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1. Introduction

Throughout this paper, we denote the complex m×n matrix space by Cm×n, and denote the conjugate
transpose, the inner inverse, the Moore-Penrose inverse, the range space and the null space of a complex
matrix A ∈ Cm×n by AH, A−, A+, R(A) and N(A), respectively. In represents the identity matrix of size
n. PL stands for the orthogonal projector on the subspace L ⊂ Cn. Furthermore, for a matrix A ∈ Cm×n,

EA and FA stand for two idempotent matrices: EA = Im − AA−, FA = In − A−A.
Finding a common solution to the pair of linear matrix equations

AXB = D, GXH = C, (1)

where A ∈ Cm×n, B ∈ Cp×q, G ∈ Cl×n,H ∈ Cp×k and D ∈ Cm×q, C ∈ Cl×k, has been studied by many
authors. Woude [1, 2] studied the problem in the context of noninteracting control by measurement
feedback with or without internal stability. Mitra [3, 4] has provided the necessary and sufficient
conditions for the existence of a common solution, and the general common solution of the equation
pair (1). Conditions for the existence of a common solution to the equations of (1) have also been
studied by Shinozaki and Sibuya [5], von der Woude [6] and Navarra et al. [7]. Also, Özgüler and
Akar [8] gave a condition for the solvability of (1) over a principle domain. Wang [9] studied the
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system (1) over arbitrary regular rings with identity. Dajić [10] considered it in associative ring with
unit. Recently, the generalizations of (1) were considered in [11–15].

The one that is closely related to the equations of (1) is the following matrix equation:

AXB + GYH = D, (2)

where A ∈ Cm×n, B ∈ Cp×q, G ∈ Cm×l,H ∈ Ck×q and D ∈ Cm×q. The solvability conditions and general
solutions have been derived in [16–18] by using generalized inverses, the generalized singular value
decomposition (GSVD) and the canonical correlation decomposition (CCD) of the matrices,
respectively. Also, Peng and Peng [19] provided a finite iterative method for solving the matrix
equation (2). Özgüler [20] discussed the solvability of the linear matrix equation (2) over an arbitrary
principal ideal domain. Huang and Zeng [21] discussed the solvability of Eq (2) over any simple
Artinian ring. Some generalizations of (2) and solving some constrained solutions of (2) were
discussed in [22–26].

In this note, a simple method to solve the common solution of the equation pair (1) is introduced.
The necessary and sufficient conditions for their solvability as well as two expressions for the general
solution are provided by the proposed method. The results are given in terms of generalized inverses
and orthogonal projectors, which are of the concise expressions compared with the existing methods.
Subsequently, the results are applied to determine the solution of the matrix equation (2) and the
Hermitian solution of the matrix equation AXB = D. The given numerical example validates the
accuracy of the results.

2. Some lemmas

Lemma 1. [27] Let M ∈ Cm×n,N ∈ Cp×q, P ∈ Cm×q. Then a necessary and sufficient condition for the
matrix equation MXN = P with respect to X is

MM−PN−N = P,

or equivalently,
EMP = 0, PFN = 0. (3)

In this case, the general solution can be written in the following parametric form

X = M−PN− + FMV1 + V2EN , (4)

where V1,V2 ∈ C
n×p are arbitrary matrices.

Lemma 2. [28] Let A ∈ Cm×k, B ∈ Cl×n and D ∈ Cm×n. Then the equation

AX − YB = D (5)

has a solution X ∈ Ck×n,Y ∈ Cm×l if and only if EADFB = 0. If this is the case, the general solution of
Eq (5) has the form

X = A−D + A−ZB + FAW, (6)
Y = −EADB− + Z − EAZBB−, (7)

where W ∈ Ck×n,Z ∈ Cm×l are arbitrary matrices.
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Lemma 3. [27] Let A ∈ Cm×n, B ∈ Cp×n and C ∈ Cp×q. Then the product AB−C does not depend on
the choice of B− if and only if A = 0, or C = 0, or R(AH) ⊆ R(BH) and R(C) ⊆ R(B).

Lemma 4. [27] Let A ∈ Cm×k, B ∈ Cl×k, C ∈ Cm×n and D ∈ Cm×p. Then[
A
B

]−
=

[
A− − FA(BFA)−BA−, FA(BFA)−

]
,

[C, D]− =

[
C− −C−D(ECD)−EC

(ECD)−EC

]
.

Lemma 5. [29] Suppose that P,Q ∈ Cp×n. Then the matrix equation PX = Q has a Hermitian solution
X ∈ Cn×n if and only if

EPQ = 0, QPH = PQH,

in which case, the general Hermitian solution is

X = P−Q + FP(P−Q)H + FPJFP,

where J ∈ Cn×n is an arbitrary Hermitian matrix.

Lemma 6. [30] Assume that A ∈ Cm×n and T is a subspace of Cn. Let T̃ = R(PTAH) = PTR(AH),
then

T̃ = T ∩ (T ∩N(A))⊥, T̃ ⊥ = T ⊥⊕(T ∩N(A)).

3. Main results

Theorem 1. The pair of equations in (1) have a common solution X if and only if

AA−DB−B = D, GG−CH−H = C, PT (A−DB− −G−CH−)PS = 0, (8)

where T = R(AH) ∩ R(GH), S = R(B) ∩ R(H). In this case, the general common solution to the
equations of (1) is given by

X = A−DB− + FAL1 + L2EB, (9)

or equivalently,
X = G−CH− + FG J1 + J2EH, (10)

where
L1 = (FA − FAFGK−A−A)(D̃ − Z1EB + Z2EH) + A−AW1 + FAFGFKW2, (11)

L2 = EKA−AD̃EB − EKA−AD̃BB−Q−EHEB + Z1 − EKA−AZ1EB + EKA−AZ2EQEHEB, (12)

J1 = −K−A−AD̃ − K−A−A(−Z1EB + Z2EH) + FKW2, (13)
J2 = −EKA−AD̃BB−Q− + Z2 − EKA−AZ2QQ−, (14)

K = A−AFG,Q = EH BB−, D̃ = G−CH− − A−DB−, and Z1,Z2,W1,W2 are arbitrary matrices.
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Proof. By Lemma 1, if the first two conditions of (8) hold, then the general solutions of AXB = D and
GXH = C are respectively given by Eqs (9) and (10). Now, we will find L1, L2, J1 and J2 such that
AXB = D,GXH = C has a common solution, namely,

A−DB− + FAL1 + L2EB = G−CH− + FG J1 + J2EH. (15)

Obviously, Eq (15) can be equivalently written as

ÃX̃ − Ỹ B̃ = D̃, (16)

where

Ã = [FA,−FG], B̃ =

[
−EB

EH

]
, D̃ = G−CH− − A−DB−, X̃ =

[
L1

J1

]
, Ỹ = [L2, J2].

According to Lemma 2, Eq (16) has a solution (X̃, Ỹ) if and only if

EÃD̃FB̃ = 0. (17)

By using Lemma 3, we have

R(EÃ) = R(I − ÃÃ−) = R(I − ÃÃ+) = N(ÃH) = N(FA) ∩ N(FG) = R(AH) ∩ R(GH),

R(FB̃) = R(I − B̃−B̃) = N(B̃) = N(EB) ∩ N(EH) = R(B) ∩ R(H).

Then, the relation of (17) is equivalent to

PT D̃PS = 0,

which is the third condition of (8). In which case, the general solution of Eq (16) is

X̃ = Ã−D̃ + Ã−ZB̃ + FÃW, (18)
Ỹ = −EÃD̃B̃− + Z − EÃZB̃B̃−. (19)

By Lemma 4, we have

[FA, −FG]− =

[
FA − FAFGK−A−A
−K−A−A

]
, (20)[

−EB

EH

]−
=

[
−EB + BB−Q−EHEB, BB−Q−

]
. (21)

Inserting (20) and (21) into (18) and (19), we can get (11)–(14). �

At a first glance, the representation given by (10) is relatively simple comparing with that of (9).
However, by careful inspection, we confirm that the equations of (9) and (10) are indeed the common
solutions to the equations of (1).
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Corollary 1. Let A ∈ Cm×n, B ∈ Cp×q, G ∈ Cm×l,H ∈ Ck×q and D ∈ Cm×q. Then the matrix equation (2)
has a solution (X,Y) if and only if

A1A−1 EADH−H = EAD,
GG−DFBB−1 B1 = DFB,

PT1

(
A−1 EADH− −G−DFBB−1

)
PS1 = 0.

(22)

If the above conditions are satisfied, the representation of the general solution to the equation of (2) is

X = A−(D −GYH)B− + FAL1 + L2EB, (23)
Y = G−DFBB−1 + FGW2 + J2EB1 , (24)

where

A1 = EAG, B1 = HFB, T1 = R(AH
1 ) = GHN(AH), S1 = R(B1) = HN(B), Q = EB1 HH−,

J2 = −A−1 A1(G−DFBB−1 − A−1 EADH−)HH−Q− + Z2 − A−1 A1Z2QQ−,

and L1, L2,W2,Z2 are arbitrary matrices.

Proof. By Lemma 1, the matrix equation (2) with respect to X has a solution if and only if

EAGYH = EAD, GYHFB = DFB. (25)

In which case, the general solution with respect to X is given by (23). Note that

R(AH
1 ) = R((EAG)H) ⊆ R(GH), R(B1) = R(HFB) ⊆ R(H), A−1 A1FG = A−1 EAGFG = 0.

Thus, by Theorem 1, we know that the equation of (25) have a common solution Y if and only if the
conditions (22) are satisfied, and the general solution is given by (24). �

Corollary 2. Let A ∈ Cm×n, B ∈ Cn×q and D ∈ Cm×q. Then the matrix equation

AXB = D (26)

has a Hermitian solution X if and only if

AA−DB−B = D,
PT2

(
A−DB− − (A−DB−)H

)
PT2 = 0,

(27)

where T2 = R(AH) ∩ R(B). In which case, the general Hermitian solution of (26) is

X =
1
2

(
(BH)−DH(AH)− + A−DB−

)
+

1
2

(FBH J1 + J2EAH + JH
1 EB + FAJH

2 ), (28)

where
J1 = −K−A−A

(
(BH)−DH(AH)− − A−DB−

)
− K−A−A(−Z1EB + Z2EAH) + FKW2,

J2 = −EKA−A
(
(BH)−DH(AH)− − A−DB−

)
BB−Q− + Z2 − EKA−AZ2QQ−,

K = A−AFBH ,Q = EAH BB−, and Z1,Z2,W2 are arbitrary matrices.
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Proof. It is known that the equation of (26) has a Hermitian solution if and only if the following
equations have a common solution

AXB = D, BHXAH = DH. (29)

According to Theorem 1, we can easily obtain the solvability conditions (27) of Eq (29). Notice that
if X is a common solution of (29), then 1

2 (X + XH) is a Hermitian solution of (26). With this and
Theorem 1, we can get (28). �

By using Corollary 2, we can solve the Hermitian solution of the matrix equation AXB = D on a
linear manifold with ease.

Corollary 3. Let A ∈ Cm×n, B ∈ Cn×q,D ∈ Cm×q and P,Q ∈ Cp×n. Then the matrix equation

AXB = D,
s. t. PX = Q, XH = X,

(30)

has a solution X if and only if

EPQ = 0, QPH = PQH, (31)
AFP(AFP)−(D − AX0B)(FPB)−FPB = D − AX0B, (32)
PT3

(
(AFP)−(D − AX0B)(FPB)− −

(
(AFP)−(D − AX0B)(FPB)−

)H
)

PT3 = 0, (33)

where X0 = P−Q + FP(P−Q)H, T3 = N(P) ∩ (N(P) ∩ R(A))⊥ ∩ (N(P) ∩ R(BH))⊥.

Proof. By Lemma 5, we know that PX = Q has a Hermitian solution X if and only if the conditions (31)
hold. In which case, the general Hermitian solution of the equation PX = Q is

X = P−Q + FP(P−Q)H + FPJFP = X0 + FPJFP, (34)

where J ∈ Cn×n is an arbitrary Hermitian matrix. Substituting (34) into the equation of (30) yields

AFPJFPB = D − AX0B. (35)

According to Corollary 2 and Lemma 6, we know that the equation of (35) has a Hermitian solution J
if and only if the conditions (32) and (33) hold. �

By using Corollary 3, we can establish the solvability condition for the existence of a Hermitian
solution of the matrix equation AXB = D on a subspace.

Corollary 4. Let A ∈ Cm×n, B ∈ Cn×q,D ∈ Cm×q, and let L be the subspace Cn. Then the matrix
equation

AXB = D,
s. t. R(X) ⊆ L, XH = X,

(36)

has a solution X if and only if

APL(APL)−D(PLB)−PLB = D,
PT4

(
(APL)−D(PLB)− − ((APL)−D(PLB)−)H

)
PT4 = 0,

(37)

where T4 = L ∩ (L ∩ R(A))⊥ ∩ (L ∩ R(BH))⊥.

Proof. It is evident that R(X) ⊆ L ⇔ PL⊥X = 0. By Corollary 3, we can easily achieve the solvability
conditions (37) of Eq (36). �
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4. A numerical example

Based on Theorem 1, we can describe an algorithm for obtaining a common solution to the pair of
linear matrix equations (1).

Algorithm .

1) Input matrices A, B,C,D,G and H.

2) Compute FA, FG, EB and EH.

3) Compute Ã = [FA,−FG], B̃ =

[
−EB

EH

]
and D̃ = G−CH− − A−DB−.

4) Compute EÃ and FB̃.

5) If the conditions (8) and (17) are satisfied, go to 6); otherwise, the equations of (1) have no common
solution, and stop.

6) Compute the matrices K = A−AFG,Q = EH BB−.

7) Compute L1 and L2 by (11) and (12), respectively.

8) Compute J1 and J2 by (13) and (14), respectively.

9) Compute X by (9) or by (10).

Example Let k = 7, l = 8,m = 12, n = 10, p = 6 and q = 5. The matrices A, B,C,D,G and H are
given by

A =



3.3841 −1.3291 2.3472 2.1069 1.2861 1.4575 1.8302 0.1195 −2.9086 −0.9130
−3.8499 3.2224 −3.5627 2.4056 1.9251 2.1999 0.5073 2.4268 2.6016 3.0440

2.0031 1.0308 1.4386 −1.1009 −0.2463 −0.1047 0.3033 2.4811 2.7821 −2.0057
−0.3615 −1.0511 1.8765 1.8875 1.3305 1.5464 1.0770 −1.3507 0.5206 0.2354

0.8396 1.2427 0.5618 −1.1523 −0.4393 −0.2103 −0.1498 2.0070 2.3979 −1.3476
−1.3010 2.7000 1.1606 0.6390 −0.7287 2.5401 −1.0423 0.7335 −2.8994 −1.3105

3.4867 −2.3471 −2.9831 0.5334 2.2686 −2.5837 2.7283 2.0678 3.6257 2.3488
−2.5296 2.7764 1.3784 0.2023 −0.1338 2.2178 −0.7173 1.1172 2.5576 −1.0291

1.9886 1.4513 −2.7036 3.0171 1.6737 1.7751 1.5431 2.8624 −5.1550 1.6403
1.8432 1.3214 2.3609 0.6419 0.6112 1.6995 0.9253 2.3621 1.4577 −1.9330
−2.3399 −2.9004 2.7360 3.3460 2.5459 2.1536 1.7382 −4.1331 2.1341 1.6190

2.0562 0.6674 2.8367 1.4244 1.3101 2.0604 1.5791 1.9793 1.8415 −1.6444



,

B =



9.5013 −4.5647 9.2181 −4.1027 1.3889
−2.3114 0.1850 7.3821 8.9365 2.0277

6.0684 8.2141 1.7627 −0.5789 1.9872
4.8598 4.4470 −4.0571 3.5287 −6.0379
8.9130 6.1543 9.3547 8.1317 2.7219
7.6210 7.9194 −9.1690 0.0986 −1.9881


,
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C =



−4.4243 63.3495 57.1330 −35.3497 94.3570 30.4116 103.5431
12.5767 11.5448 24.3666 34.9444 52.8061 −16.8209 −35.0123

4.7270 49.6253 −53.1311 −175.8609 −55.6022 34.1111 192.2423
63.6385 124.8464 42.6792 −98.0054 161.4329 −21.1148 134.9706
28.7349 6.6986 40.6452 62.0110 72.0806 −31.7856 −59.6399

108.1412 100.7630 18.3534 −145.4211 92.5247 −38.9258 182.3775
−7.2849 15.9978 7.7943 −30.7668 5.4565 19.1774 55.3453
−4.2597 65.4605 −6.1941 −71.6393 53.7233 12.3832 75.6285



,

D = 103 ×



1.7187 1.0608 0.8913 0.7105 0.3342
−0.1399 −0.1220 −0.0108 −0.0419 −0.4514
−0.5142 0.0006 0.0553 0.4558 0.0061

0.6801 −0.1355 0.7746 0.0739 0.1986
−0.6771 −0.1321 −0.1314 0.2385 −0.0573

0.1313 0.4285 0.1771 0.2455 0.2599
0.5760 0.3211 −0.0988 0.2740 −0.5275
−0.8144 −0.5500 0.2302 0.0471 0.0762

1.9424 1.8729 0.2088 0.7696 −0.1201
0.2437 0.3519 0.5792 0.6914 0.1667
0.9052 −0.8601 1.2965 −0.3310 0.2678
0.5841 0.3483 0.8712 0.7461 0.2035



,

G =



1.3652 −0.6478 5.7981 4.6110 8.7437 2.1396 4.3992 6.0720 0.1286 0.1635
0.1176 9.8833 7.6037 −5.6783 0.1501 6.4349 9.3338 −6.2989 −3.8397 1.9007
8.9390 5.8279 −5.2982 7.9421 7.6795 3.2004 −6.8333 3.7048 6.8312 −5.8692
1.9914 4.2350 6.4053 0.5918 9.7084 9.6010 2.1256 5.7515 −0.9284 0.5758
2.9872 5.1551 2.0907 −6.0287 −9.9008 7.2663 8.3924 4.5142 0.3534 3.6757
6.6144 3.3395 3.7982 0.5027 7.8886 4.1195 −6.2878 0.4390 6.1240 6.3145
2.8441 4.3291 −7.8333 4.1537 4.3866 7.4457 1.3377 0.2719 −6.0854 −7.1763
4.6922 2.2595 6.8085 3.0500 4.9831 2.6795 2.0713 3.1269 0.1576 −6.9267



,

H =



0.0704 −0.3871 0.2970 0.4060 −0.2410 0.0407 −0.0698
0.2088 0.2624 −0.3917 −0.5369 −0.0169 −0.2079 0.1527
−0.5101 0.3010 0.0086 0.1479 0.4768 0.2358 −0.2671

0.2095 −0.1370 0.2497 −0.0462 −0.1308 0.0378 0.4432
−0.1319 0.1712 0.3884 −0.1150 0.2857 0.3117 0.6693

0.5654 0.1514 0.2992 0.1829 0.5863 −0.4149 −0.1353


.

It is easy to verify that the conditions (8) and (17) hold (‖AA−DB−B − D‖ = 3.3524e − 012,
‖GG−CH−H − C‖ = 3.5742e − 013, and ‖PT (A−DB− − G−CH−)PS‖ = ‖EÃD̃FB̃‖ = 4.5887e − 014).
According to Algorithm 1, by choosing Z1 = 0,Z2 = 0,W1 = 0 and W2 = 0, we can obtain a common
solution X by (9) or by (10) as follows (In fact, the difference of the solutions computed by (9)
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and (10) is 5.1843e − 14):

X =



−0.7593 7.1006 0.8776 4.1065 8.0839 7.7379
−7.1008 0.2667 3.9975 3.4272 −1.4408 −9.0241

0.3669 3.8912 1.2076 −8.4299 7.1447 5.6330
12.1231 −0.7975 4.0895 0.9762 6.3728 −7.7365
−5.3094 7.0758 1.5034 9.2270 4.3845 1.1587

4.4918 6.4102 −3.2166 −0.4456 4.0534 9.7406
10.4318 −6.4101 3.4834 1.7671 −3.4256 −3.1548
−7.4411 3.1080 9.6018 6.3035 2.4320 2.5455

2.0221 2.1309 −9.1917 2.7910 −5.4906 −9.2646
0.4320 −2.6945 4.2894 7.2900 3.9208 7.6539



.

Also, the absolute errors are estimated by

‖AXB − D‖ = 3.4544e − 12, ‖GXH −C‖ = 6.1471e − 13,

which implies that X is a common solution to the matrix equations of (1).

5. Conclusions

In this paper, by choosing suitable parameter matrices L1, L2, J1 and J2 in the equations of (9)
and (10), we have derived the necessary and sufficient conditions for the existence of a solution and
two explicit representations of the general common solution to the pair of linear matrix equations (1) by
means of the inner inverses and orthogonal projectors. In particular, our representation of the general
common solution to the equations of (1) is in terms of only the coefficient and right-hand side matrices
of the pair of matrix equations and some arbitrary matrices. Subsequently, the results are applied to
determine the solvability conditions and the general common solution to the matrix equation (2) and
the general Hermitian solution to AXB = D. Also, the results are applied to determine the solvability
conditions for the matrix equation AXB = D under some constraints (see Corollaries 3 and 4).
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