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1. Introduction

In a diverse world, the dynamics of neural networks has been studied extensively due to their
convergence and stability are important in real applications, such as pattern recognition, image and
signal processing, associative memories and so on [1–3]. A lot of literatures have been reported for
different types of neural networks based on their various topological structures. To name a few,
Cohen-Grossberg neural networks [4], bi-directonal associative memory (BAM) neural networks [5],
Hopfield-type neural networks [6] and cellular neural networks [7].

Among them, Cohen-Grossberg neural networks were originally introduced by Cohen and
Grossberg in 1983, which can be reduced to Hopfield-type neural networks and cellular neural
networks as well in [4]. And the dynamics of such neural networks have received increasing interest,
such as stability, synchronization and stabilization [8–12]. In order to make a detailed description
between different layers of networks, BAM neural networks have been proposed by Kosko in 1988,
and many methods and techniques were developed to discuss the dynamical characteristics of BAM
neural networks in [13–16]. Recently, a class of Cohen-Grossberg-type BAM neural networks have
drawn significant attention owing to the wide application in practice [17–20].
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In fact, time delays occur in neural networks due to the finite speed of signal propagation. Generally,
time delays can be divided into several types, such as discrete-type delays [21], distributed-type delays
[22] and neutral-type delays [23]. As we all know, it is difficult to verify the dynamics of neutral
delayed neural networks since they contain important information about the derivative of the past state.
Some authors focused on neutral neural networks and several results have been obtained. For example,
Cheng et al. [24] discussed neutral Cohen-Grossberg neural networks by means of Lyapunov stability
method. Liu and Zong [25] dealt with a kind of neutral BAM neural networks based on some new
integral inequalities and the Lyapunov-Krasovskii functional approach.

On the other hand, many real-world systems often receive sudden external disturbance, which
entail systems undergo abrupt changes in very short time. This phenomenon is viewed as
impulse [26–28]. The existence of impulse is also one of the key factors leading to the instability of
neural networks. Recently impulsive neural networks have aroused a lot of interest [29–31].
Gu et al. [32] established the existence and global exponential stability of BAM-type impulsive neural
networks with time-varying delays. They mainly used the method of the continuation theorem of
coincidence degree theory and Lyapunov functional analysis. Liao et al. [33] gave the results of
global asymptotic stability of periodic solutions for inertial delayed BAM neural networks by
combining Mawhin continuation theorem of coincidence degree theory, Lyapunov functional method
and inequality techniques. Especially, they seek periodic solutions by means of Lyapunov functional
method instead of the prior estimate method. The addition of delays and impulses in neural networks
make it more accurate to describe the evolutionary process of the systems.

To the best of our knowledge, Cohen-Grossberg-type BAM neural networks with neutral delays and
impulses have not been investigated. The aim of this paper is to establish the existence and asymptotic
stability of periodic solutions.

To study the dynamics of neural networks, many methods and techniques are developed, such as
the matrix theory, set-valued maps theory and functional differential inclusions. Our results are based
on the famous Mawhin coincidence degree theory and Lyapunov functional analysis. To do this, our
highlights lie in four aspects:

• Proposing a new model with neutral-type time delays and impulses, some previous considered
neural network models can be regarded as the special cases of ours, such as [15, 20, 32].

• Establishing some sufficient conditions to guarantee the existence and asymptotic stability of the
periodic solutions by means of Mawhin coincidence degree theory and the contraction of a suitable
Lyapunov functional. We not only employ the method of the prior classical estimation in Section 3,
but also seek periodic solutions by means of Lyapunov functional method in Appendix.

• The impulse terms in this paper are more relaxing from linear functions as well in [16].

• The theoretical findings play a key role in designing the electric implementation of
Cohen-Grossberg-type BAM neural networks and processing its signals transmission.

This paper is organized as follows. In Section 2, the model description and necessary knowledge
are provided. In Section 3, by using the continuation theorem of coincidence degree theory, some
conditions for the existence of periodic solutions are obtained. In Section 4, the global asymptotic
stability of periodic solutions is discussed. In Section 5, an illustrative example is given to show the
effectiveness of our criterions.
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2. Model description and preliminaries

2.1. Model description

Consider the following Cohen-Grossberg-type BAM neural networks with neutral-type time delays
and impulses, i.e.,

ẋi(t) = −ai(xi(t))

bi(xi(t)) −
m∑

j=1

ai j(t) f j(y j(t − τi j(t)))

−

m∑
j=1

bi j(t) f j(ẏ j(t − τ̃i j(t))) − Ii(t)

 , t > 0, t , tk,

∆xi(tk) = xi(t+
k ) − xi(tk) = Iik(xi(tk)), i = 1, 2, · · · , n, k = 1, 2, · · · ,

ẏ j(t) = −c j(y j(t))

d j(y j(t)) −
n∑

i=1

c ji(t)gi(xi(t − σ ji(t)))

−

n∑
i=1

d ji(t)gi(ẋi(t − σ̃ ji(t))) − J j(t)

 , t > 0, t , tk,

∆y j(tk) = y j(t+
k ) − y j(tk) = J jk(y j(tk)), j = 1, 2, · · · ,m, k = 1, 2, · · · .

(2.1)

The initial conditions associated with (2.1) are of the form
xi(t) = ϕi(t), t ∈ (−τ, 0], τ = max

1≤i≤n,1≤ j≤m
{τ∗i j}, i = 1, 2, · · · , n,

y j(t) = ψ j(t), t ∈ (−σ, 0], σ = max
1≤i≤n,1≤ j≤m

{σ∗ji}, j = 1, 2, · · · ,m,
(2.2)

where
τ∗i j = max

0≤t≤ω
{τi j(t), τ̃i j(t)}, and σ∗ji = max

0≤t≤ω
{σ ji(t), σ̃ ji(t)}.

Obviously ∆xi(tk) and ∆y j(tk) are the impulses at moments tk and t1 < t2 < · · · is a strictly increasing
sequence such that lim

k→+∞
tk = +∞.

The ecological meaning of parameters are as follows. Among the system (2.1), xi(t), y j(t) represent
the potential (or voltage) of cell i, j at time t respectively; n, m correspond to the number of neurons
in the X−layer and Y−layer; ai(·), c j(·) denote amplification functions; bi(·), d j(·) mean appropriately
behaved functions such that the solutions of system (2.1) remain bounded; ai j(t), bi j(t), c ji(t), d ji(t)
describe the connection strengths of connectivity between cell i and j at the time t; f j(·), gi(·) are the
activation functions; Ii(t), J j(t) show the external inputs at time t.

In order to establish the existence of periodic solutions of systems (2.1) and (2.2), we assume the
following hypotheses:

(H1) τi j(t), τ̃i j(t), σ ji(t), σ̃ ji(t), ai j(t), bi j(t), c ji(t), d ji(t) are continuous ω−periodic functions and

aM
i j = max

0≤t≤ω
ai j(t), bM

i j = max
0≤t≤ω

bi j(t), cM
ji = max

0≤t≤ω
c ji(t), dM

ji = max
0≤t≤ω

d ji(t).

(H2) f j(x), gi(y) are bounded and globally Lipschitz continuous, i.e., there exist positive constants
F j, Gi, F̃ j, G̃i, such that

| f j(x) − f j(y)| ≤ F j|x − y|, | f j(x)| ≤ F̃ j, j = 1, 2, · · · ,m,
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|gi(x) − gi(y)| ≤ Gi|x − y|, |gi(y)| ≤ G̃i, i = 1, 2, · · · , n.

It is easy to see that

| f j(x)| ≤ F j|x| + | f j(0)|, |gi(x)| ≤ Gi|x| + |gi(0)|, for y = 0.

(H3) ai(u), bi(u), c j(u), d j(u) ∈ C(R,R), and there exist positive constants aL
i , aM

i , cL
j , cM

j ,

bL
i , bM

i , dL
j , dM

j , such that

0 < aL
i ≤ ai(u) ≤ aM

i , 0 < bL
i |u| ≤ bi(u) ≤ bM

i |u|, i = 1, 2, · · · , n,

0 < cL
j ≤ c j(u) ≤ cM

j , 0 < dL
j |u| ≤ d j(u) ≤ dM

j |u|, j = 1, 2, · · · ,m.

(H4) for all x, y ∈ R, there exists a positive integer p such that

tk+p = tk + ω, Ii(k+p)(x) = Iik(x), J j(k+p)(y) = J jp(y).

(H5) Iik(·) and J jk(·) are bounded and Lipschitz continuous functions, that is, there exist constants
si, r j, sik and r jk such that

|Iik(x) − Iik(y)| ≤ sik|x − y|, |Iik(·)| < si, i = 1, 2, · · · , n,

|J jk(x) − J jk(y)| ≤ r jk|x − y|, |J jk(·)| < r j, j = 1, 2, · · · ,m.

It is easy to see that

|Iik(x)| ≤ sik|x| + |Iik(0)|, |J jk(x)| ≤ r jk|x| + |J jk(0)|, for y = 0.

2.2. Preliminaries

Before presenting our results on the existence and stability of periodic solutions of systems (2.1)
and (2.2), we briefly introduce the Mawhin coincidence degree theorem [34].

Let X and Y be two Banach spaces, L : DomL ∩ X → Y be a linear mapping and N : X → Y
be a continuous mapping. The mapping L is called a Fredholm mapping of index zero if dimKerL =

codimImL < +∞ and ImL is closed in Y . If L is a Fredholm mapping of index zero, there exist
continuous projectors P : X → X and Q : Y → Y such that ImP = KerL, KerQ = ImL = Im(I − Q),
then the restriction Lp of L to DomL ∩ KerP is invertible. We denote the inverse of that mapping by
Kp. If Ω is an open bounded subset of X, the mapping N is said to be L−compact on Ω̄ if QN(Ω̄)
is bounded and Kp(I − Q)N : Ω̄ → X is compact. Since ImQ is isomorphic to KerL, there exists an
isomorphism J : ImQ→ KerL.

Lemma 1. Let X and Y be two Banach spaces, L : DomL∩ X → Y be a Fredholm mapping with index
zero, Ω ⊂ X be an open bounded set and N : Ω̄→ Y be L−compact on Ω̄. Assume that:

(a) for each λ ∈ (0, 1) and x ∈ ∂Ω ∩ DomL, Lx , λNx,
(b) for each x ∈ ∂Ω ∩ KerL, QNx , 0,
(c) deg{JQN,Ω ∩ KerL, 0} , 0. Then equation Lx = λNx has at least one solution in Ω̄ ∩ DomL.
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3. Existence of the periodic solution

In this section, we study the existence of periodic solutions of systems (2.1) and (2.2) based on
Mawhin coincidence degree theorem.

Let
z(t) = (xT (t), yT (t))T = (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ,

obviously if z(t) is a solution of systems (2.1) and (2.2) defined on [0, ω] such that z(0) = z(t), then
according to the periodicity of systems (2.1) and (2.2) in t, the function z∗(t) defined by

z∗(t) = z(t − kω), t ∈ [lω, (l + 1)ω] \ {tk}, k = 1, 2, · · · , l = 1, 2 · · · .

in which z∗(t) is left continuous at t = tk. Thus z∗(t) is an ω−periodic solution of systems (2.1) and
(2.2).

For any non-negative integer q, let Cq[0, ω : t1, · · · , tp] = {z : [0, ω] → Rn+m | z(q)(t) exists for t ,
t1, · · · , tp; z(q)(t+) and z(q)(t−)exists at t1, · · · , tp and z( j)(tk) = z( j)(t−k ), k = 1, · · · , p, j = 1, · · · , q}.

In order to establish the existence of ω−periodic solutions of systems (2.1) and (2.2), we take

X = {z ∈ C[0, ω : t1, · · · , tp]|z(t) = z(t + ω)}, Y = X × R(n+m)×(p+1),

and

‖z‖ =

n+m∑
i=1

max
0≤t≤ω

|zi(t)| =
n∑

i=1

max
0≤t≤ω

|xi(t)| +
m∑

j=1

max
0≤t≤ω

∣∣∣y j(t)
∣∣∣ ,

then X and Y are both Banach space.
Set

L : DomL ∩ X → Y, z→ (ż(t),∆z(t1),∆z(t2), · · · ,∆z(tp), 0), (3.1)

where DomL = {z ∈ C1[0, ω : t1, · · · , tp], z(t) = z(t + ω)}.
From N : X → Y, we have

Nz =





A1(t)
...

An(t)
B1(t)
...

Bm(t)


,



∆x1(t1)
...

∆xn(t1)
∆y1(t1)

...

∆ym(t1)


,



∆x1(t2)
...

∆xn(t2)
∆y1(t2)

...

∆ym(t2)


, · · · ,



∆x1(tp)
...

∆xn(tp)
∆y1(tp)

...

∆ym(tp)


,



0
...

0
0
...

0


,


, (3.2)

where

Ai(t) = −ai(xi(t))

bi(xi(t)) −
m∑

j=1

ai j(t) f j(y j(t − τi j(t))) −
m∑

j=1

bi j(t) f j(ẏ j(t − τ̃i j(t))) − Ii(t)

 ,
and

B j(t) = −c j(y j(t))

d j(y j(t)) −
n∑

i=1

c ji(t)gi(xi(t − σ ji(t))) −
n∑

i=1

d ji(t)gi(ẋi(t − σ̃ ji(t))) − J j(t)

 .
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Obviously,
KerL = Rn+m,

and

ImL = {(h,C1,C2, · · · ,Cp, d) ∈ Y :
∫ ω

0
h(s)ds +

p∑
k=1

Ck + d = 0}

= X × R(n+m)×p × {0},

thus
dim KerL = codim ImL = n + m.

It is easy to show that ImL is closed in Y and L is a Fredholm mapping of index zero.

Lemma 2. Let L and N are two mappings defined by (3.1) and (3.2), then N is L−compact on Ω̄ for
any open bounded set Ω ⊂ X..

Proof. Define two projectors:

Pz =
1
ω

∫ ω

0
z(t)dt,

and

Qz = Q(h,C1,C2, · · · ,Cp, d) =

 1
ω

∫ ω

0
h(s)ds +

p∑
k=1

Ck + d

 , 0, · · · , 0, 0 .
It is obvious that P and Q are continuous and satisfy

ImP = KerL and ImL = KerQ = Im(I − Q).

Furthermore, the generalized inverse Kp = L−1
p is given by

Kpz =

∫ t

0
h(s)ds +

∑
t>tk

Ck −
1
ω

∫ ω

0

∫ t

0
h(s)dsdt −

p∑
k=1

Ck.

Then the expression of QNz is

QNz =



 1
ω

∫ ω

0
Ai(s)ds +

1
ω

p∑
k=1

Iik(xi(tk))


n×1 1

ω

∫ ω

0
B j(s)ds +

1
ω

p∑
k=1

J jk(y j(tk))


m×1

, 0, · · · , 0, 0

 ,
and

Kp(I − Q)Nz =



∫ t

0
Ai(s)ds +

∑
t>tk

Iik(xi(tk))


n×1∫ t

0
B j(s)ds +

∑
t>tk

J jk(y j(tk))


m×1
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−


(

1
ω

∫ ω

0

∫ t

0
Ai(s)dsdt + (

t
ω
−

1
2

)
∫ ω

0
Ai(s)ds

)
n×1(

1
ω

∫ ω

0

∫ t

0
B j(s)dsdt + (

t
ω
−

1
2

)
∫ ω

0
B j(s)ds

)
m×1

 −


 p∑
k=1

Iik(xi(tk))


n×1 p∑

k=1

J jk(y j(tk))


m×1

.
Thus QN and Kp(I − Q)N are both continuous.

Consider the sequence {Kp(I − Q)N}, for any open bounded set Ω ⊂ X and any z ∈ Ω, we have

‖Kp(I − Q)Nz‖ = max
0≤t≤ω

n∑
i=1

∣∣∣∣∣∣∣
∫ t

0
Ai(s)ds +

∑
t>tk

Iik(xi(tk)) −
1
ω

∫ ω

0

∫ t

0
Ai(s)dsdt

−(
t
ω
−

1
2

)
∫ ω

0
Ai(s)ds −

p∑
k=1

Iik(xi(tk))

∣∣∣∣∣∣∣
+ max

0≤t≤ω

m∑
j=1

∣∣∣∣∣∣∣
∫ t

0
B j(s)ds +

∑
t>tk

J jk(y j(tk)) −
1
ω

∫ ω

0

∫ t

0
B j(s)dsdt

−(
t
ω
−

1
2

)
∫ ω

0
B j(s)ds −

p∑
k=1

J jk(y j(tk))

∣∣∣∣∣∣∣
≤

n∑
i=1

5
2

∫ ω

0
|Ai(s)|ds + 2psi +

m∑
j=1

5
2

∫ ω

0
|B j(s)|ds + 2pr j,

then Kp(I − Q)N is uniformly bounded on Ω. For any z, z̃ ∈ Ω, we have

‖Kp(I − Q)Nz − Kp(I − Q)Nz̃‖

= max
0≤t≤ω

n∑
i=1

∣∣∣∣∣∣∣∑t>tk

(Iik(xi(tk)) − Iik(x̃i(tk))) −
p∑

k=1

(Iik(xi(tk)) − Iik(x̃i(tk)))

∣∣∣∣∣∣∣
+ max

0≤t≤ω

m∑
j=1

∣∣∣∣∣∣∣∑t>tk

(J jk(y j(tk)) − J jk(ỹ j(tk))) −
p∑

k=1

(J jk(y j(tk)) − J jk(ỹ j(tk)))

∣∣∣∣∣∣∣
≤

n∑
i=1

p∑
k=1

|(Iik(xi(tk)) − Iik(x̃i(tk)))| +
m∑

j=1

p∑
k=1

∣∣∣(J jk(y j(tk)) − J jk(ỹ j(tk)))
∣∣∣

≤

n∑
i=1

p∑
k=1

sik |xi(tk) − x̃i(tk)| +
m∑

i=1

p∑
k=1

r jk

∣∣∣y j(tk) − ỹ j(tk)
∣∣∣ ,

then Kp(I −Q)N is equicontinuous on Ω. By virtue of the Arzela-Ascoli Theorem, Kp(I −Q)N(Ω) is a
sequentially compact set. Therefore, Kp(I − Q)N(Ω̄) is compact. Moreover, QN(Ω̄) is bounded. Thus,
N is L−compact on Ω̄ for any open bounded set Ω ⊂ X. �

Now, we need to show that there exists a domain Ω that satisfies all the requirements given in
Lemma 1.

Theorem 1. Assume that (H1)-(H5) hold, systems (2.1) and (2.2) have at least one ω−periodic
solution.
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Proof. Corresponding to the operator equation Lz = λNz, λ ∈ (0, 1), we have

ẋi(t) = −λai(xi(t))

bi(xi(t)) −
m∑

j=1

ai j(t) f j(y j(t − τi j(t)))

−

m∑
j=1

bi j(t) f j(ẏ j(t − τ̃i j(t))) − Ii(t)

 , t > 0, t , tk,

∆xi(tk) = xi(t+
k ) − xi(tk) = λIik(xi(tk)), i = 1, 2, · · · , n, k = 1, 2, · · · ,

ẏ j(t) = −λc j(y j(t))

d j(y j(t)) −
n∑

i=1

c ji(t)gi(xi(t − σ ji(t)))

−

n∑
i=1

d ji(t)gi(ẋi(t − σ̃ ji(t))) − J j(t)

 , t > 0, t , tk,

∆y j(tk) = y j(t+
k ) − y j(tk) = λJ jk(y j(tk)), j = 1, 2, · · · ,m, k = 1, 2, · · · .

(3.3)

Suppose that (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ∈ X is a solution of system (3.3) for some λ ∈ (0, 1).
Integrating system (3.3) over the interval [0, ω], we obtain

∫ ω

0

−ai(xi(s))

bi(xi(s)) −
m∑

j=1

ai j(t) f j(y j(s − τi j(s))) −
m∑

j=1

bi j(t) f j(ẏ j(s − τ̃i j(s))) − Ii(s)


 ds

+

p∑
k=1

Iik(xi(tk)) = 0,∫ ω

0

−c j(y j(s))

d j(y j(s)) −
n∑

i=1

c ji(t)gi(xi(s − σ ji(s))) −
n∑

i=1

d ji(t)gi(ẋi(s − σ̃ ji(s))) − J j(s)


 ds

+

p∑
k=1

J jk(y j(tk)) = 0.

(3.4)
Let ξ−, η− ∈ [0, ω], and

xi(ξ−) = inf
0≤t≤ω

xi(t), i = 1, 2, · · · , n; y j(η−) = inf
0≤t≤ω

y j(t), j = 1, 2, · · · ,m.

From (3.4), we have

xi(ξ−)aL
i bL

i ω ≤

∫ ω

0
ai(xi(s))bi(xi(s))ds

=

∫ ω

0
{−ai(xi(s))[−

m∑
j=1

ai j(t) f j(y j(s − τi j(s))) −
m∑

j=1

bi j(t) f j(ẏ j(s − τ̃i j(s)))

−Ii(s)]}ds +

p∑
k=1

Iikxi(tk)

≤

∫ ω

0
|ai(xi(s))[−

m∑
j=1

ai j(t) f j(y j(s − τi j(s))) −
m∑

j=1

bi j(t) f j(ẏ j(s − τ̃i j(s)))
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−Ii(s)]|ds + |

p∑
k=1

Iikxi(tk)|

≤ aM
i ω

m∑
j=1

(aM
i j + bM

i j )F̃ j +

p∑
k=1

Iikxi(tk),

that is,

xi(ξ−) ≤

aM
i ω

m∑
j=1

(aM
i j + bM

i j )F̃ j +

p∑
k=1

Iikxi(tk)

aL
i bL

i ω
:= T−1i.

Similarly we obtain

y j(η−) ≤

cM
j ω

n∑
i=1

(cM
ji + dM

ji )G̃i +

p∑
k=1

J jky j(tk)

cL
j d

L
jω

:= T−2 j.

Again set ξ+, η+ ∈ [0, ω], and

xi(ξ+) = sup
0≤t≤ω

xi(t), i = 1, 2, · · · , n; y j(η+) = sup
0≤t≤ω

y j(t), j = 1, 2, · · · ,m,

obviously

xi(ξ+) ≥ −

aM
i ω

m∑
j=1

(aM
i j + bM

i j )F̃ j +

p∑
k=1

Iikxi(tk)

aM
i bM

i ω
:= T +

1i.

y j(η+) ≥ −

cM
j ω

n∑
i=1

(cM
ji + dM

ji )G̃i +

p∑
k=1

J jky j(tk)

cM
j dM

j ω
:= T +

2 j.

Denote Hi = max
0≤t≤ω

|zi(t)| < max{|T +
1i|, |T

−
1i|}, and

H =

n+m∑
i=1

Hi + E,

where E is a sufficiently large positive constant. It is obvious that H is independent of λ. Let

Ω = {z(t) = (xT (t), yT (t))T ∈ X : ‖z(t)‖ < H, z(t+
k ) ∈ Ω, k = 1, 2 · · · , p}.

where x(t) = (x1(t), · · · , xn(t))T , y(t) = (y1(t), · · · , ym(t))T .
Next we check the three conditions in Lemma 1.
(a) For each λ ∈ (0, 1), z(t) ∈ ∂Ω ∩ DomL with the norm ‖z(t)‖ = H, we have Lz , λNz.
(b) For any z ∈ ∂Ω ∩ Rn+m, z is a constant vector in Rn+m, ‖z‖ = H, then QNz , 0.
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(c) Let J : ImQ→ KerL, then

JQNz = QNz =



 1
ω

∫ ω

0
Ai(s)ds +

1
ω

p∑
k=1

Iik(xi(tk))


n×1 1

ω

∫ ω

0
B j(s)ds +

1
ω

p∑
k=1

J jk(y j(tk))


m×1

, 0, · · · , 0, 0

 .
Define Ψ : KerL × [0, 1]→ X by

Ψ(z, µ) = −µz + (1 − µ)QNz.

It is easy to verify Ψ(z, µ) , (0, 0, · · · , 0) for any z ∈ ∂Ω ∩ KerL.
Therefore

deg{JQN,Ω ∩ kerL, (0, 0, ..., 0)} = deg{QNz,Ω ∩ kerL, (0, 0, ..., 0)}
= deg{−z,Ω ∩ kerL, (0, 0, ..., 0)}
, 0.

All the conditions in Lemma 1 have been verified. We conclude that Lz = Nz has at least one
ω−periodic solution. This implies that systems (2.1) and (2.2) have at least one ω−periodic solution.

�

Remark 1. The method of the estimation for Ω is classical and effective. In fact, a new study method
is cited in [33], utilizing Lyapunov method to study periodic solutions for neural networks. Hence, we
also established Lemma 3 and gave a detailed proof in Appendix.

4. Global stability of periodic solution

In this section, we will construct a new Lyapunov functional to study the global asymptotic stability
of periodic solutions of systems (2.1) and (2.2).

Theorem 2. Assume that (H1)–(H5) hold, and
(H6) ai(u) and c j(u) are globally Lipschitz continuous, that is, for any (u, v) ∈ R, there exist

constants ha
i and hc

j such that

|ai(u) − ai(v)| ≤ ha
i |u − v|, i = 1, 2, · · · , n,

|c j(u) − c j(v)| ≤ hc
j|u − v|, j = 1, 2, · · · ,m.

(H7) for all i, j (i = 1, 2, · · · , n, j = 1, 2, · · · ,m), there exist constants Lab
i and Lcd

j such that

|ai(u)bi(u) − ai(v)bi(v)| ≥ Lab
i |u − v|, |c j(u)d j(u) − c j(v)d j(v)| ≥ Lcd

j |u − v|, ∀(u, v) ∈ R.
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(H8) there exist positive constants θi, θn+ j and γ ∈ (0,min(Λ1i,Λ2 j)) such that

−θi(Λ1i − γ) +

m∑
j=1

θn+ jcM
j

cM
ji Gi

1 − σ′Mji
eγσ

′M
ji < 0,

and

−θn+ j(Λ2 j − γ) +

n∑
i=1

θiaM
i

aM
i j F j

1 − τ′Mi j

eγτ
′M
i j < 0,

where

Λ1i = Lab
i − ha

i

m∑
j=1

(aM
i j + bM

i j )F̃ j − ha
i IM

i ,

Λ2 j = Lcd
j − hc

j

n∑
i=1

(cM
ji + dM

ji )G̃i − hc
jJ

M
j ,

in which

IM
i = max

0≤t≤ω
Ii(t), JM

j = max
0≤t≤ω

J j(t), τ′Mi j = max
0≤t≤ω

τ′i j(t),

σ′Mji = max
0≤t≤ω

σ′ji(t), τ̃′Mi j = max
0≤t≤ω

τ′i j(t), σ̃′Mji = max
0≤t≤ω

σ′ji(t), .

and 1 − τ′Mi j > 0, 1 − σ′Mji > 0, 1 − τ̃′Mi j > 0, 1 − σ̃′Mji > 0.

(H9) −2 < Iik < 0, −2 < J jk < 0, i = 1, 2, · · · , n, j = 1, 2, · · · ,m, k = 1, 2, · · · , p. Then the
ω−periodic solution (x∗T (t), y∗T (t))T of systems (2.1) and (2.2) is global asymptotic stable.

Proof. From Theorem 1, we find that systems (2.1) and (2.2) has at least one ω−periodic solution
under assumptions (H1)-(H5). Let (x∗T (t), y∗T (t))T be one ω−periodic solution of systems (2.1) and
(2.2). For any solution (x(t)T , y(t)T )T of system (2.1), we let

ui(t) = xi(t) − x∗i (t), v j(t) = y j(t) − y∗j(t),

then

u̇i(t) = ẋi(t) − ẋ∗i (t), v̇ j(t) = ẏ j(t) − ẏ∗j(t).
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It is easy to see that system (2.1) can be reduced to the following system

dui(t)
dt

= −[ai(ui(t) + x∗i (t))bi(ui(t) + x∗i (t)) − ai(x∗i (t))bi(x∗i (t))]

+ai(ui(t) + x∗i (t))
m∑

j=1

ai j(t) f j(y j(t − τi j(t))) − ai(ui(t) + x∗i (t))
m∑

j=1

ai j(t) f j(y∗j(t − τi j(t)))

+ai(ui(t) + x∗i (t))
m∑

j=1

bi j(t) f j(ẏ j(t − τ̃i j(t))) − ai(ui(t) + x∗i (t))
m∑

j=1

bi j(t) f j(ẏ∗j(t − τ̃i j(t)))

+(ai(ui(t) + x∗i (t)) − ai(x∗i (t)))
m∑

j=1

ai j(t) f j(y∗j(t − τi j(t)))

+(ai(ui(t) + x∗i (t)) − ai(x∗i (t)))
m∑

j=1

bi j(t) f j(ẏ∗j(t − τ̃i j(t)))

+(ai(ui(t) + x∗i (t)) − ai(x∗i (t)))Ii(t), t ∈ [o, ω], t , tk,

∆xi(tk) = xi(t+
k ) − xi(tk) = Iik(xi(tk)), i = 1, 2, · · · , n, k = 1, 2, · · · ,

dv j(t)
dt

= −[c j(v j(t) + y∗j(t))d j(v j(t) + y∗j(t)) − c j(y∗j(t))d j(y∗j(t))]

+c j(v j(t) + y∗j(t))
n∑

i=1

c ji(t)gi(xi(t − σ ji(t))) − c j(v j(t) + y∗j(t))
n∑

i=1

c ji(t)gi(x∗i (t − σ ji(t)))

+c j(v j(t) + y∗j(t))
n∑

i=1

d ji(t)gi(ẋi(t − σ̃ ji(t))) − c j(v j(t) + y∗j(t))
n∑

i=1

d ji(t)gi(ẋ∗i (t − σ̃ ji(t)))

+(c j(v j(t) + y∗j(t)) − c j(y∗j(t)))
n∑

i=1

c ji(t)gi(x∗i (t − σ ji(t)))

+(c j(v j(t) + y∗j(t)) − c j(y∗j(t)))
n∑

i=1

d ji(t)gi(ẋ∗i (t − σ̃ ji(t)))

+(c j(v j(t) + y∗j(t)) − c j(y∗j(t)))J j(t), t ∈ [o, ω], t , tk,

∆y j(tk) = y j(t+
k ) − y j(tk) = J jk(y j(tk)), j = 1, 2, · · · ,m, k = 1, 2, · · · .

(4.1)

From system (4.1), we have

D+ui(t) ≤ −[Lab
i − ha

i

m∑
j=1

(aM
i j + bM

i j )F̃ j − ha
i IM

i ]|ui(t)| + aM
i

m∑
j=1

aM
i j F j(v j(t − τi j(t)))

+aM
i

m∑
j=1

bM
i j F j(v̇ j(t − τ̃i j(t))), (4.2)

and

D+v j(t) ≤ −[Lcd
j − hc

j

n∑
i=1

(cM
ji + dM

ji )G̃i − hc
jJ

M
j ]|v j(t)| + cM

j

n∑
i=1

cM
ji Gi(ui(t − σ ji(t)))

+cM
j

n∑
i=1

dM
ji Gi(u̇i(t − σ̃ ji(t))), (4.3)

for all i = 1, 2, · · · , n and j = 1, 2, · · · ,m.
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Define V(t) = V1(t) + V2(t), where

V1(t) =

n∑
i=1

θieγt|ui(t)| + aM
i

m∑
j=1

θi

aM
i j F j

1 − τ′Mi j

∫ t

t−τi j(t)
|v j(s)|eγ(s+τ′Mi j )ds

+aM
i

m∑
j=1

θi

bM
i j F j

1 − τ̃′Mi j

∫ +∞

t−τ̃i j(t)
|v̇ j(s)|eγ(s+τ̃′Mi j )ds

 , (4.4)

and

V2(t) =

m∑
j=1

θn+ jeγt|v j(t)| + cM
j

n∑
i=1

θn+ j

cM
ji Gi

1 − σ′Mji

∫ t

t−σ ji(t)
|ui(s)|eγ(s+σ′Mji )ds

+cM
j

n∑
i=1

θn+ j

dM
ji Gi

1 − σ̃′Mji

∫ +∞

t−σ̃ ji(t)
|u̇i(s)|eγ(s+σ̃′Mji )ds

 , (4.5)

From (4.2) and (4.3), we have

D+V1(t) ≤
n∑

i=1

θi
(
− (Lab

i − ha
i

m∑
j=1

(aM
i j + bM

i j )F̃ j − ha
i IM

i − γ)
)
|ui(t)|eγt

+θieγtaM
i

m∑
j=1

aM
i j F j(v j(t − τi j(t))) + θieγtaM

i

m∑
j=1

bM
i j F j(v̇ j(t − τ̃i j(t)))

+aM
i

m∑
j=1

θi

aM
i j F j

1 − τ′Mi j

[
|v j(t)|eγ(t+τ′Mi j )

− |v j(t − τi j(t))|eγ(t−τi j(t)+τ′Mi j )(1 − τ′i j(t))
]

+aM
i

m∑
j=1

θi

bM
i j F j

1 − τ̃′Mi j

[
− |v̇ j(t − τ̃i j(t))|eγ(t−τ̃i j(t)+τ̃′Mi j )(1 − τ̃′i j(t))

]
.

According to
1 − τ′i j(t) ≥ 1 − τ′Mi j , eγ(t−τi j(t)+τ′Mi j )

≥ eγt,

1 − τ̃′i j(t) ≥ 1 − τ̃′Mi j , eγ(t−τ̃i j(t)+τ̃′Mi j )
≥ eγt,

we obtain

D+V1(t) ≤
n∑

i=1

−θi(Λ1i − γ)|ui(t)|eγt +

m∑
j=1

θiaM
i

aM
i j F j

1 − τ′Mi j

|v j(t)|eγ(t+τ′Mi j )

 ,
where

Λ1i = Lab
i − ha

i

m∑
j=1

(aM
i j + bM

i j )F̃ j − ha
i IM

i .

Similarly to the calculation of D+V1(t), we have

D+V2(t) ≤
m∑

j=1

−θn+ j(Λ2i − γ)|v j(t)|eγt +

n∑
i=1

θn+ jcM
j

cM
ji Gi

1 − σ′Mji
|ui(t)|eγ(t+σ′Mji )

 ,
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Hence

D+V(t) ≤ eγt
n∑

i=1

−θi(Λ1i − γ) +

m∑
j=1

θn+ jcM
j

cM
ji Gi

1 − σ′Mji
eγσ

′M
ji

 |ui(t)|

+eγt
m∑

j=1

−θn+ j(Λ2i − γ) +

n∑
i=1

θiaM
i

aM
i j F j

1 − τ′Mi j

eγτ
′M
i j

 |v j(t)|

< 0.

In view of assumption (H3), we have

V(t+
k ) =

n∑
i=1

θieγt+k |ui(t+
k )| + aM

i

m∑
j=1

θi

aM
i j F j

1 − τ′Mi j

∫ t+k

t+k −τi j(t+k )
|v j(s)|eγ(s+τ′Mi j )ds

+

m∑
j=1

θiaM
i

bM
i j F j

1 − τ̃′Mi j

∫ +∞

t+k −τ̃i j(t+k )
|v̇ j(s)|eγ(s+τ̃′Mi j )ds


+

m∑
j=1

θn+ jeγt+k |v j(t+
k )| + cM

j

n∑
i=1

θn+ j

cM
ji Gi

1 − σ′Mji

∫ t+k

t+k −σ ji(t+k )
|ui(s)|eγ(s+σ′Mji )ds

+

m∑
j=1

n∑
i=1

θn+ jcM
j

dM
ji Gi

1 − σ̃′Mji

∫ +∞

t+k −σ̃ ji(t+k )
|u̇i(s)|eγ(s+σ̃′Mji )ds


≤

n∑
i=1

θieγtk |(1 + Iik)ui(tk)| + aM
i

m∑
j=1

θi

aM
i j F j

1 − τ′Mi j

∫ tk

tk−τi j(tk)
|v j(s)|eγ(s+τ′Mi j )ds

+

m∑
j=1

θiaM
i

bM
i j F j

1 − τ̃′Mi j

∫ +∞

tk−τ̃i j(tk)
|v̇ j(s)|eγ(s+τ̃′Mi j )ds


+

m∑
j=1

θn+ jeγtk |(1 + J jk)v j(tk)| + cM
j

n∑
i=1

θn+ j

cM
ji Gi

1 − σ′Mji

∫ tk

tk−σ ji(tk)
|ui(s)|eγ(s+σ′Mji )ds

+

m∑
j=1

n∑
i=1

θn+ jcM
j

dM
ji Gi

1 − σ̃′Mji

∫ +∞

tk−σ̃ ji(tk)
|u̇i(s)|eγ(s+σ̃′Mji )ds


≤ V(tk).

Thus, by the standard Lyapunov functional theory, the periodic solution (x∗T , y∗T )T is global asymptotic
stable. The proof is complete. �

Remark 2. In [20], the authors discussed a model describing dynamics of delayed Cohen-Grossberg-
type BAM neural networks without impulses. In our paper, we not only consider the impact of impulses
and construct a new Lyapunov functional to establish the existence and the global asymptotic stability
of periodic solutions.

Remark 3. In [16], the impulsive function is linear. We discussed a kind of more general bounded and
Lipschitz continuous functions in this paper.
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Remark 4. In [32], the authors discussed a kind of BAM neural networks with time-varying delays
and impulses. In this paper, we propose a new kind of Cohen-Grossberg-type BAM neural network
systems, which have a more wide application in practice. Obviously Cohen-Grossberg-type BAM
neural networks can be reduced to Hopfield-type BAM neural networks and cellular BAM neural
networks.

Corollary 1. Suppose that the assumptions (H1)–(H3) hold, then the systems (2.1) and (2.2) without
impulses has at least one ω−periodic solution.

Remark 5. The consideration of neutral delays may affect the stability of systems since the presence
of delays may induce complex behaviors for the schemes. The existence of delays plays an increasingly
important role in many disciplines like economic, mathematics, science, and engineering, which can
also help describe propagation and transport phenomena or population dynamics, etc. For instance, in
economic systems, presence delays appear in a natural way since decisions and effects are separated
by some time interval.

5. An illustrative example

As applications, we present an example to illustrate our main results in Theorem 1 and Theorem 2.

Example 1. Consider the Cohen-Grossberg-type BAM neural networks with m = n = 1, which is given
as

ẋ1(t) = −a1(x1(t))
[
b1(x1(t)) − a11(t) f1(y1(t − τ11(t))) − b11(t) f1(ẏ1(t − τ̃11(t))) − I1(t)

]
, t > 0, t , tk,

∆x1(tk) = I1k(x1(tk)), k = 1, 2, · · · ,
ẏ1(t) = −c1(y1(t))

[
d1(y1(t)) − c11(t)g1(x1(t − σ11(t))) − d11(t)g1(ẋ1(t − σ̃11(t))) − J1(t)

]
, t > 0, t , tk,

∆y1(tk) = J1k(y1(tk)), k = 1, 2, · · · ,

(5.1)

where

a1(u) =
1
3

+
1
3

sinu, b1(u) = u(
1
3
−

1
3

sinu), c1(u) =
1
2

+
1
2

cosu, d1(u) = u(
1
2
−

1
2

cosu),

f1(u) = sinu, g1(u) =
1
2

(|sinu + 1| − |sinu − 1|), I1(t) =
1

15
(−2 + sint),

J1(t) =
1
15

(−2 + cost), a11(t) = b11(t) = c11(t) = d11(t) =
1

30
sint,

τ11 = τ̃11 = σ11 = σ̃11 =
1

10
sint, I1k(u) = −1 + sinu, J1k(u) = −1 + cosu.

By a straightforward calculation, we obtain

aM
11 = bM

11 = cM
11 = dM

11 =
1

30
, F̃1 = 1, G̃1 = 1, IM

1 = JM
1 = −

1
15
,

ha
1 =

1
3
, hc

1 =
1
2
, aL

1 = cL
1 = 0, aM

1 = cM
1 =

2
3
, bL

1 = dL
1 = 0,

bM
1 = dM

j = 1, Lab
1 =

1
9
, Lcd

1 =
1
4
, τ′M11 = τ̃′M11 = σ′M11 = σ̃′M11 =

1
10
.

AIMS Mathematics Volume 6, Issue 3, 2539–2558.



2554

Thus

Λ11 =
4

45
and Λ21 =

13
60
.

Choose γ = 1
100 ∈ (0,min(Λ11,Λ21)), there exist positive constants θ1 = 100 and θ2 = 50, such that

−θ1(Λ11 − γ) + θ2cM
1

cM
11G1

1 − σ′Mji
eγσ

′M
11 = −100 × (

4
45
−

1
100

) +
100
81
× e

1
1000

≈ −6.653085802263323 < 0,

and

−θ2(Λ21 − γ) + θ1aM
1

aM
11F1

1 − τ′M11

eγτ
′M
11 = −50 × (

4
45
−

1
100

) +
200
81
× e

1
1000

≈ −1.472838271193313 < 0.

By Theorem 1, system (5.1) has a 2π−periodic solution. From Theorem 2, all other solutions of system
(5.1) converges asymptotically to the periodic solution as t → +∞.

6. Conclusions

We have introduced Cohen-Grossberg-type BAM neural networks (2.1) and (2.2) with neutral-type
time delays and impulses, and obtained some results on the existence and stability of periodic
solutions. The impulse terms in (2.1) are bounded and Lipschitz continuous functions instead of
linear functions. What’s more, we utilized both the method of the classical estimation and Lyapunov
functional construction to search for the region of periodic solutions.

Appendix

The existing proof of periodic solution is very classical and effective approach and the method has
been widely applied to studying the periodic solution for more 25 years. The proof of the global
stability part has some novel in constructing Laypunov function. Hence, we also apply the new
Lyapunov function [33] as in the stability to entail the proof of the existing part.

Lemma 3. For any λ ∈ (0, 1), consider the operator equation Lz = λNz, if the periodic solutions of
system (3.3) exist, then they are bounded and the boundary is independent of the choice of λ under
assumption (H1)-(H5), Namely, there exists a positive constant H̄0 such that when ‖(xT (t), yT (t))T ‖ =

‖(x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ‖ ≤ H̄0.

Proof. Suppose that (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ∈ X is a solution of system (3.3) for some
λ ∈ (0, 1). It can be thus obtained from system (3.3) that

D+xi(t) ≤ −λ

aL
i bL

i |xi(t)| −
m∑

j=1

aM
i (aM

i j + bM
i j )F̃ j − aM

i IM
i


� −λ

[
ζ11|xi(t)| − ζ12

]
, (6.1)
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and

D+y j(t) ≤ −λ

cL
j d

L
j |y j(t)| −

n∑
i=1

cM
j (cM

ji + dM
ji )G̃i − cM

j JM
j


� −λ

[
ζ21|xi(t)| − ζ22

]
, (6.2)

for all i = 1, 2, · · · , n and j = 1, 2, · · · ,m, where

ζ11 = aL
i bL

i , ζ12 =

m∑
j=1

aM
i (aM

i j + bM
i j )F̃ j + aM

i IM
i ,

ζ21 = cL
j d

L
j , ζ22 =

n∑
i=1

cM
j (cM

ji + dM
ji )G̃i + cM

j JM
j .

Define V(t) = V1(t) + V2(t), where

V1(t) =

n∑
i=1

µ1i|xi(t)|2 +

n∑
i=1

µ2i|xi(t)|,

and

V2(t) =

m∑
j=1

δ1 j|y j(t)|2 +

m∑
j=1

δ2 j|y j(t)|,

in which µ1i, µ2i, δ1 j, δ2 j > 0. Since (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T is a periodic solution of system
(3.3), then V(x1(t), · · · , xn(t), y1(t), · · · , ym(t)) is a periodic function.

One may further get

D+V1(t) ≤ −2λ
n∑

i=1

µ1i|xi(t)|(ζ11|xi(t)| − ζ12) − λ
n∑

i=1

µ2i(ζ11|xi(t)| − ζ12)

=

n∑
i=1

[
−2λζ11µ1i|xi(t)|2 + (2λµ1iζ12 − λµ2iζ11)|xi(t)| + λµ2iζ12

]
,

and

D+V2(t) ≤ −2λ
m∑

j=1

δ1 j|y j(t)|(ζ21|y j(t)| − ζ22) − λ
m∑

j=1

δ2 j(ζ21|y j(t)| − ζ22)

=

m∑
j=1

[
−2λζ21δ1 j|y j(t)|2 + (2λδ1 jζ22 − λδ2 jζ21)|y j(t)| + λδ2 jζ22

]
.

Thus

D+V(t) ≤
n∑

i=1

[
−2λζ11µ1i|xi(t)|2 + (2λµ1iζ12 − λµ2iζ11)|xi(t)| + λµ2iζ12

]
+

m∑
j=1

[
−2λζ21δ1 j|y j(t)|2 + (2λδ1 jζ22 − λδ2 jζ21)|y j(t)| + λδ2 jζ22

]
.
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From
−2λζ11µ1i|xi(t)|2 + (2λµ1iζ12 − λµ2iζ11)|xi(t)| + λµ2iζ12 = 0,

and
−2λζ21δ1 j|y j(t)|2 + (2λδ1 jζ22 − λδ2 jζ21)|y j(t)| + λδ2 jζ22 = 0,

there exist positive constants h1, h2 such that the solutions satisfy

max
t∈[0,ω]

|xi(t)| > h1, max
t∈[0,ω]

|y j(t)| > h2.

It follows that when ‖xi(t)‖ > h1, ‖y j(t)‖ > h2, we can choose a positive constant H̃ = nh1 + mh2, such
that ‖(x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ‖ > H̃, and

−2λζ11µ1i|xi(t)|2 + (2λµ1iζ12 − λµ2iζ11)|xi(t)| + λµ2iζ12 < 0,

and
−2λζ21δ1 j|y j(t)|2 + (2λδ1 jζ22 − λδ2 jζ21)|y j(t)| + λδ2 jζ22 < 0.

Hence,
D+V(t) < 0.

In fact, if ‖(x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ‖ is unbounded, then for any H̄ > H̃, we have

‖(x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ‖ > H̄ > H̃.

It follows that D+V(t) < 0, which contradicts the fact that V(x1(t), · · · , xn(t), y1(t), · · · , ym(t)) is a
periodic function. This implies that ‖(x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ‖ ≤ H̄0, where H̄0 is a positive
constant. This completes the proof. �
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