Mathematics
http://www.aimspress.com/journal/Math

Research article

A simple method for solving matrix equations $A X B=D$ and $G X H=C$

Huiting Zhang, Hairui Zhang, Lina Liu and Yongxin Yuan*
School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China

* Correspondence: Email: yuanyx_703@163.com.

Abstract

A simple method to solve the common solution to the pair of linear matrix equations $A X B=D$ and $G X H=C$ is introduced. Some necessary and sufficient conditions for the existence of a common solution, and two expressions for the general common solution of the equation pair are provided by the proposed method. Subsequently, the results are applied to determine the solution of the matrix equation $A X B+G Y H=D$ and the Hermitian solution of the matrix equation $A X B=D$.

Keywords: matrix equation; generalized inverse; common solution; Hermitian solution
Mathematics Subject Classification: 15A09, 15A24

1. Introduction

Throughout this paper, we denote the complex $m \times n$ matrix space by $\mathbb{C}^{m \times n}$, and denote the conjugate transpose, the inner inverse, the Moore-Penrose inverse, the range space and the null space of a complex matrix $A \in \mathbb{C}^{m \times n}$ by $A^{\mathrm{H}}, A^{-}, A^{+}, \mathcal{R}(A)$ and $\mathcal{N}(A)$, respectively. I_{n} represents the identity matrix of size n. $P_{\mathcal{L}}$ stands for the orthogonal projector on the subspace $\mathcal{L} \subset \mathbb{C}^{n}$. Furthermore, for a matrix $A \in \mathbb{C}^{m \times n}$, E_{A} and F_{A} stand for two idempotent matrices: $E_{A}=I_{m}-A A^{-}, F_{A}=I_{n}-A^{-} A$.

Finding a common solution to the pair of linear matrix equations

$$
\begin{equation*}
A X B=D, G X H=C, \tag{1}
\end{equation*}
$$

where $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{p \times q}, G \in \mathbb{C}^{l \times n}, H \in \mathbb{C}^{p \times k}$ and $D \in \mathbb{C}^{m \times q}, C \in \mathbb{C}^{1 \times k}$, has been studied by many authors. Woude $[1,2]$ studied the problem in the context of noninteracting control by measurement feedback with or without internal stability. Mitra $[3,4]$ has provided the necessary and sufficient conditions for the existence of a common solution, and the general common solution of the equation pair (1). Conditions for the existence of a common solution to the equations of (1) have also been studied by Shinozaki and Sibuya [5], von der Woude [6] and Navarra et al. [7]. Also, Özgüler and Akar [8] gave a condition for the solvability of (1) over a principle domain. Wang [9] studied the
system (1) over arbitrary regular rings with identity. Dajić [10] considered it in associative ring with unit. Recently, the generalizations of (1) were considered in [11-15].

The one that is closely related to the equations of (1) is the following matrix equation:

$$
\begin{equation*}
A X B+G Y H=D, \tag{2}
\end{equation*}
$$

where $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{p \times q}, G \in \mathbb{C}^{m \times l}, H \in \mathbb{C}^{k \times q}$ and $D \in \mathbb{C}^{m \times q}$. The solvability conditions and general solutions have been derived in [16-18] by using generalized inverses, the generalized singular value decomposition (GSVD) and the canonical correlation decomposition (CCD) of the matrices, respectively. Also, Peng and Peng [19] provided a finite iterative method for solving the matrix equation (2). Özgüler [20] discussed the solvability of the linear matrix equation (2) over an arbitrary principal ideal domain. Huang and Zeng [21] discussed the solvability of Eq (2) over any simple Artinian ring. Some generalizations of (2) and solving some constrained solutions of (2) were discussed in [22-26].

In this note, a simple method to solve the common solution of the equation pair (1) is introduced. The necessary and sufficient conditions for their solvability as well as two expressions for the general solution are provided by the proposed method. The results are given in terms of generalized inverses and orthogonal projectors, which are of the concise expressions compared with the existing methods. Subsequently, the results are applied to determine the solution of the matrix equation (2) and the Hermitian solution of the matrix equation $A X B=D$. The given numerical example validates the accuracy of the results.

2. Some lemmas

Lemma 1. [27] Let $M \in \mathbb{C}^{m \times n}, N \in \mathbb{C}^{p \times q}, P \in \mathbb{C}^{m \times q}$. Then a necessary and sufficient condition for the matrix equation $M X N=P$ with respect to X is

$$
M M^{-} P N^{-} N=P,
$$

or equivalently,

$$
\begin{equation*}
E_{M} P=0, P F_{N}=0 \tag{3}
\end{equation*}
$$

In this case, the general solution can be written in the following parametric form

$$
\begin{equation*}
X=M^{-} P N^{-}+F_{M} V_{1}+V_{2} E_{N}, \tag{4}
\end{equation*}
$$

where $V_{1}, V_{2} \in \mathbb{C}^{n \times p}$ are arbitrary matrices.
Lemma 2. [28] Let $A \in \mathbb{C}^{m \times k}, B \in \mathbb{C}^{l \times n}$ and $D \in \mathbb{C}^{m \times n}$. Then the equation

$$
\begin{equation*}
A X-Y B=D \tag{5}
\end{equation*}
$$

has a solution $X \in \mathbb{C}^{k \times n}, Y \in \mathbb{C}^{m \times l}$ if and only if $E_{A} D F_{B}=0$. If this is the case, the general solution of Eq (5) has the form

$$
\begin{align*}
& X=A^{-} D+A^{-} Z B+F_{A} W, \tag{6}\\
& Y=-E_{A} D B^{-}+Z-E_{A} Z B B^{-}, \tag{7}
\end{align*}
$$

where $W \in \mathbb{C}^{k \times n}, Z \in \mathbb{C}^{m \times l}$ are arbitrary matrices.

Lemma 3. [27] Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{p \times n}$ and $C \in \mathbb{C}^{p \times q}$. Then the product $A B^{-} C$ does not depend on the choice of B^{-}if and only if $A=0$, or $C=0$, or $\mathcal{R}\left(A^{\mathrm{H}}\right) \subseteq \mathcal{R}\left(B^{\mathrm{H}}\right)$ and $\mathcal{R}(C) \subseteq \mathcal{R}(B)$.
Lemma 4. [27] Let $A \in \mathbb{C}^{m \times k}, B \in \mathbb{C}^{l \times k}, C \in \mathbb{C}^{m \times n}$ and $D \in \mathbb{C}^{m \times p}$. Then

$$
\begin{gathered}
{\left[\begin{array}{c}
A \\
B
\end{array}\right]^{-}=\left[A^{-}-F_{A}\left(B F_{A}\right)^{-} B A^{-}, F_{A}\left(B F_{A}\right)^{-}\right]} \\
{[C, D]^{-}=\left[\begin{array}{c}
C^{-}-C^{-} D\left(E_{C} D\right)^{-} E_{C} \\
\left(E_{C} D\right)^{-} E_{C}
\end{array}\right]}
\end{gathered}
$$

Lemma 5. [29] Suppose that $P, Q \in \mathbb{C}^{p \times n}$. Then the matrix equation $P X=Q$ has a Hermitian solution $X \in \mathbb{C}^{n \times n}$ if and only if

$$
E_{P} Q=0, Q P^{\mathrm{H}}=P Q^{\mathrm{H}}
$$

in which case, the general Hermitian solution is

$$
X=P^{-} Q+F_{P}\left(P^{-} Q\right)^{\mathrm{H}}+F_{P} J F_{P},
$$

where $J \in \mathbb{C}^{n \times n}$ is an arbitrary Hermitian matrix.
Lemma 6. [30] Assume that $A \in \mathbb{C}^{m \times n}$ and \mathcal{T} is a subspace of \mathbb{C}^{n}. Let $\tilde{\mathcal{T}}=\mathcal{R}\left(P_{\mathcal{T}} A^{\mathrm{H}}\right)=P_{\mathcal{T}} \mathcal{R}\left(A^{\mathrm{H}}\right)$, then

$$
\tilde{\mathcal{T}}=\mathcal{T} \cap(\mathcal{T} \cap \mathcal{N}(A))^{\perp}, \tilde{\mathcal{T}}^{\perp}=\mathcal{T}^{\perp} \oplus(\mathcal{T} \cap \mathcal{N}(A))
$$

3. Main results

Theorem 1. The pair of equations in (1) have a common solution X if and only if

$$
\begin{equation*}
A A^{-} D B^{-} B=D, G G^{-} C H^{-} H=C, P_{\mathcal{T}}\left(A^{-} D B^{-}-G^{-} C H^{-}\right) P_{\mathcal{S}}=0, \tag{8}
\end{equation*}
$$

where $\mathcal{T}=\mathcal{R}\left(A^{\mathrm{H}}\right) \cap \mathcal{R}\left(G^{\mathrm{H}}\right), \mathcal{S}=\mathcal{R}(B) \cap \mathcal{R}(H)$. In this case, the general common solution to the equations of (1) is given by

$$
\begin{equation*}
X=A^{-} D B^{-}+F_{A} L_{1}+L_{2} E_{B}, \tag{9}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
X=G^{-} C H^{-}+F_{G} J_{1}+J_{2} E_{H}, \tag{10}
\end{equation*}
$$

where

$$
\begin{gather*}
L_{1}=\left(F_{A}-F_{A} F_{G} K^{-} A^{-} A\right)\left(\tilde{D}-Z_{1} E_{B}+Z_{2} E_{H}\right)+A^{-} A W_{1}+F_{A} F_{G} F_{K} W_{2}, \tag{11}\\
L_{2}=E_{K} A^{-} A \tilde{D} E_{B}-E_{K} A^{-} A \tilde{D} B B^{-} Q^{-} E_{H} E_{B}+Z_{1}-E_{K} A^{-} A Z_{1} E_{B}+E_{K} A^{-} A Z_{2} E_{Q} E_{H} E_{B}, \tag{12}\\
J_{1}=-K^{-} A^{-} A \tilde{D}-K^{-} A^{-} A\left(-Z_{1} E_{B}+Z_{2} E_{H}\right)+F_{K} W_{2}, \tag{13}\\
J_{2}=-E_{K} A^{-} A \tilde{D} B B^{-} Q^{-}+Z_{2}-E_{K} A^{-} A Z_{2} Q Q^{-}, \tag{14}
\end{gather*}
$$

$K=A^{-} A F_{G}, Q=E_{H} B B^{-}, \tilde{D}=G^{-} C H^{-}-A^{-} D B^{-}$, and $Z_{1}, Z_{2}, W_{1}, W_{2}$ are arbitrary matrices.

Proof. By Lemma 1, if the first two conditions of (8) hold, then the general solutions of $A X B=D$ and $G X H=C$ are respectively given by Eqs (9) and (10). Now, we will find L_{1}, L_{2}, J_{1} and J_{2} such that $A X B=D, G X H=C$ has a common solution, namely,

$$
\begin{equation*}
A^{-} D B^{-}+F_{A} L_{1}+L_{2} E_{B}=G^{-} C H^{-}+F_{G} J_{1}+J_{2} E_{H} . \tag{15}
\end{equation*}
$$

Obviously, Eq (15) can be equivalently written as

$$
\begin{equation*}
\tilde{A} \tilde{X}-\tilde{Y} \tilde{B}=\tilde{D}, \tag{16}
\end{equation*}
$$

where

$$
\tilde{A}=\left[F_{A},-F_{G}\right], \tilde{B}=\left[\begin{array}{c}
-E_{B} \\
E_{H}
\end{array}\right], \tilde{D}=G^{-} C H^{-}-A^{-} D B^{-}, \tilde{X}=\left[\begin{array}{c}
L_{1} \\
J_{1}
\end{array}\right], \tilde{Y}=\left[L_{2}, J_{2}\right] .
$$

According to Lemma 2, Eq (16) has a solution ($\tilde{X}, \tilde{Y})$ if and only if

$$
\begin{equation*}
E_{\tilde{A}} \tilde{D} F_{\tilde{B}}=0 . \tag{17}
\end{equation*}
$$

By using Lemma 3, we have

$$
\begin{gathered}
\mathcal{R}\left(E_{\tilde{A}}\right)=\mathcal{R}\left(I-\tilde{A} \tilde{A}^{-}\right)=\mathcal{R}\left(I-\tilde{A} \tilde{A}^{+}\right)=\mathcal{N}\left(\tilde{A}^{\mathrm{H}}\right)=\mathcal{N}\left(F_{A}\right) \cap \mathcal{N}\left(F_{G}\right)=\mathcal{R}\left(A^{\mathrm{H}}\right) \cap \mathcal{R}\left(G^{\mathrm{H}}\right), \\
\mathcal{R}\left(F_{\tilde{B}}\right)=\mathcal{R}\left(I-\tilde{B}^{-} \tilde{B}\right)=\mathcal{N}(\tilde{B})=\mathcal{N}\left(E_{B}\right) \cap \mathcal{N}\left(E_{H}\right)=\mathcal{R}(B) \cap \mathcal{R}(H) .
\end{gathered}
$$

Then, the relation of (17) is equivalent to

$$
P_{\mathcal{T}} \tilde{D} P_{\mathcal{S}}=0,
$$

which is the third condition of (8). In which case, the general solution of $\mathrm{Eq}(16)$ is

$$
\begin{align*}
& \tilde{X}=\tilde{A}^{-} \tilde{D}+\tilde{A}^{-} Z \tilde{B}+F_{\tilde{A}} W, \tag{18}\\
& \tilde{Y}=-E_{\tilde{A}} \tilde{D} \tilde{B}^{-}+Z-E_{\tilde{A}} Z \tilde{B} \tilde{B}^{-} . \tag{19}
\end{align*}
$$

By Lemma 4, we have

$$
\begin{align*}
& {\left[F_{A},-F_{G}\right]^{-}=\left[\begin{array}{c}
F_{A}-F_{A} F_{G} K^{-} A^{-} A \\
-K^{-} A^{-} A
\end{array}\right],} \tag{20}\\
& {\left[\begin{array}{c}
-E_{B} \\
E_{H}
\end{array}\right]^{-}=\left[-E_{B}+B B^{-} Q^{-} E_{H} E_{B}, B B^{-} Q^{-}\right] .} \tag{21}
\end{align*}
$$

Inserting (20) and (21) into (18) and (19), we can get (11)-(14).
At a first glance, the representation given by (10) is relatively simple comparing with that of (9). However, by careful inspection, we confirm that the equations of (9) and (10) are indeed the common solutions to the equations of (1).

Corollary 1. Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{p \times q}, G \in \mathbb{C}^{m \times l}, H \in \mathbb{C}^{k \times q}$ and $D \in \mathbb{C}^{m \times q}$. Then the matrix equation (2) has a solution (X, Y) if and only if

$$
\begin{align*}
& A_{1} A_{1}^{-} E_{A} D H^{-} H=E_{A} D, \\
& G G^{-} D F_{B} B_{1}^{-} B_{1}=D F_{B}, \tag{22}\\
& P_{\mathcal{T}_{1}}\left(A_{1}^{-} E_{A} D H^{-}-G^{-} D F_{B} B_{1}^{-}\right) P_{S_{1}}=0 .
\end{align*}
$$

If the above conditions are satisfied, the representation of the general solution to the equation of (2) is

$$
\begin{align*}
& X=A^{-}(D-G Y H) B^{-}+F_{A} L_{1}+L_{2} E_{B}, \tag{23}\\
& Y=G^{-} D F_{B} B_{1}^{-}+F_{G} W_{2}+J_{2} E_{B_{1}}, \tag{24}
\end{align*}
$$

where

$$
\begin{gathered}
A_{1}=E_{A} G, B_{1}=H F_{B}, \mathcal{T}_{1}=\mathcal{R}\left(A_{1}^{\mathrm{H}}\right)=G^{\mathrm{H}} \mathcal{N}\left(A^{\mathrm{H}}\right), \mathcal{S}_{1}=\mathcal{R}\left(B_{1}\right)=H \mathcal{N}(B), Q=E_{B_{1}} H H^{-}, \\
J_{2}=-A_{1}^{-} A_{1}\left(G^{-} D F_{B} B_{1}^{-}-A_{1}^{-} E_{A} D H^{-}\right) H H^{-} Q^{-}+Z_{2}-A_{1}^{-} A_{1} Z_{2} Q Q^{-},
\end{gathered}
$$

and $L_{1}, L_{2}, W_{2}, Z_{2}$ are arbitrary matrices.
Proof. By Lemma 1, the matrix equation (2) with respect to X has a solution if and only if

$$
\begin{equation*}
E_{A} G Y H=E_{A} D, \quad G Y H F_{B}=D F_{B} . \tag{25}
\end{equation*}
$$

In which case, the general solution with respect to X is given by (23). Note that

$$
\mathcal{R}\left(A_{1}^{\mathrm{H}}\right)=\mathcal{R}\left(\left(E_{A} G\right)^{\mathrm{H}}\right) \subseteq \mathcal{R}\left(G^{\mathrm{H}}\right), \quad \mathcal{R}\left(B_{1}\right)=\mathcal{R}\left(H F_{B}\right) \subseteq \mathcal{R}(H), A_{1}^{-} A_{1} F_{G}=A_{1}^{-} E_{A} G F_{G}=0
$$

Thus, by Theorem 1, we know that the equation of (25) have a common solution Y if and only if the conditions (22) are satisfied, and the general solution is given by (24).

Corollary 2. Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times q}$ and $D \in \mathbb{C}^{m \times q}$. Then the matrix equation

$$
\begin{equation*}
A X B=D \tag{26}
\end{equation*}
$$

has a Hermitian solution X if and only if

$$
\begin{align*}
& A A^{-} D B^{-} B=D, \\
& P_{\mathcal{T}_{2}}\left(A^{-} D B^{-}-\left(A^{-} D B^{-}\right)^{\mathrm{H}}\right) P_{\mathcal{T}_{2}}=0, \tag{27}
\end{align*}
$$

where $\mathcal{T}_{2}=\mathcal{R}\left(A^{\mathrm{H}}\right) \cap \mathcal{R}(B)$. In which case, the general Hermitian solution of (26) is

$$
\begin{equation*}
X=\frac{1}{2}\left(\left(B^{\mathrm{H}}\right)^{-} D^{\mathrm{H}}\left(A^{\mathrm{H}}\right)^{-}+A^{-} D B^{-}\right)+\frac{1}{2}\left(F_{B^{\mathrm{H}}} J_{1}+J_{2} E_{A^{\mathrm{H}}}+J_{1}^{\mathrm{H}} E_{B}+F_{A} J_{2}^{\mathrm{H}}\right), \tag{28}
\end{equation*}
$$

where

$$
\begin{gathered}
J_{1}=-K^{-} A^{-} A\left(\left(B^{\mathrm{H}}\right)^{-} D^{\mathrm{H}}\left(A^{\mathrm{H}}\right)^{-}-A^{-} D B^{-}\right)-K^{-} A^{-} A\left(-Z_{1} E_{B}+Z_{2} E_{A^{\mathrm{H}}}\right)+F_{K} W_{2}, \\
J_{2}=-E_{K} A^{-} A\left(\left(B^{\mathrm{H}}\right)^{-} D^{\mathrm{H}}\left(A^{\mathrm{H}}\right)^{-}-A^{-} D B^{-}\right) B B^{-} Q^{-}+Z_{2}-E_{K} A^{-} A Z_{2} Q Q^{-},
\end{gathered}
$$

$K=A^{-} A F_{B^{\mathrm{H}}}, Q=E_{A^{\mathrm{H}}} B B^{-}$, and Z_{1}, Z_{2}, W_{2} are arbitrary matrices.

Proof. It is known that the equation of (26) has a Hermitian solution if and only if the following equations have a common solution

$$
\begin{equation*}
A X B=D, \quad B^{\mathrm{H}} X A^{\mathrm{H}}=D^{\mathrm{H}} . \tag{29}
\end{equation*}
$$

According to Theorem 1, we can easily obtain the solvability conditions (27) of Eq (29). Notice that if X is a common solution of (29), then $\frac{1}{2}\left(X+X^{\mathrm{H}}\right)$ is a Hermitian solution of (26). With this and Theorem 1, we can get (28).

By using Corollary 2, we can solve the Hermitian solution of the matrix equation $A X B=D$ on a linear manifold with ease.
Corollary 3. Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times q}, D \in \mathbb{C}^{m \times q}$ and $P, Q \in \mathbb{C}^{p \times n}$. Then the matrix equation

$$
\begin{gather*}
A X B=D, \\
\text { s. t. } P X=Q, X^{\mathrm{H}}=X, \tag{30}
\end{gather*}
$$

has a solution X if and only if

$$
\begin{align*}
& E_{P} Q=0, Q P^{\mathrm{H}}=P Q^{\mathrm{H}}, \tag{31}\\
& A F_{P}\left(A F_{P}\right)^{-}\left(D-A X_{0} B\right)\left(F_{P} B\right)^{-} F_{P} B=D-A X_{0} B, \tag{32}\\
& P_{\mathcal{T}_{3}}\left(\left(A F_{P}\right)^{-}\left(D-A X_{0} B\right)\left(F_{P} B\right)^{-}-\left(\left(A F_{P}\right)^{-}\left(D-A X_{0} B\right)\left(F_{P} B\right)^{-}\right)^{\mathrm{H}}\right) P_{\mathcal{T}_{3}}=0, \tag{33}
\end{align*}
$$

where $X_{0}=P^{-} Q+F_{P}\left(P^{-} Q\right)^{\mathrm{H}}, \mathcal{T}_{3}=\mathcal{N}(P) \cap(\mathcal{N}(P) \cap \mathcal{R}(A))^{\perp} \cap\left(\mathcal{N}(P) \cap \mathcal{R}\left(B^{\mathrm{H}}\right)\right)^{\perp}$.
Proof. By Lemma 5, we know that $P X=Q$ has a Hermitian solution X if and only if the conditions (31) hold. In which case, the general Hermitian solution of the equation $P X=Q$ is

$$
\begin{equation*}
X=P^{-} Q+F_{P}\left(P^{-} Q\right)^{\mathrm{H}}+F_{P} J F_{P}=X_{0}+F_{P} J F_{P}, \tag{34}
\end{equation*}
$$

where $J \in \mathbb{C}^{n \times n}$ is an arbitrary Hermitian matrix. Substituting (34) into the equation of (30) yields

$$
\begin{equation*}
A F_{P} J F_{P} B=D-A X_{0} B . \tag{35}
\end{equation*}
$$

According to Corollary 2 and Lemma 6, we know that the equation of (35) has a Hermitian solution J if and only if the conditions (32) and (33) hold.

By using Corollary 3, we can establish the solvability condition for the existence of a Hermitian solution of the matrix equation $A X B=D$ on a subspace.

Corollary 4. Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times q}, D \in \mathbb{C}^{m \times q}$, and let \mathcal{L} be the subspace \mathbb{C}^{n}. Then the matrix equation

$$
\begin{align*}
& A X B=D, \\
& \text { s. t. } \mathcal{R}(X) \subseteq \mathcal{L}, X^{\mathrm{H}}=X, \tag{36}
\end{align*}
$$

has a solution X if and only if

$$
\begin{align*}
& A P_{\mathcal{L}}\left(A P_{\mathcal{L}}\right)^{-} D\left(P_{\mathcal{L}} B\right)^{-} P_{\mathcal{L}} B=D, \\
& P_{\mathcal{T}_{4}}\left(\left(A P_{\mathcal{L}}\right)^{-} D\left(P_{\mathcal{L}} B\right)^{-}-\left(\left(A P_{\mathcal{L}}\right)^{-} D\left(P_{\mathcal{L}} B\right)^{-}\right)^{\mathrm{H}}\right) P_{\mathcal{T}_{4}}=0, \tag{37}
\end{align*}
$$

where $\mathcal{T}_{4}=\mathcal{L} \cap(\mathcal{L} \cap \mathcal{R}(A))^{\perp} \cap\left(\mathcal{L} \cap \mathcal{R}\left(B^{\mathrm{H}}\right)\right)^{\perp}$.
Proof. It is evident that $\mathcal{R}(X) \subseteq \mathcal{L} \Leftrightarrow P_{L^{\perp}} X=0$. By Corollary 3, we can easily achieve the solvability conditions (37) of Eq (36).

4. A numerical example

Based on Theorem 1, we can describe an algorithm for obtaining a common solution to the pair of linear matrix equations (1).

Algorithm .

1) Input matrices A, B, C, D, G and H.
2) Compute F_{A}, F_{G}, E_{B} and E_{H}.
3) Compute $\tilde{A}=\left[F_{A},-F_{G}\right], \tilde{B}=\left[\begin{array}{c}-E_{B} \\ E_{H}\end{array}\right]$ and $\tilde{D}=G^{-} C H^{-}-A^{-} D B^{-}$.
4) Compute $E_{\tilde{A}}$ and $F_{\tilde{B}}$.
5) If the conditions (8) and (17) are satisfied, go to 6); otherwise, the equations of (1) have no common solution, and stop.
6) Compute the matrices $K=A^{-} A F_{G}, Q=E_{H} B B^{-}$.
7) Compute L_{1} and L_{2} by (11) and (12), respectively.
8) Compute J_{1} and J_{2} by (13) and (14), respectively.
9) Compute X by (9) or by (10).

Example Let $k=7, l=8, m=12, n=10, p=6$ and $q=5$. The matrices A, B, C, D, G and H are given by

$$
A=\left[\begin{array}{rrrrrrrrrr}
3.3841 & -1.3291 & 2.3472 & 2.1069 & 1.2861 & 1.4575 & 1.8302 & 0.1195 & -2.9086 & -0.9130 \\
-3.8499 & 3.2224 & -3.5627 & 2.4056 & 1.9251 & 2.1999 & 0.5073 & 2.4268 & 2.6016 & 3.0440 \\
2.0031 & 1.0308 & 1.4386 & -1.1009 & -0.2463 & -0.1047 & 0.3033 & 2.4811 & 2.7821 & -2.0057 \\
-0.3615 & -1.0511 & 1.8765 & 1.8875 & 1.3305 & 1.5464 & 1.0770 & -1.3507 & 0.5206 & 0.2354 \\
0.8396 & 1.2427 & 0.5618 & -1.1523 & -0.4393 & -0.2103 & -0.1498 & 2.0070 & 2.3979 & -1.3476 \\
-1.3010 & 2.7000 & 1.1606 & 0.6390 & -0.7287 & 2.5401 & -1.0423 & 0.7335 & -2.8994 & -1.3105 \\
3.4867 & -2.3471 & -2.9831 & 0.5334 & 2.2686 & -2.5837 & 2.7283 & 2.0678 & 3.6257 & 2.3488 \\
-2.5296 & 2.7764 & 1.3784 & 0.2023 & -0.1338 & 2.2178 & -0.7173 & 1.1172 & 2.5576 & -1.0291 \\
1.9886 & 1.4513 & -2.7036 & 3.0171 & 1.6737 & 1.7751 & 1.5431 & 2.8624 & -5.1550 & 1.6403 \\
1.8432 & 1.3214 & 2.3609 & 0.6419 & 0.6112 & 1.6995 & 0.9253 & 2.3621 & 1.4577 & -1.9330 \\
-2.3399 & -2.9004 & 2.7360 & 3.3460 & 2.5459 & 2.1536 & 1.7382 & -4.1331 & 2.1341 & 1.6190 \\
2.0562 & 0.6674 & 2.8367 & 1.4244 & 1.3101 & 2.0604 & 1.5791 & 1.9793 & 1.8415 & -1.6444
\end{array}\right],
$$

$$
C=\left[\begin{array}{rrrrrrr}
-4.4243 & 63.3495 & 57.1330 & -35.3497 & 94.3570 & 30.4116 & 103.5431 \\
12.5767 & 11.5448 & 24.3666 & 34.9444 & 52.8061 & -16.8209 & -35.0123 \\
4.7270 & 49.6253 & -53.1311 & -175.8609 & -55.6022 & 34.1111 & 192.2423 \\
63.6385 & 124.8464 & 42.6792 & -98.0054 & 161.4329 & -21.1148 & 134.9706 \\
28.7349 & 6.6986 & 40.6452 & 62.0110 & 72.0806 & -31.7856 & -59.6399 \\
108.1412 & 100.7630 & 18.3534 & -145.4211 & 92.5247 & -38.9258 & 182.3775 \\
-7.2849 & 15.9978 & 7.7943 & -30.7668 & 5.4565 & 19.1774 & 55.3453 \\
-4.2597 & 65.4605 & -6.1941 & -71.6393 & 53.7233 & 12.3832 & 75.6285
\end{array}\right],
$$

$$
D=10^{3} \times\left[\begin{array}{rrrrr}
1.7187 & 1.0608 & 0.8913 & 0.7105 & 0.3342 \\
-0.1399 & -0.1220 & -0.0108 & -0.0419 & -0.4514 \\
-0.5142 & 0.0006 & 0.0553 & 0.4558 & 0.0061 \\
0.6801 & -0.1355 & 0.7746 & 0.0739 & 0.1986 \\
-0.6771 & -0.1321 & -0.1314 & 0.2385 & -0.0573 \\
0.1313 & 0.4285 & 0.1771 & 0.2455 & 0.2599 \\
0.5760 & 0.3211 & -0.0988 & 0.2740 & -0.5275 \\
-0.8144 & -0.5500 & 0.2302 & 0.0471 & 0.0762 \\
1.9424 & 1.8729 & 0.2088 & 0.7696 & -0.1201 \\
0.2437 & 0.3519 & 0.5792 & 0.6914 & 0.1667 \\
0.9052 & -0.8601 & 1.2965 & -0.3310 & 0.2678 \\
0.5841 & 0.3483 & 0.8712 & 0.7461 & 0.2035
\end{array}\right]
$$

$$
G=\left[\begin{array}{rrrrrrrrrr}
1.3652 & -0.6478 & 5.7981 & 4.6110 & 8.7437 & 2.1396 & 4.3992 & 6.0720 & 0.1286 & 0.1635 \\
0.1176 & 9.8833 & 7.6037 & -5.6783 & 0.1501 & 6.4349 & 9.3338 & -6.2989 & -3.8397 & 1.9007 \\
8.9390 & 5.8279 & -5.2982 & 7.9421 & 7.6795 & 3.2004 & -6.8333 & 3.7048 & 6.8312 & -5.8692 \\
1.9914 & 4.2350 & 6.4053 & 0.5918 & 9.7084 & 9.6010 & 2.1256 & 5.7515 & -0.9284 & 0.5758 \\
2.9872 & 5.1551 & 2.0907 & -6.0287 & -9.9008 & 7.2663 & 8.3924 & 4.5142 & 0.3534 & 3.6757 \\
6.6144 & 3.3395 & 3.7982 & 0.5027 & 7.8886 & 4.1195 & -6.2878 & 0.4390 & 6.1240 & 6.3145 \\
2.8441 & 4.3291 & -7.8333 & 4.1537 & 4.3866 & 7.4457 & 1.3377 & 0.2719 & -6.0854 & -7.1763 \\
4.6922 & 2.2595 & 6.8085 & 3.0500 & 4.9831 & 2.6795 & 2.0713 & 3.1269 & 0.1576 & -6.9267
\end{array}\right],
$$

$$
H=\left[\begin{array}{rrrrrrr}
0.0704 & -0.3871 & 0.2970 & 0.4060 & -0.2410 & 0.0407 & -0.0698 \\
0.2088 & 0.2624 & -0.3917 & -0.5369 & -0.0169 & -0.2079 & 0.1527 \\
-0.5101 & 0.3010 & 0.0086 & 0.1479 & 0.4768 & 0.2358 & -0.2671 \\
0.2095 & -0.1370 & 0.2497 & -0.0462 & -0.1308 & 0.0378 & 0.4432 \\
-0.1319 & 0.1712 & 0.3884 & -0.1150 & 0.2857 & 0.3117 & 0.6693 \\
0.5654 & 0.1514 & 0.2992 & 0.1829 & 0.5863 & -0.4149 & -0.1353
\end{array}\right] .
$$

It is easy to verify that the conditions (8) and (17) hold ($\left\|A A^{-} D B^{-} B-D\right\|=3.3524 e-012$, $\left\|G G^{-} C H^{-} H-C\right\|=3.5742 e-013$, and $\left.\left\|P_{\mathcal{T}}\left(A^{-} D B^{-}-G^{-} C H^{-}\right) P_{\mathcal{S}}\right\|=\left\|E_{\tilde{A}} \tilde{D} F_{\tilde{B}}\right\|=4.5887 e-014\right)$. According to Algorithm 1, by choosing $Z_{1}=0, Z_{2}=0, W_{1}=0$ and $W_{2}=0$, we can obtain a common solution X by (9) or by (10) as follows (In fact, the difference of the solutions computed by (9)
and (10) is $5.1843 e-14)$:

$$
X=\left[\begin{array}{rrrrrr}
-0.7593 & 7.1006 & 0.8776 & 4.1065 & 8.0839 & 7.7379 \\
-7.1008 & 0.2667 & 3.9975 & 3.4272 & -1.4408 & -9.0241 \\
0.3669 & 3.8912 & 1.2076 & -8.4299 & 7.1447 & 5.6330 \\
12.1231 & -0.7975 & 4.0895 & 0.9762 & 6.3728 & -7.7365 \\
-5.3094 & 7.0758 & 1.5034 & 9.2270 & 4.3845 & 1.1587 \\
4.4918 & 6.4102 & -3.2166 & -0.4456 & 4.0534 & 9.7406 \\
10.4318 & -6.4101 & 3.4834 & 1.7671 & -3.4256 & -3.1548 \\
-7.4411 & 3.1080 & 9.6018 & 6.3035 & 2.4320 & 2.5455 \\
2.0221 & 2.1309 & -9.1917 & 2.7910 & -5.4906 & -9.2646 \\
0.4320 & -2.6945 & 4.2894 & 7.2900 & 3.9208 & 7.6539
\end{array}\right] .
$$

Also, the absolute errors are estimated by

$$
\|A X B-D\|=3.4544 e-12, \quad\|G X H-C\|=6.1471 e-13,
$$

which implies that X is a common solution to the matrix equations of (1).

5. Conclusions

In this paper, by choosing suitable parameter matrices L_{1}, L_{2}, J_{1} and J_{2} in the equations of (9) and (10), we have derived the necessary and sufficient conditions for the existence of a solution and two explicit representations of the general common solution to the pair of linear matrix equations (1) by means of the inner inverses and orthogonal projectors. In particular, our representation of the general common solution to the equations of (1) is in terms of only the coefficient and right-hand side matrices of the pair of matrix equations and some arbitrary matrices. Subsequently, the results are applied to determine the solvability conditions and the general common solution to the matrix equation (2) and the general Hermitian solution to $A X B=D$. Also, the results are applied to determine the solvability conditions for the matrix equation $A X B=D$ under some constraints (see Corollaries 3 and 4).

Acknowledgments

The authors would like to express their gratitude to the three anonymous reviewers for their valuable suggestions and comments that improved the presentation of this manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

1. J. W. van der Woude, Feedback decoupling and stabilization for linear systems with multiple exogenous variables, Ph. D. Thesis, Technical University of Eindhoven, Netherlands, 1987.
2. J. W. van der Woude, Almost non-interating control by measurement feedback, Syst. Control Lett., 9 (1987), 7-16.
3. S. K. Mitra, Common solutions to a pair of linear matrix equations $A_{1} X B_{1}=C_{1}$ and $A_{2} X B_{2}=C_{2}$, Math. Proc. Cambridge Philos. Soc., 74 (1973), 213-216.
4. S. K. Mitra, A pair of simultaneous linear matrix equations $A_{1} X B_{1}=C_{1}, A_{2} X B_{2}=C_{2}$ and a matrix programming problem, Linear Algebra Appl., 131 (1990), 107-123.
5. N. Shinozaki, M. Sibuya, Consistency of a pair of matrix equations with an application, Keio Eng. Rep., 27 (1974), 141-146.
6. J. W. van der Woude, On the existence of a common solution X to the matrix equations $A_{i} X B_{j}=$ $C_{i j},(i, j) \in \Gamma$, Linear Algebra Appl., 375 (2003), 135-145.
7. A. Navarra, P. L. Odell, D. M. Young, A representation of the general common solution to the matrix equations $A_{1} X B_{1}=C_{1}$ and $A_{2} X B_{2}=C_{2}$ with applications, Comput. Math. Appl., 41 (2001), 929-935.
8. A. B. Özgüler, N. Akar, A common solution to a pair of linear matrix equations over a principal domain, Linear Algebra Appl., 144 (1991), 85-99.
9. Q. W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl., 384 (2004), 43-54.
10. A. Dajić, Common solutions of linear equations in ring with applications, Electron. J. Linear Algebra, 30 (2015), 66-79.
11. Z. H. He, Q. W. Wang, The general solutions to some systems of matrix equations, Linear Multilinear Algebra, 63 (2015), 2017-2032.
12. Z. H. He, O. M. Agudelo, Q. W. Wang, B. De Moor, Two-sided coupled generalized Sylvester matrix equations solving using a simultaneous decomposition for fifteen matrices, Linear Algebra Appl., 496 (2016), 549-593.
13. F. Zhang, M. Wei, Y. Li, J. Zhao, An efficient method for special least squares solution of the complex matrix equation $(A X B, C X D)=(E, F)$, Comput. Math. Appl., 76 (2018), 2001-2010.
14. D. S. Cvetković-llić, J. Nikolov Radenković, Q. W. Wang, Algebraic conditions for the solvability to some systems of matrix equations, Linear Multilinear Algebra, (In Press).
15. Z. H. He, M. Wang, X. Liu, On the general solutions to some systems of quaternion matrix equations, RACSAM, 114 (2020), 1-22.
16. J. K. Baksalary, R. Kala, The matrix equation $A X B+C Y D=E$, Linear Algebra Appl., 30 (1980), 141-147.
17. K. E. Chu, Singular value and generalized singular value decompositions and the solution of linear matrix equations, Linear Algebra Appl., 88/89 (1987), 83-98.
18. G. Xu, M. Wei, D. Zheng, On solutions of matrix equation $A X B+C Y D=F$, Linear Algebra Appl., 279 (1998), 93-109.
19. Z. Peng, Y. Peng, An efficient iterative method for solving the matrix equation $A X B+C Y D=E$, Numer. Linear Algebra Appl., 13 (2006), 473-485.
20. A. B. Özgüler, The equation $A X B+C Y D=E$ over a principal ideal domain, SIAM J. Matrix Anal. Appl., 12 (1991), 581-591.
21. L. Huang, Q. Zeng, The solvability of matrix equation $A X B+C Y D=E$ over a simple Artinian ring, Linear Multilinear Algebra, 38 (1995), 225-232.
22. M. Dehghan, M. Hajarian, An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Appl. Math. Model., 34 (2010), 639-654.
23. H. Zhang, H. Yin, Conjugate gradient least squares algorithm for solving the generalized coupled Sylvester matrix equations, Comput. Math. Appl., 73 (2017), 2529-2547.
24. S. Li, A finite iterative method for solving the generalized Hamiltonian solutions of coupled Sylvester matrix equations with conjugate transpose, Int. J. Comput. Math., 94 (2017), 757-773.
25. M. Hajarian, Computing symmetric solutions of general Sylvester matrix equations via Lanczos version of biconjugate residual algorithm, Comput. Math. Appl., 76 (2018), 686-700.
26. T. Yan, C. Ma, The BCR algorithms for solving the reflexive or anti-reflexive solutions of generalized coupled Sylvester matrix equations, J. Franklin Inst., 357 (2020), 12787-12807.
27. A. Ben-Israel, T. N. E. Greville, Generalized inverses: Theory and applications, 2 Eds., New York: Springer, 2003.
28. J. K. Baksalary, R. Kala, The matrix equation $A X-Y B=C$, Linear Algebra Appl., 25 (1979), 41-43.
29. C. G. Khatri, S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579-585.
30. Y. L. Chen, Representations and cramer rules for the solution of a restricted matrix equation, Linear Multilinear Algebra, 35 (1993), 339-354.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
