A planar decomposition of $\Gamma\left(D_{10}\right)-10 \nu_{2}$.
If $n=p^{\alpha}$, then by Lemma 4.1, $\omega\left(\Gamma\left(D_{n}\right)\right)=\frac{p^{\alpha}-p}{p-1}+\alpha$. If $\omega\left(\Gamma\left(D_{n}\right)\right) \geq 9$, then $\theta\left(\Gamma\left(D_{n}\right)\right) \geq 3$. So, $\alpha \leq 2$.
If $\alpha=1$, then $\Gamma\left(D_{p}\right) \simeq(p+1) K_{1}$ and thus $\theta\left(\Gamma\left(D_{p}\right)\right)=1$. If $\alpha=2$, then $\omega\left(\Gamma\left(D_{p^{2}}\right)\right)=p+2$. Note that $\operatorname{deg}_{\Gamma\left(D_{p^{2}}\right)}\left(\left\langle a^{i} b\right\rangle\right)=\tau\left(p^{2}\right)-2=1, V\left(\left\langle a^{i} b\right\rangle\right)=n=p^{2}$, and $V\left(\Gamma\left(D_{p^{2}}\right)\right)=\tau(n)+\sigma(n)-2=$ $1+p+p^{2}+3-2=p^{2}+p+2$. So, $\Gamma\left(D_{p^{2}}\right)=K_{p+2}+p^{2} v_{1}$. By Lemma 2.4, $\theta\left(\Gamma\left(D_{p^{2}}\right)\right)=\theta\left(K_{p+2}\right)$. Since $p+2 \geq 9$ deduces $\theta\left(\Gamma\left(D_{p^{2}}\right)\right) \geq 3$, we have $p+2 \leq 8$, that is, $p=2,3,5$. By Lemma 2.2, we get if $p=2$, then $\theta\left(\Gamma\left(D_{4}\right)\right)=1$; and if $p=3,5$, then $\theta\left(\Gamma\left(D_{9}\right)\right)=\theta\left(\Gamma\left(D_{25}\right)\right)=2$.

Theorem 4.5. Let $G=Q_{n}$. Then the following statements are hold.
(1) $\theta(\Gamma(G))=1$ if and only if $G=Q_{2}$.
(2) $\theta(\Gamma(G))=2$ if and only if $G \simeq Q_{3}$ or Q_{5}.

Proof. Let $n \geq 2$ be an integer and $2 n=2^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{i} are distinct primes and $\alpha_{i} \geq 1$. By Lemma 4.1, $\omega\left(\Gamma\left(Q_{n}\right)\right)=\sigma(n)-1+\alpha_{1} \prod_{i=2}^{k}\left(\alpha_{i}+1\right)$. If $k \geq 2$, then $\omega\left(\Gamma\left(Q_{n}\right)\right) \geq 1+p_{1}+p_{2}+p_{1} p_{2}-1+$ $1 \times 2 \times 2=4+p_{1}+p_{2}+p_{1} p_{2}>4+2+3+2 \times 3>9$ and $\theta\left(\Gamma\left(Q_{n}\right)\right)>3$. So, if $\theta\left(\Gamma\left(Q_{n}\right)\right) \leq 2$, then we have $n=p^{\alpha}$.

If $n=2^{\alpha}, \omega\left(\Gamma\left(Q_{2^{\alpha}}\right)\right)=\sigma(n)-1+\alpha_{1} \prod_{i=2}^{k}\left(\alpha_{i}+1\right)=2^{\alpha+1}-1+\alpha, V\left(\Gamma\left(Q_{2^{\alpha}}\right)\right)=\tau(2 n)+\sigma(n)-2=$ $2^{\alpha+1}-1+\alpha$, then $\Gamma\left(Q_{2^{\alpha}}\right)$ is a complete graph. If $2^{\alpha+1}-1+\alpha \geq 9$, then $\theta\left(\Gamma\left(Q_{n}\right)\right) \geq 3$. So, if $\theta\left(\Gamma\left(Q_{n}\right)\right) \leq 2$, then $2^{\alpha+1}-1+\alpha \leq 8$ and thus $\alpha=1$. In this case, $\theta\left(\Gamma\left(Q_{2}\right)\right)=1$.

If $n=p^{\alpha}$ and $p \neq 2$, then $\omega\left(\Gamma\left(Q_{n}\right)\right)=\sigma(n)-1+\alpha_{1} \prod_{i=2}^{k}\left(\alpha_{i}+1\right)=1+p+p^{2}+\cdots+p^{\alpha-1}+p^{\alpha}+1 \times$ $(\alpha+1)-1=\frac{p^{\alpha+1}-1}{p-1}+\alpha \geq 9$, then $\theta\left(\Gamma\left(Q_{n}\right)\right) \geq 3$. So, if $\theta\left(\Gamma\left(Q_{n}\right)\right) \leq 2$, then $\frac{p^{\alpha+1}-1}{p-1}+\alpha \leq 8$, then $\alpha=1$.

For $\alpha=1, \omega\left(\Gamma\left(Q_{n}\right)\right)=\sigma(n)-1+\alpha_{1} \prod_{i=2}^{k}\left(\alpha_{i}+1\right)=p+2$ and $V\left(\Gamma\left(Q_{n}\right)\right)=\tau(2 n)+\sigma(n)-2=p+3$. So, $\theta\left(K_{p+2}\right) \leq \theta\left(\Gamma\left(Q_{n}\right)\right) \leq \theta\left(K_{p+3}\right)$. If $\omega\left(\Gamma\left(Q_{n}\right)\right)=p+2 \geq 9$, then $\theta\left(\Gamma\left(Q_{n}\right)\right) \geq 3$. So, if $\theta\left(\Gamma\left(Q_{n}\right)\right) \leq 2$, then $p+2 \leq 8$, then $p=3,5$.

By Lemma 2.1 and Lemma 2.2, $2=\theta\left(K_{5}\right) \leq \theta\left(\Gamma\left(Q_{3}\right)\right) \leq \theta\left(K_{6}\right)=2$ and $2=\theta\left(K_{7}\right) \leq \theta\left(\Gamma\left(Q_{5}\right)\right) \leq$ $\theta\left(K_{8}\right)=2$, then $\theta\left(\Gamma\left(Q_{3}\right)\right)=\theta\left(\Gamma\left(Q_{5}\right)\right)=2$.

Theorem 4.6. Let $G=Q D_{2^{\alpha}}$. Then $\theta(\Gamma(G)) \geq 3$.
Proof. For $\alpha \geq 4$, by Lemma 4.1, we have $\omega\left(\Gamma\left(Q D_{2^{\alpha}}\right)\right)=\alpha+2^{\alpha-1}-3 \geq 9$. Thus, $\theta\left(\Gamma\left(Q D_{2^{\alpha}}\right)\right) \geq$ $\theta\left(K_{9}\right)=3$.

Theorem 4.7. Let $G \simeq M_{p^{\alpha}}$. Then the following statements are hold.
(1) $\theta(\Gamma(G))=1$ if and only if $G=M_{8}$.
(2) $\theta(\Gamma(G))=2$ if and only if $G \simeq M_{27}, M_{125}$ or M_{16}.

Proof. If $p^{\alpha}=8$, then $\Gamma\left(M_{8}\right) \simeq \Gamma\left(D_{4}\right)$. So $\theta\left(\Gamma\left(M_{8}\right)\right)=1$. If $p^{\alpha} \neq 8$, then $\Gamma\left(M_{p^{\alpha}}\right) \simeq \Gamma\left(Z_{p} \oplus Z_{p^{\alpha-1}}\right)$. If $\theta(\Gamma(G)) \leq 2$, then by the proof of Theorem 3.5, we know $\alpha=3$, 4. If $\alpha=3$, then $\Gamma\left(M_{p^{3}}\right) \simeq$
$K_{1}+\left(K_{p+1} \cup p K_{1}\right)$. By $\theta(\Gamma(G)) \leq 2$, we get $p=3$, 5. By Lemma 2.4, $\theta\left(\Gamma\left(M_{27}\right)\right)=\theta\left(K_{5}\right)=2$ and $\theta\left(\Gamma\left(M_{125}\right)\right)=\theta\left(K_{7}\right)=2$. If $\alpha=4$, then $p=2$. By Theorem 3.5, $\theta\left(\Gamma\left(M_{16}\right)\right)=\theta\left(\Gamma\left(Z_{2} \oplus Z_{8}\right)\right)=2$.

Theorem 4.8. Let $G=S_{n}$. Then the following statements are hold.
(1) If $n=3$, then $\theta_{0}(\Gamma(G))=1$.
(2) If $n \geq 4$, then $\theta_{0}(\Gamma(G)) \geq 3$.

Proof. If $G=S_{3}$, then $\Gamma\left(S_{3}\right) \simeq 4 K_{1}$, which is an outerplanar graph. So $\theta_{0}\left(\Gamma\left(S_{3}\right)\right)=1$. By the proof of Theorem 4.2, if $n \geq 4$, then $\theta_{0}(\Gamma(G)) \geq \theta_{0}\left(\Gamma\left(K_{9}\right)\right)=3$.

Theorem 4.9. Let $G \simeq A_{n}$. Then the following statements are hold.
(1) If $n=4$, then $\theta_{0}(\Gamma(G))=1$.
(2) If $n \geq 5$, then $\theta_{0}(\Gamma(G)) \geq 3$.

Proof. Note that $\Gamma\left(A_{4}\right) \simeq 4 K_{1} \cup K_{1,3}$. It is clear that $\Gamma\left(A_{4}\right)$ contains no subgraph homeomorphic to K_{4} or $K_{2,3}$. By Lemma 2.5, $\Gamma\left(A_{4}\right)$ is an outerplanar graph. So $\theta_{0}\left(\Gamma\left(A_{4}\right)\right)=1$. By the proof of Theorem 4.3, if $n \geq 5$, then $\theta_{0}(\Gamma(G)) \geq \theta_{0}\left(K_{9}\right)=3$.

Theorem 4.10. Let $G \simeq D_{n}$. Then the following statements are hold.
(1) $\theta_{0}(\Gamma(G))=1$ if and only if $G \simeq D_{p}$, where p is a prime.
(2) $\theta_{0}(\Gamma(G))=2$ if and only if G is one following groups: D_{4}, D_{6}, D_{9}.

Proof. For $n \geq 3$, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$. According to the proof of Theorem 4.4, if $\theta_{0}\left(\Gamma\left(D_{n}\right)\right) \leq 2$, then $n=p_{1} p_{2}$ or p^{α}.

If $n=p_{1} p_{2}$, then $\omega\left(\Gamma\left(D_{n}\right)\right)=\sigma(n)-n-1+\prod_{i=1}^{k} \alpha_{i}=p_{1}+p_{2}+1$. If $p_{1}+p_{2}+1 \geq 7$, then $\theta_{0}\left(\Gamma\left(D_{n}\right)\right) \geq 3$. So, if $\theta_{0}\left(\Gamma\left(D_{n}\right)\right) \leq 2$, then $p_{1}+p_{2}+1 \leq 6$, that is, $p_{1}=2, p_{2}=3$. As $\omega\left(\Gamma\left(D_{6}\right)\right)=2+3+1=6$, we know $\theta_{0}\left(\Gamma\left(D_{6}\right)\right) \geq \theta_{0}\left(K_{6}\right)=2$. An outerplanar decomposition of $\Gamma\left(D_{6}\right)-6 v_{2}$ as shown in Figure 7 gives $\theta_{0}\left(\Gamma\left(D_{6}\right)\right)=2$.

Figure 7. An outerplanar decomposition of $\Gamma\left(D_{6}-6 v_{2}\right)$.
If $n=p^{\alpha}$, then $\omega\left(\Gamma\left(D_{n}\right)\right)=\sigma(n)-n-1+\prod_{i=1}^{k} \alpha_{i}=p+p^{2}+\cdots+p^{\alpha-1}+\alpha=\frac{p^{\alpha}-p}{p-1}+\alpha \geq 7$, then $\theta_{0}\left(\Gamma\left(D_{n}\right)\right) \geq 3$. So, if $\theta_{0}\left(\Gamma\left(D_{n}\right)\right) \leq 2$, then $\frac{p^{\alpha}-p}{p-1}+\alpha \leq 6$, so $\alpha=1,2$.

If $\alpha=1$, then $\Gamma\left(D_{p}\right) \simeq(p+1) K_{1}$. So, $\theta_{0}\left(\Gamma\left(D_{p}\right)\right)=1$.
If $\alpha=2, \Gamma\left(D_{p^{2}}\right)=K_{p+2}+p^{2} v_{1}$. By Lemma 2.4, $\theta_{0}\left(\Gamma\left(D_{p^{2}}\right)\right)=\theta_{0}\left(K_{p+2}\right)$. As $p+2 \geq 7$, then $\theta_{0}\left(\Gamma\left(D_{p^{2}}\right)\right) \geq 3$. So, if $\theta_{0}\left(\Gamma\left(D_{p^{2}}\right)\right) \leq 2$, then $p+2 \leq 6$, then $p=2$, 3. By Lemma 2.2, we get if $p=2$, then $\theta_{0}\left(\Gamma\left(D_{4}\right)\right)=\theta_{0}\left(K_{4}\right)=2$; and if $p=3$, then $\theta_{0}\left(\Gamma\left(D_{9}\right)\right)=\theta_{0}\left(K_{5}\right)=2$.

Theorem 4.11. Let $G \simeq Q_{n}$. Then the following statements are hold.
(1) $\theta_{0}(\Gamma(G)) \geq 2$.
(2) $\theta_{0}(\Gamma(G))=2$ if and only if $G \simeq Q_{2}$ or Q_{3}.

Proof. According the proof of Theorem 4.5, if $\theta_{0}\left(\Gamma\left(Q_{n}\right)\right) \leq 2$, then $n=p^{\alpha}$.
If $n=2^{\alpha}$, again by the proof of Theorem 4.5, we have $\Gamma\left(Q_{2^{\alpha}}\right)=K_{2^{\alpha+1}-1+\alpha}$. If $2^{\alpha+1}-1+\alpha \geq 7$, then $\theta_{0}\left(\Gamma\left(Q_{n}\right)\right) \geq 3$. So $\theta_{0}\left(\Gamma\left(Q_{n}\right)\right) \leq 2$, then $2^{\alpha+1}-1+\alpha \leq 6$, so $\alpha=1$. In this case, $\theta_{0}\left(\Gamma\left(Q_{2}\right)\right)=2$.

If $n=p^{\alpha}$ and $p \neq 2$, then $\omega\left(\Gamma\left(Q_{n}\right)\right)=\frac{p^{\alpha+1}-1}{p-1}+\alpha \geq 7$ deduces $\theta_{0}\left(\Gamma\left(Q_{n}\right)\right) \geq 3$. So, if $\theta_{0}\left(\Gamma\left(Q_{n}\right)\right) \leq 2$, then $\frac{p^{\alpha+1}-1}{p-1}+\alpha \leq 6$ and $\alpha=1$.

In this case, $\omega\left(\Gamma\left(Q_{n}\right)\right)=\sigma(n)-1+\alpha_{1} \prod_{i=2}^{k}\left(\alpha_{i}+1\right)=p+2$ and $V\left(\Gamma\left(Q_{n}\right)\right)=\tau(2 n)+\sigma(n)-2=p+3$. So, $\theta_{0}\left(K_{p+2}\right) \leq \theta_{0}\left(\Gamma\left(Q_{n}\right)\right) \leq \theta_{0}\left(K_{p+3}\right)$. If $\omega\left(\Gamma\left(Q_{n}\right)\right)=p+2 \geq 7$, then $\theta_{0}\left(\Gamma\left(Q_{n}\right)\right) \geq 3$. So, if $\theta_{0}\left(\Gamma\left(Q_{n}\right)\right) \leq 2$, then $p+2 \leq 6$, so $p=3$. By Lemma 2.1 and Lemma 2.2, $2=\theta_{0}\left(K_{5}\right) \leq \theta_{0}\left(\Gamma\left(Q_{3}\right)\right) \leq \theta_{0}\left(K_{6}\right)=2$, then $\theta_{0}\left(\Gamma\left(Q_{3}\right)\right)=2$.

Theorem 4.12. Let $G \simeq Q D_{2^{\alpha}}$. Then $\theta_{0}(\Gamma(G) \geq 3$.
Proof. For $\alpha \geq 4$, by Lemma 4.1, we have $\omega\left(\Gamma\left(Q D_{2^{\alpha}}\right)\right)=\alpha+2^{\alpha-1}-3 \geq 9$. Thus, $\theta_{0}\left(\Gamma\left(Q D_{2^{\alpha}}\right)\right) \geq$ $\theta_{0}\left(K_{9}\right)=3$.

Theorem 4.13. Let $G=M_{p^{\alpha}}$. Then the following statements are hold.
(1) $\theta_{0}(\Gamma(G)) \geq 2$.
(2) $\theta_{0}(\Gamma(G))=2$ if and only if $G \simeq M_{8}$ or M_{27}.

Proof. If $p^{\alpha}=8$, then $\Gamma\left(M_{8}\right) \simeq \Gamma\left(D_{4}\right)$. By Theorem 4.4, $\theta_{0}\left(\Gamma\left(M_{8}\right)\right)=2$. If $p^{\alpha} \neq 8$, then $\Gamma\left(M_{p^{\alpha}}\right) \simeq$ $\Gamma\left(Z_{p} \oplus Z_{p^{\alpha-1}}\right)$. By the proof of Theorem 4.7, we get $\alpha=3, p=3$. In this case, we have $\theta_{0}\left(\Gamma\left(M_{27}\right)\right)=$ 2.

5. Conclusions and further work

In this paper, we classify all finite abelian groups whose thickness and outerthickness of subgroup intersection graphs are 1 and 2, respectively. We also investigate the thickness and outerthickness of subgroup intersection graphs for some finite non-abelian groups. The method is finding a forbidden subgraph of $\Gamma(G)$, like K_{9} and then determining the remaining cases. The key point is how to separate $\Gamma(G)$ into two planar graphs. Next, one can consider to determine all finite abelian groups G whose $\Gamma(G)$ has thickness or outerthickness 3. For a general finite group G, how to determine the thickness and outerthickness of $\Gamma(G)$ is a challenge. Of course, investigating other properties of $\Gamma(G)$ is a valuable exploration.

Acknowledgments

We would like to thank the referees for a careful reading of the paper and for their valuable comments. This work was supported by the National Natural Science Foundation of China (Grant No. 11661013, 11961050), the Guangxi Natural Science Foundation (Grant No. 2020GXNSFAA159103, 2020GXNSFAA159053) and High-level talents for scientific research of Beibu Gulf University
(2020KYQD07). The second author is supported by the Science and Technology Research Project of Jiangxi Education Department.

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

References

1. D. F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra, $\mathbf{3 2 0}$ (2008), 27062719.
2. G. Aalipour, S. Akbari, P. J. Cameron, R. Nikandish, F. Shaveisi, On the structure of the power graph and the enhanced power graph of a group, Electron. J. Combin., 24 (2017), 1-22.
3. V. B. Alekseev, V. S. Gončakov, The thickness of an arbitrary complete graph, (Russian) Mat. Sb. (N.S.), 101(143) (1976), 212-230.
4. A. Aggarwal, M. Klawe, P. Shor, Multilayer grid embeddings for VLSI, Algorithmica, 6 (1991), 129-151.
5. D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
6. N. Ashrafi, H. R. Maimani, M. R. Pournaki, S. Yassemi, Unit graphs associated with rings, Commun. Algebra, 38 (2010), 2851-2871.
7. S. Akbari, F. Heydari, M. Maghasedi, The intersection graph of a group, J. Algebra Appl., 14 (2015), 1550065.
8. H. Ahmadi, B. Taeri, Planarity of the intersection graph of subgroups of a finite group, J. Algebra Appl., 15 (2016), 1650040.
9. M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra, 4 (2012), 175-197.
10. J. Bosák, The graphs of semigroups, Theory Graphs Appl. (Proc. Sympos. Smolenice, 1963), (1964), 119-125.
11. J. Battle, F. Harary, Y. Kodama, Every planar graph with nine points has a nonplanar complement, Bull. Am. Math. Soc., 68 (1962), 569-571.
12. L. W. Beineke, F. Harary, The thickness of the complete graph, Canadian J. Math., 17 (1965), 850-859.
13. L. W. Beineke, H. Frank, J. W. Moon, On the thickness of the complete bipartite graph, Math. Proc. Cambridge Philos. Soc., 60 (1964), 1-5.
14. A. Cayley, Desiderata and suggestions: No. 2. The Theory of groups: Graphical representation, Am. J. Math., 1 (1878), 174-176.
15. P. J. Cameron, S. Ghosh, The power graph of a finite group, Discrete Math., 311(2011), 1220-1222.
16. B. Csákány, G. Pollák, The graph of subgroups of a finite group (Russian), Czechoslov Math. J., 19 (1969), 241-247.
17. F. R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum, 65 (2002), 206-214.
18. G. Ding, B. Oporowski, D. P. Sanders, D. Vertigan, Surface, tree-width, clique-minor, and partitions, J. Comb. Theory, Ser. B, 79 (2000), 221-246.
19. R. K. Guy, R. J. Nowwkowski, The outerthickness and outercoarseness of graphs I. The complete graph and the n-cube, In: Topics in combinatorics and Graph Theory, Physica-Verlag, (1990), 297-310.
20. R. K. Guy, R. J. Nowwkowski, The outerthickness and outercoarseness of graphs II. The complete bipartite graph, Contemp. Method. Graph Theory, (1990), 313-322.
21. F. Harary, Graph theory, Addison-Wesley, Reading MA, 1971.
22. A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Camb. Philos. Soc., 93 (1983), 9-23.
23. X. Ma, On the diameter of the intersection graph of a finite simple group, Czech. Math. J., 66 (2016), 365-370.
24. A. V. Kelarev, S. J. Quinn, A combinatorial property and power graphs of groups, Contrib. General Algebra, 12 (2000), 229-235.
25. S. Kayacan, E. Yaraneri, Finite groups whose intersection graphs are planar, J. Korean Math. Soc., 52 (2015), 81-96.
26. R. Rajkumar, P. Devi, Intersection graphs of cyclic subgroups of groups, Electronic Notes Discrete Math., 53 (2016), 15-24.
27. R. Rajkumar, P. Devi, Intersection graph of subgroups of some non-abelian groups, Malaya. J. Math., 4 (2016), 238-242.
28. S. Ramanathan, E. L. Lloyd, Scheduling algorithms for multihop radio networks, IEEE/ACM Trans. Networking, 1 (1993), 166-177.
29. R. Shen, Intersection graphs of subgroups of finite groups, Czech. Math. J., 60 (2010), 945-950.
30. W. T. Tutte, The non-biplanar character of the complete 9-graph, Can. Math. Bull., 6 (1963), 319330.
31. T. White, Graphs, Groups and Surfaces, North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1984.
32. B. Xu, X. Zha, Thickness and outerthickness for embedded graphs, Discrete Math., 341 (2018), 1688-1695.
33. B. Zelinka, Intersection graphs of finite abelian groups, Czech. Math. J., 25 (1975), 171-174.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
