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1. Introduction

Let A denote the class of functions of the form
f@ =2+ ) ad, (1.1)
k=2

which are analytic in the open disc U = {z € C : |z] < 1}. Let S denote the subclass of A consisting
of functions that are univalent in U. Also, let Q be the class of all analytic functions w in U that
satisfy the conditions w(0) = 0 and [w(z)] < 1(z € U). If f and g are analytic in U, we say that f
is subordinate to g, written as f < g in U or f(z) < g(z) (z € U), if there exists w €  such that
f(2) = gw(z)) (z € U). Furthermore, if the function g (z) is univalent in U, then we have the following
equivalence holds (see [4] and [11]):

f(2) <g(2) & f(0) = g(0) and f(U) C g(U).
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A function f € A is said to be in the class of y—spiral-like functions of order A in U, denoted by
S (y; ) if

%{eiyzf—@}>/l cosy (O$/1< Lyl < 7—T;zeU). (1.2)
/@ 2
The class S* (y; 1) was studied by Libera [10] and Keogh and Merkes [9]. Note that

1). 8" (y;0) = 8* (y) is the class of spiral-like functions introduced by gpaéek [17];
2). §*(0; 1) = 8 (4) is the class of starlike functions of order A;
3). 8*(0;0) = 8" is the familiar class of starlike functions.

For functions f € A given by (1.1) and g € A given by
8@ =2+ ) bid, (1.3)
k=2
we define the Hadamard product (or Convolution ) of f and g by
(Fre)@ =2+ ) abd (1.4)
k=2

Also, for f € A given by (1.1) and 0 < g < 1, the Jackson’s g-derivative operator or g-difference
operator for a function f € A is defined by (see [1-3,6,7,15,16])

f(0) ifz=0,
D,f(z) =3 f@) - f(gz) if2%0. (1.5)
(1-9)xz
From (1.5), we deduce that
D,f(z) =1+ Y [Kly e (z #0), (1.6)
k=2
where the g-integer number [i], is defined by
[il, = 1_—q 14+t tqg (1.7)
—-q
n () - fq2)
lim D, f(2) = 1im LI _ g (1.8)
q—1- q—1- (1 — q)z
for a function f which is differentiable in a given subset of C.
Next, in terms of the g-generalized Pochhammer symbol ([v] ‘I)n given by
([v]q)n =, v+1], v+2], .. v+n-1], (1.9)
we define the function ¢, (a, c; z) by
N ([a]q)k—l k —. 7
by (a,c;) =2+ ) Z (aeR;ceR\Zy:Z5 ={0,-1,-2,..}:z€ U). (1.10)
k=2 ([C]q)k—l
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Corresponding to the function ¢, (a, c; z), we consider a linear operator L, (a,c) : A — A which is
defined by means of the following Hadamard product (or convolution):

=L a 2 (1.11)

Ly(a,c) f(2) = ¢4(a,c;2) x f(2) :Z+Z

It is easily verified from (1.11) that
q“"'2Dy (Ly (a,¢) £ (2) = lal, Ly(a+1,0) f (@) —la—1],L,(a,0) f (). (1.12)

Moreover, for f € A, we observe that

D). lim,_,i- Ly (a,c) f (z) = L(a,c) f (z), where L (a, c) denotes the Carlson-Shaffer operator [5];

2). L6+ 1,1) f(2) = ROf (2) (6 > 0), where R? denotes the Ruscheweyh g-derivative of a function
f € A of order ¢ (see [8]);

3). limy1- L, (6 + 1,1) £ (2) = ROf (2) (6 > 0), where 7%2 denotes the Ruscheweyh derivative of order
o0 (see [14]);

4). Ly(a,a) f(z) = f(z)and L, (2,1) [ (2) = 2D, f (2).

Making use of the g-analogue of Carlson-Shaffer operator L, (a, ¢), we introduce a new subclass of
spiral-like functions.

Definition 1. For0 <7< 1,0 <A < 1l and|y| < 5, we let Sj]’ (y, 4, 1) be the subclass of A consisting
of functions of the form (1.1) and satisfying the analytic condition:

D, (L, (a,
‘R{eiy Dy (Ly @0/ 2) }>/lcosy (1.13)

(I-1)z+tL,(a,0) f(2)

(0§t§1;03/1<1;|y|<g;z€U).

We note that

1). Fort =1,0 <A< 1landly| <7, welet Sf] (y,4,1) = SZ (v, A) be the subclass of A consisting of
functions of the form (1.1) and satisfying the analytic condition:

. zD, (Lq (a,c) f (Z))
?’\{e“y L@ @ } > 1 cosy (1.14)

(Osxl<1;|y|<g;zeU).

2). Fort=0,0<A<1andly| <7, welet S; (y,4,0) = 7(5 (v, 4) be the subclass of (A consisting of
functions of the form (1.1) and satisfying the analytic condition:

R {e” D, (L, (a.0) f (2))} > A cosy (1.15)
(051< 11yl < g;zeU).

The object of the present paper is to investigate the coefficient estimates and subordination
properties for the class of functions SZ (y, A, 1). Some interesting consequences of the results are also
pointed out.
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2. Membership characterizations

In this section, we obtain several sufficient conditions for a function f € A to be in the class

Sy (v, 4,0).
Theorem 1. Let f € A and let o be a real number with0 < o < 1. If

zD, (Lq (a,0) f (Z))
(1-1) z+1L,(a.c)f(R)

I|<1-0 (z€U),

then f € SZ (y, 4, 1) provided that

1
Iyl < cos™ el
1-A4

Proof. From (2.1) it follows that

zD, (Lq (a,0) f (Z))

(-1 z+tL,(a,0) f(2) =1+ -0)w(),

where w (z) € Q. We have

® {e” zD, (Lq (a,0) f (Z)) }

(-1 z+tL(a,0) f(2) sR{ew[l+(1—0')w(z)]}

cosy+(1-o)R {eiyw (Z)}

> cosy—(1-o0) |ei7w (z)|
> cosy—(1-o0)
> A cosy

1-0

1 ) Thus, the proof is completed.

provided that |y| < cos™! (

Putting 0 = 1 — (1 — A) cosy in Theorem 1, we obtain the following result.
Corollary 1. Let f € A. If

zD, (Lq (a,0) f (Z))
A-0z+tL,(@o)fR)

I|<({=ADcosy (zeU),

then f € S; (v, 4,1).

In the following theorem, we obtain a sufficient condition for f to be in 87 (, 4, 7).

Theorem 2. A function f (z) of the form (1.1) is in SZ (y,4,1) if

i {([k]q - t)secy+ (1 —/l)t} % lagl <1 - A.

k=2 ([C]q)k—l

2.1)

(2.2)

(2.3)

(2.4)
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Proof. In virtue of Corollary 1, it suffices to show that the condition (2.3) is satisfied. We have

- ([a]q)k-l -
pwose) | k%{“‘]q‘f}mak il
(I-1z+tLy(a0)f@ |

([C]q)k |a Z
8
< .
1= 5 i ad

The last expression is bounded above by (1 — 1) cos vy, if

N ([a]q)k—l { C ([a]q)k—l }
k], — ¢t lar] < (1 —A)cosyil — t ||
;{ ! }([C]‘I)k—l k Z ( ] )k—l k

k=2 [C q

which is equivalent to

- [a]
D (1, = £)secy + (1 - 2y (1), jarl < 1-A.
k=2 ([C]q)k—l
This completes the proof of the Theorem 2. O
Putting # = 1 in Theorem 2, we obtain the following corollary.
Corollary 2. A function f (z) of the form (2.1) is in SZ (y, ) if
- [a]
> (K1, = 1) secy + 1 —/l}( )8 gl < 1 - A, (2.5)
k=2 ([C]q) 1
Putting ¢ = 0 in Theorem 2, we obtain the following corollary.
Corollary 3. A function f (z) of the form (2.1) is in 7(; (y, ) if
> Ik, secy )., gl < 1 -, (2.6)

k=2 ([ ]‘I)k—l

3. Subordination result

Before stating and proving our subordination result for the class S7 (y, 4, 1), we need the following
definitions and a lemma due to Wilf [19].
Definition 2 [19]. A sequence {b;};., of complex numbers is said to be a subordinating factor sequence

if, whenever f () = z+ Y, axz* is regular, univalent and convex in U, we have
k=2

[

D ah <[ (a1 =1Lze). 3.1

k=1
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Lemma 1 [19]. The sequence {b;},., is a subordinating factor sequence if and only if

‘R{l+22bkzk}>0 (z € U). (3.2)

k=1

Theorem 3. Let f € SZ (y, 4, 1) satisfy the coefficient inequality (2.4) with @ > ¢ > 0 and let g (z) be
any function in the usual class of convex functions C, then

(121, - 1) secy + (1 = 1) %

2[1 =+ {(121, - r)secy + (1 - o i ]

(f*9)@<g@ (3.3)

and
1-2+ {([2] - t) secy + (1 —=2) t} [al,

o
N (TR P RaEIP

(3.4)

{(1214-1) sec y+(1-r}

[1 /H'{([Z]q I)Qecy+(1 /l)t}[a]q]

The constant factor in (3.3) cannot be replaced by a larger number.

Proof. Let f € 87 (y, 4, 1) satisty the coefficient inequality (2.4) and suppose that

g(Z):Z+Zkak€C.

k=2

Then, by Definition 2, the subordination (3.3) of our theorem will hold true if the sequence

[e9)

(121, - 1) secy + (1 - 1} %

2[1 - A+ {(121, - 1) secy + (1 - D1 ]

ag

k=1

is a subordinating factor sequence, with b; = 1. In view of Lemma 1, it is equivalent to the inequality

%{1+§“ {([2]4—I)S€C’y+(1_/l)t}%

k=1 1—/7LJf{([2]q—t)secy+(1 —/l)t}%

z"} >0 (zel). (3.5)

{(t1g=1) secy+(1-e}(laly),.,

(l_ﬁ)([c]q)k—l
view of (2.4), when |z| = r < 1, we obtain

{(121, = 1) secy + (1 = D} 15
R+
1—/1+{([2] —t)secy+(1—/1)t [_]kl

By noting the fact that

is an increasing function for k > 2 and a > ¢ > 0. In

{([z]q —t) secy + (1 —2) t}%
= R{1+ ; :
-t ey -
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[ee)

Py (121, - 1) secy + (1 - 1} ank z

T 1-a+{(121, - t)secy + (1 —/l)t} laly

{(121, - ) secy + (1= D1 it

1—/1+{([2]q—t)secy+(1 —ﬂ)t}%r

1 -

(9]

% {(1K, = 1) secy + (1 = D1} {292 gy

k=2
1-a+{(12], - 1)secy + (1 - /l)t} laly

{([2]q—t)secy+(1 —/l)t}%

-
1—/l+{([2]q—t)secy+(1—/l)t}%
_ 1-21 )

=+ {(121, = 1) secy + (1 = D i} &t
= 1-r>0 (zd=r<1.

1 -

This evidently proves the inequality (3.5) and hence also the subordination result (3.3) asserted by
Theorem 3. The inequality (3.4) follows from (3.3) by taking

Z N X
)=——=27+ z €C.
g () - ;;:2

The sharpness of the multiplying factor in (3.3) can be established by considering a function
1-2 )
[al,
(121, = 1) secy + (1 = 1)

Clearly F € SZ (y, A, 1) satisfy (2.4). Using (3.3) we infer that

F()=z-

(121, - 1) secy + (1 =) ¢ )
L F () < —,
2[1—/1+{([2]q—t)secy+(1_/1)t} [“]q] 1-z
and it follows that
21, - 1= )} e
min {([ Iq t) secy + ( )t} . R (F - _%'

el<r 2[1 = A+ {(121, - £) secy + (1 = A1} %]

[a]
[21,~1) sec y+(1-Dt} il
(@, i, —— cannot be replaced by any larger one. i

This shows that the constant 7
2| 1-a+{(12g1) sec y+(1-2r} |

AIMS Mathematics Volume 6, Issue 3, 2525-2538.



2532

For ¢ = 1 in Theorem 3, we state the following corollary.
Corollary 4. Let f € 87 (y, A) satisfy the coefficient inequality (2.5) witha > ¢ > 0 and g € C, then

{qsecy+1—/l}%

- ” (f*8)(2) <g(@ (3.6)

2|11 - A+{gsecy+1-A)

q

and
1—/l+{qsecy+1—/l}%
R{f @) > - — (3.7)
{qsecy+1—/1}#
{qsecy+1—/l}@

Iy

2[1—/1+{q secy+(1—/l)}%
Taking ¢ = 0 in Theorem 3, we state the next corollary.

Corollary 5. Let f € K7 (y, A) satisfy the coefficient inequality (2.6) with a > ¢ > 0 and g € C, then

The constant factor

] in (3.6) cannot be replaced by a larger number.

[al,

(1 +¢g)sec 7@

(f*8) () <g@ (3.8)

2[1—/l+(1+q)secy%
q

and
lal,

1-1+(1 +q)secy[c]

R{f@}>-

al; (3.9)

(1+¢g)secy—=

[clq

lalg
(1+q) sec ym

The constant factor

2[1-A+(1+q) sec y@

] in (3.8) cannot be replaced by a larger number.
lelg

4. Fekete-Szego problem

The Fekete-Szego problem consists in finding sharp upper bounds for the functional |a3 — ua§| for
various subclasses of A (see [13] and [18]). In order to obtain sharp upper-bounds for |a3 - ,ua%l for
the class SZ (y, 4, 1) the following lemma is required (see, e.g., [12, p.108]).

Lemma 2. Let the function w € Q be given by

w@ =) wmd el).
k=1
Then

wil < 1, wal < 1T=Jwif, 4.1

and
[wo — s wi| < max {L,sl}, (4.2)

for any complex number s. The functions w(z) = z and w(z) = z?or one of their rotations show that
both inequalities (4.1) and (4.2) are sharp.

AIMS Mathematics Volume 6, Issue 3, 2525-2538.
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For the constants A, y with 0 < A < 1 and |y| < § denote

1+e™™ (e"'y —2Acos 7) Z
-z

Py @ = (zeU). (4.3)

The function #,,(z) maps the open unit disk U onto the half-plane
H,, = {w eC:R {eiyw} > Acos y}. If

Pry@=1+) pd (e,
k=1

then it is easy to check that
pr=2¢7"1=cosy (k>1). (4.4)

First we obtain sharp upper-bounds for the Fekete-Szego functional |a3 - ,ua§| with u real parameter.
Theorem 4. Let f € SZ (y, 4, 1) be given by (1.1) and let i be a real number. Then

2(1-) cos (Icl, ), [ 21-0r 201-D(1+g+a>=1)(lal, ), (Icl,)’
(1+q+q>=1)(lal ), »1 T (+q-1 Y(lal,)’(Icl,), <o)
2(1-A)cosy([clq
|as — pa3| < W (01 Spu <o) (4.5)
20-Deosy(lely), | 1 2= 20-)(1+g+¢2-1)(Ial, ), (I¢],)*
(+g+q>=0)(laly), | B (+q-1 2 (1al,) (Icly), Wz 02)
where ,
t(1+q -0 ([al,) (Ie,),
o1 = > (4.6)
(1+q+q>=1)(lcl,) ([a]q)2
2
(I+g-0+qg-1)(lal,) ([c]
oy = ( q) ( 4)2 4.7

- 2
(1= +g+q-0)(lal,), (Ic],)

and all estimates are sharp.

Proof. Suppose that f € S7 (y, 4,1) is given by (1.1). Then, from the definition of the class 7 (v, 4, 1),

there exists w € Q,
W(2) = Wiz + Waz® + Wz + ...

such that
zD, (Lq (a,0) f (Z)) _p U r
(-0 zril@ore W@ e, @9
We have ( )
Dy (Ly(a,0) f@) (al,
A-nz+il@of@ | TUra-niga:
; {(1 rq+q—1) EH% ay—1(1+q—-1) EH‘%?Z ag}f ;.. (4.9)
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Set
Piy @) =1 +piz+pr +paz + ...

From (4.4) we have
pL=pr=2e"7(1 - 2)cosy.

Equating the coefficients of z and z* on both sides of (4.8) and using (4.9), we obtain

_ P1 [C]q W
(1+q-1) [a,

a

and

([C]q)z

_ 1 B
as U+q+q—1) ([a]q)z [P1W2 + (Pz + d+q-1 pl)Wl]

and thus we obtain

2¢77 (1 - ) cosy [c],

_ 4.10
% (1+g-1 [al, " o
and
2¢ (1 = A)cos y ([c] 2te™ (1 -2
. (te1,), [W2+(1+ e )C"”)Wf]. @.11)
(1+q+q-0)(lal,), tra-t
It follows
2| _ 20-Deosy([c],) 27 (1= cos y (1+g+q>~1)(lal,),(Icl,)” 2
jas — paj| < g (a,), |+ b+ == (t P g (lan)z(leJq)z il

Making use of Lemma 2 we have

2(1-2)cos y([c]q)2

5 2e¥(1-Dcosy [, (I+a+a*~1)(lal,), (1e1,)’ _ 2
|a3 ,ua2| < (1+q+a2—1)(lal,), L+ ( L+ (t (1¢1),(1+-0) (lal,)’ Tflwil
or
2(1-2) cosy([c]
Jas - 3| < I [1 4 (VT MM+ 2007y = 1) wif] (4.12)
where . )
yo20-a(  (+ara -1 (i), (icl) s
= 1+ — t - u 3 . ( . )
9 (Iel,), (1 + g = 1) (1al,)
Denote by

F(oy)=[1+(VI+MM+2)x2 - 1)y

where x = cosy, y = |wy| and (x,y) : [0, 1] X [0, 1].

Simple calculation shows that the function F (x,y) does not have a local maximum at any interior
point of the open rectangle (0, 1) X (0, 1). Thus, the maximum must be attained at a boundary point.
Since F (x,0) =1, F(0,y) = 1 and F (1, 1) = |1 + M|, it follows that the maximal value of F (x, y) may
be F(0,0) =1or F(1,1) =|1 + M|. Therefore, from (4.12) we obtain

2(1-2) cos y([cl,),

(e (i), max{L |1+ M}, (4.14)

2
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where M is given by (4.13). Consider first the case |1 + M| > 1. If u < oy, where o7 is given by (4.6),
then M > 0 and from (4.14) we obtain

2(1-2) cos y([cl,),

2
|a3 /,t612| < (1+q+q2—l)([a]q)2 b+

21- _ 20-D(1+g+¢*~1)(lal,), (iel,)*
T+q-t (g1 P (laly)’ (ely),

which is the first part of the inequality (4.5). If 4 > o0, where o, is given by (4.7), then M < -2 and it
follows from (4.14) that

2(1-2) cos y([cl,), [_1 _20-dr 2(1-)(1+g+¢*~1)([al,), ([c]q)z]

2
az — uas| £ —————+%=
| 3TH 2| (1+g+¢*~1)(lal,), 1+g-t (1+g-1)*(1al,) (Icl,),

and this is the third part of (4.5).
Next, suppose 0y < u < 0. Then, |1 + M| < 1 and thus, from (4.14) we obtain

2(1-2) cos y([cl,),
(1+g+q*~1)(lal,),

which is the second part of the inequality (4.5). In view of Lemma 2, the results are sharp for w(z) = z
and w(z) = zZ or one of their rotations. O

2

For ¢t = 1 in Theorem 4, we state the following corollary.
Corollary 6. Let f € S (v, 4) be given by (1.1) and let u be a real number. Then

20-Deosy(lel), [ 20-n  20-00+g)(1al,),(il,)’

TR ]+ - : <o
LI(]‘W)([“]q)z | q H 4([5’]11)2([6]4)2 (H 3)

o 2(1-2) cos y([cly),
|(13 :ua2| < q(]+q)([a]q)2 ) (0-3 SH= 0-4)

20-Yeosy(iely)y | _q _ 20=d) 201-2)(1+g)(lal,), (I¢1,)* (4> o)

q(1+¢)([al,), i q 11([a]q)2([c]q)z -0
where ) 2
(tal,)’ (1e1,), (1+q- ) (lal,) (Icl,),
g3 = 04 =

Ca+p(a) (@), a-n0+(a,), (o)

and all estimates are sharp.
Taking ¢ = 0 in Theorem 4, we state the next corollary.
Corollary 7. Let f € K7 (y, 4) be given by (1.1) and let u be a real number. Then

(1+g+¢*)(laly), | (1497 (laly)*(Icl,),

2(1-D cos y([cl,), _1 2(1—/l)(1+q+q2)([a]q)2([c]q)2] (1< 0)
2(1-2) cos y([cl,),

2

|a3 —,Uaz| < e O<u<os)

2(1-2) cos y([cl,), 2(1—/l)(l+‘J+42)([a]q)z([c]q)2

2= ecosnllele)s | 4 >

(1+(1+‘12)([“]q)2 | * (1""1)2([“]!1)2([“]!1)2 (,u B 0-5)
where )

(1+ g7 (laly) (Iel),
05 =

(1= (1 +q+¢)(lal,), ([c]c,)2
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and all estimates are sharp.
We consider the Fekete-Szegd problem for the class 87 (y, 4, 1) with u complex parameter.
Theorem 5. Let f € S7 (7, 4,1) be given by (1.1) and let u be a complex number. Then,

2(1-2) cos g
las — ud| < = peos(lely), maX{l,

(1+g+¢?-1)(lal,),

21-Deosy [ (1+ara=n)(laly),(icly)” = e
lra-t (1+g-n(1aly) *(Iel,),

}. (4.15)

The result is sharp.
Proof. Assume that f € S7(y, 4, 1). Making use of (4.10) and (4.11) we obtain

2(1-2) cos y([cl, ),
(1+g+q~1)(lal,),

21 _
R

) 2
W2 _ |:2e'7(l—/I)COS')/ ( (1+q+q2_l‘)([a]q)2([c]q) _ t) _ 1] W2

L+t (+q-n(laly)’ (el,), !

The inequality (4.15) follows as an application of Lemma 2 with

g = 2¢7(1-1) cosy (1+4+qz—t)([a]q)2([c]q)2 —tl-1
L+g-1 (1+g-0(lal,)*(tely), '

For t = 1 in Theorem 5, we state the following corollary.
Corollary 8. Let f € S7 (y, 4) be given by (1.1) and let i be a complex number. Then,

|a3 —ua§| <

2(1-2) cos )/([c]q)2
ea(iay),  maxy 1,

2(1-2) cosy (1“1)([“]11)2([0](1)2 -1]= ei)’
a (tal, )’ (Lel,),

The result is sharp.
Taking ¢ = 0 in Theorem 5, we state the next corollary.
Corollary 9. Let f € K7 (y, ) be given by (1.1) and let u be a complex number. Then,
21-2) cos y( 1+g+4>)(lal, ), (Icl,)’ o
(+?(1al,)" (1), '

2(1-4
|a3 _/la% S Ly([c]q)zmax{l,

(1+’1+‘12)([“]q)2

The result is sharp.
5. Conclusion

Utilizing the concepts of quantum calculus, we defined new subclass of analytic functions
associated with g-analogue of Carlson-Shaffer operator. For this subclass we investigated some useful
results such as coefficient estimates, subordination properties and Fekete-Szegd problem. Their are
some problems open for researchers such as distortion theorems, closure theorems, convolution
propertiies and radii problems. Moreover, these results can be extended to multivalent functions and
meromophic functions.
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