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1. Introduction

It is widely recognized that fractional differential equations (FDEs) become one of the most
important research topics in numerous different disciplines such as mathematics, physics, biology,
chemistry, finance, economics, and engineering, etc, see [1–4]. The elementary knowledge of
fractional calculus can be found in the books of senior scholars [5, 6]. While some notable
developments on this topic can be found in the monographs of several mathematicians [7–9].
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In (2017), Almeida [10], investigated a novel fractional derivative called Ψ–Caputo fractional
derivative, which was already mentioned in Kilbas et al., book [5] under the concept of fractional
integrals and derivatives of a function with respect to another function and which was extended by
several famous scientists [5, 11–14]. Consequently several papers on Ψ–Caputo FDEs with different
techniques are available, we refer few of them in [15–17]. Other important findings on the existence,
uniqueness, and stability of solutions dealing with various definitions of well known fractional
derivatives can be found in the articles [18–30].

On the other hand, the monotone iterative technique combined with the method of upper and lower
solutions have been used by several researchers, both for the scalar case and the abstract case with
the end goal to establish the existence and uniqueness of extremal solutions for a class of nonlinear
ordinary and FDEs (see, for instance, [31–40]) and the references therein. Motivated by the papers
mentioned above, our goal is to extend the results of the recent paper [34] to the abstract framework.
To our knowledge, no contributions exist, concerning the existence and uniqueness of extremal solution
for a class of nonlinear FDEs in the frame of Ψ–Caputo derivative with initial conditions in Banach
spaces via the monotone iterative technique. As a results, we aim to fill this gap in the literature and
contribute to enriching this academic area. So, in this paper, we study the existence and uniqueness of
extremal solution for the following Ψ-Caputo FDE in an ordered Banach space Y:cDς;Ψ

a+ u(ξ) + ru(ξ) = f(ξ, u(ξ)), ξ ∈ I := [a, d],
u(a) = ua,

(1.1)

where cDς;Ψ
a+ is the Ψ-Caputo fractional derivative such that 0 < ς ≤ 1, f : I × Y −→ Y is a function

fulfillments some suppositions that will be mentioned later, r > 0 and ua ∈ Y.

Next, we continue the results obtained in our recently published work in [23] to prove other
properties such as the existence and uniqueness of solutions as well as the Ulam–Hyers (UH) stability
results for the following Ψ-Caputo fractional relaxation differential system (Ψ-Caputo FRDS):cDς1;Ψ

a+ u(ξ) + r1u(ξ) = G1(ξ, u(ξ), v(ξ)),
cDς2;Ψ

a+ v(ξ) + r2v(ξ) = G2(ξ, u(ξ), v(ξ)),
ξ ∈ I, (1.2)

with the initial conditions u(a) = µ1,

v(a) = µ2,
(1.3)

where ςi ∈ (0, 1], ri > 0,Gi : I×ℵ×ℵ −→ ℵ, i = 1, 2 are functions fulfillments some suppositions that
will be mentioned later, ℵ is a Banach space with norm ‖ · ‖ and µ1, µ2 ∈ ℵ.

We organize the present work as follows: In Sect. 2, we recall basic concepts and results that will
be called in the proof of our results. In Sect. 3, we apply the the monotone iterative technique in the
presence of upper and lower solutions method to establish the existence and uniqueness of extremal
solutions for the given problem (1.1). Whereas Sect. 4 is devoted to the existence and uniqueness
of solutions to the coupled system (1.2)–(1.3). Moreover, Sect. 5, contains the UH stability of the
proposed system (1.2)–(1.3). Also, two examples to illustrate the effectiveness of the feasibility of our
abstract results are provided in Sect. 6. the work is terminated by some concluding remarks in Sect. 7.
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2. Background materials

In this portion, we provide some fundamental concepts on the cones in a Banach space and
Kuratowski’s measure of noncompactness (KMN) as well as some facts about fractional calculus
theory.

All over this part, we suppose that (Y, ‖ · ‖,≤) is a partially ordered Banach space whose positive
cone K = {y ∈ Y | y ≥ θ} (θ is the zero element of Y ). Note that every cone K in Y defines a partial
ordering in Y given by

z1 ≤ z2 if and only if z2 − z1 ∈ K .

Definition 2.1 ( [44]). Let Y be an ordered Banach space with zero element θ. A cone K ⊂ Y is a
normal if ∃ ν > 0 such that

θ ≤ z1 ≤ z2 ⇒ ‖z1‖ ≤ ν‖z2‖, ∀z1, z2 ∈ Y.

where ν is the normal constant of K , which is the smallest positive number fulfilling the above
condition.

For any z1, z2 ∈ Y, z1 ≤ z2, The segment [z1, z2] is a set in Y defined by

[z1, z2] = {z ∈ Y : z1 ≤ z ≤ z2}.

Definition 2.2 ( [44]). An operator T : Y −→ Y is said to be increasing if

x ≤ y⇒ T x ≤ T y.

Let now I := [a, d] (0 < a < d < ∞) be a finite interval and Ψ : I → R be an increasing function
with Ψ′(ξ) , 0, for all ξ ∈ I, and let C(I,Y) be the Banach space of all continuous functions u from I
into Y with the norm

‖u‖∞ = sup
ξ∈I

‖u(ξ)‖.

Plainly, C(I,Y) is an ordered Banach space whose partial ordering ≤ reduced by a positive cone
KC = {u ∈ C(I,Y) : u(ξ) ≥ θ, ξ ∈ I} which is also normal with the same normal constant ν. For more
details on cone theory, see [44].

A measurable function u : I → Y is Bochner integrable if and only if ‖u‖ is Lebesgue integrable.
By L1(I,Y) we denote the space of Bochner-integrable functions u : I → Y, with the norm

‖u‖1 =

∫ d

a
‖u(ξ)‖dξ.

Next, we define the KMN and grant some of its significant properties.

Definition 2.3 ( [41]). The KMN Υ(·) defined on bounded set Q of Banach space Y is

Υ(Q) := inf{σ > 0 : Q = ∪n
k=1Qk and diam(Qk) ≤ σ for k = 1, 2, · · · , n}.

The following properties about the KMN are well known.
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Lemma 2.4 ( [41]). Let Y be a Banach space and Q1,Q2 ⊂ Y be bounded. The following properties
are satisfied :

(1) Υ(Q1) ≤ Υ(Q2) if Q1 ⊂ Q2;

(2) Υ(Q) = Υ(Q) = Υ(conv Q), where conv Q means the convex hull of Q;

(3) Υ(Q) = 0 if and only if Q is compact, where Q means the closure hull of Q;

(4) Υ(σQ) = |σ|Υ(Q), where σ ∈ R;

(5) Υ(Q1 ∪ Q2) = max{Υ(Q1),Υ(Q2)};

(6) Υ(Q1 + Q1) ≤ Υ(Q1) + Υ(Q2), where Q1 + Q2 = {p | p = q1 + q2, q1 ∈ Q1, q2 ∈ Q2};

(7) Υ(Q + q) = Υ(Q), for any q ∈ Y;

(8) If the map T : dom(T ) ⊂ Y → Y is Lipschitz continuous with constant k, then Υ(T (Q)) ≤ kΥ(Q)
for any bounded subset Q ⊂ dom(T ).

The next lemmas are a prerequisite in our analysis.

Lemma 2.5 ( [45]). Let Λ be a bounded and equicontinuous subset of C(I,Y). Then the function
ξ → Υ(Λ(ξ)) it has the property of continuity on I, with

ΥC(Λ) = max
ξ∈I

Υ(Λ(ξ)),

and

Υ

(∫
I

Λ(`)d`
)
≤

∫
I

Υ(Λ(`))d`,

where Λ(`) = {b(`) : b ∈ Λ}, ` ∈ I.

Lemma 2.6 ( [42]). Let Λ is a bounded subset of Banach space Y. Then for each ε, there is a sequence
{yn}

∞
n=1 ⊂ Λ, such that

Υ(Λ) ≤ 2Υ({yn}
∞
n=1) + ε.

We say Λ ⊂ L1(I,Y) is an uniformly integrable if there exists v ∈ L1(I,R+) comply with

‖u(ξ)‖ ≤ v(ξ), for all u ∈ Λ and a.e. ξ ∈ I.

Lemma 2.7 ( [46]). If {yn}
∞
n=1 ⊂ L1(I,Y) is uniformly integrable, then ξ 7→ Υ({yn(ξ)}∞n=1) is measurable,

and

Υ

({∫ ξ

a
yn(`)d`

}∞
n=1

)
≤ 2

∫ ξ

a
Υ({yn(`)}∞n=1)d`.

A fixed point technique advantageous to our aims is the following.

Theorem 2.8 ( [47]). Let Y a Banach space and Λ be a closed, bounded and convex subset of Y such
that θ ∈ Λ, and let N be a continuous map of Λ into itself. If the implication

Q = convN(Q), or Q = N(Q) ∪ {θ} ⇒ Υ(Q) = 0, (2.1)

holds for every subset Q ⊂ Λ, then N has a fixed point.
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Now, we supply some properties and results regarding the Ψ-fractional calculus as follows.

Definition 2.9 ( [5, 10]). For ς > 0 and ξ ∈ I, the Ψ–Riemann-Liouville fractional integral of order ς
is given by

Iς;Ψ
a+ z(ξ) =

1
Γ(ς)

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1z(`)d`, (2.2)

where z : I −→ R is an integrable function and Γ(·) is the Gamma function defined by

Γ(ς) =

∫ +∞

0
ξς−1e−ξdξ, ς > 0.

Definition 2.10 ( [10]). Let n ∈ N and Ψ, z ∈ Cn(I,R) be two functions. Then the Ψ–Riemann–
Liouville fractional derivative of a function z of order ς is given by

Dς;Ψ
a+ z(ξ) =

(
1

Ψ′(ξ)
d
dt

)n

In−ς;Ψ
a+ z(ξ)

=
1

Γ(n − ς)

(
1

Ψ′(ξ)
d
dt

)n ∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))n−ς−1z(`)d`,

where n = [ς] + 1.

Definition 2.11 ( [10]). Let n ∈ N and Ψ, z ∈ Cn(I,R) be two functions. The Ψ-Caputo fractional
derivative of z of order ς is defined by

cDς;Ψ
a+ z(ξ) = In−ς;Ψ

a+

(
1

Ψ′(ξ)
d
dt

)n

z(ξ),

where n = [ς] + 1 for ν < N, n = ς for ς ∈ N.
For the sake of brevity, let us take

z[n]
Ψ

(ξ) =

(
1

Ψ′(ξ)
d
dξ

)n

z(ξ).

From the definition, it is clear that

cDς;Ψ
a+ z(ξ) =


∫ ξ

a
Ψ′(`)(Ψ(ξ)−Ψ(`))n−ς−1

Γ(n−ς) z[n]
Ψ

(`)d` , if ς < N,
z[n]

Ψ
(ξ) , if ς ∈ N.

In fact, since the fractional integrals of a function z with respect to another function Ψ are generated
by iterating the local integral I1;Ψ

a+ z(ξ) =
∫ ξ

a
z(s)Ψ′(s)ds, then the fractional derivative of a function z

with respect to another function Ψ in the sense of Riemannn-Liouville and in the case of ς = n is
natural number will be reduced to the local fractional operator z[n]

Ψ
(ξ). Then, the Caputo type local

behavior is accordingly follows via Remark 1 in [13]. For example, if ς = 1 then [1] + 1 = 2 and

aD1,Ψz(ξ) = [
dξ

Ψ′(ξ)
]2

∫ ξ

a
(ξ − s)2−1−1z(s)Ψ′(s)ds = z[1]

Ψ
(ξ) =

z′(ξ)
Ψ′(ξ)

.

Then, on the light of (16) in Remark 1 in [13], we have

C
a D1,Ψz(ξ) =

1
Ψ′(ξ)

d
dξ

[z(ξ) − ξ(a)] =
z′(ξ)
Ψ′(ξ)

.
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Lemma 2.12 ( [10, 15]). Let ς, β > 0, and z ∈ C(I,R). Then for each ξ ∈ I we have

(1) cDς;Ψ
a+ I

ς;Ψ
a+ z(ξ) = z(ξ),

(2) Iς;Ψ
a+

cDς;Ψ
a+ z(ξ) = z(ξ) − z(a), 0 < ς ≤ 1,

(3) Iς;Ψ
a+ (Ψ(ξ) − Ψ(a))β−1 =

Γ(β)
Γ(ς+β) (Ψ(ξ) − Ψ(a))ς+β−1,

(4) cDς;Ψ
a+ (Ψ(ξ) − Ψ(a))β−1 =

Γ(β)
Γ(β−ς) (Ψ(ξ) − Ψ(a))β−ς−1,

(5) cDς;Ψ
a+ (Ψ(ξ) − Ψ(a))k = 0, for all k ∈ {0, . . . , n − 1}, n ∈ N.

Definition 2.13 ( [43]). The Mittag–Leffler functions (MLFs) of one and two parameters are defined
respectively as

Mς(z) =

∞∑
k=0

zk

Γ(ςk + 1)
, z ∈ R, ς > 0.

and

Mς,β(z) =

∞∑
k=0

zk

Γ(ςk + β)
, ς, β > 0 and z ∈ R. (2.3)

It is obvious thatM1,1(z) = M1(z) = ez.

Some essential properties of the MLFs are listed in the following Lemma.

Lemma 2.14 ( [48]). Let ς ∈ (0, 1) and x ∈ R. Then the following properties are satisfied:

(1) Mς andMς,ς are nonnegative,

(2) Mς(x) ≤ 1,Mς,ς(x) ≤ 1
Γ(ς) , for any x < 0.

The following lemma is a generalization of Gronwall’s inequality.

Theorem 2.15 ( [26]). Assume u, v be two integrable functions and w continuous, with domain I. Let
Ψ ∈ C1(I,R+) an increasing function such that Ψ′(ξ) , 0,∀ξ ∈ I. Suppose that

(1) u and v are non-negative,

(2) w is non-decreasing and non-negative.

If

u(ξ) ≤ v(ξ) + w(ξ)
∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1u(`)d`, ξ ∈ I.

Then

u(ξ) ≤ v(ξ) +

∫ ξ

a

∞∑
n=0

(w(ξ)Γ(ς))n

Γ(nς)
Ψ′(`)(Ψ(ξ) − Ψ(`))nς−1v(`)d`, ξ ∈ I.

Remark 2.16. Notice that, for an abstract function z : I −→ Y, the integrals which show in the
preceding definitions are taken in Bochner’s frame (see [49]).

The next lemma has an important role in demonstrating our main results.
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Lemma 2.17. Let ω, λ > 0. Then for all ξ ∈ [a, d] we have

Iω;Ψ
a+ eλ(Ψ(ξ)−Ψ(a)) ≤

eλ(Ψ(ξ)−Ψ(a))

λω
.

Proof. From equation (2.2), we have

Iω;Ψ
a+ eλ(Ψ(ξ)−Ψ(a)) =

1
Γ(ω)

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ω−1eλ(Ψ(`)−Ψ(a))d`.

Using the change of variables y = Ψ(ξ) − Ψ(`) we get

Iω;Ψ
a+ eλ(Ψ(ξ)−Ψ(a)) =

eλ(Ψ(ξ)−Ψ(a))

Γ(ω)

∫ Ψ(ξ)−Ψ(a)

0
yω−1e−λydy.

Using now the change of variables v = λy in the above equation we get

Iω;Ψ
a+ eλ(Ψ(ξ)−Ψ(a)) =

eλ(Ψ(ξ)−Ψ(a))

Γ(ω)λω

∫ λ(Ψ(ξ)−Ψ(a))

0
vω−1e−vdv

≤
eλ(Ψ(ξ)−Ψ(a))

Γ(ω)λω

∫ ∞

0
vω−1e−vdv

=
eλ(Ψ(ξ)−Ψ(a))

λω
.

This completes the proof. �

Remark 2.18 ( [27]). On the space C(I,Y) we define a Bielecki type norm ‖ · ‖B as below

‖z‖B := sup
ξ∈I

‖z(ξ)‖
eλ(Ψ(ξ)−Ψ(a)) , λ > 0. (2.4)

Consequently, we have the following proprieties

1.
(
C(I,Y), ‖ · ‖B

)
is a Banach space.

2. The norms ‖ · ‖B and ‖ · ‖∞ are equivalent on C(I,Y), where ‖ · ‖∞ denotes the Chebyshev norm
on C(I,Y), i.e;

ι1‖ · ‖B ≤ ‖ · ‖∞ ≤ ι2‖ · ‖B,

where
ι1 = 1, ι2 = eλ(Ψ(d)−Ψ(a)).

3. Cauchy problem of Ψ-Caputo FDE (1.1)

In this section, we apply the well-known MIT together with the method of UP and LO solutions
and the theory of measure of noncompactness to investigate the existence and uniqueness of extremal
solutions for the Cauchy problem (1.1) in an ordered Banach space Y.

Before we give our main results, let us defining what we mean by a solution of Ψ-Caputo FDE (1.1).

AIMS Mathematics Volume 6, Issue 3, 2486–2509.
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Definition 3.1. A function u ∈ C(I,Y) be a solution of problem (1.1) such that cDς;Ψ
a+ u exists and

is continuous on I, if u satisfies the equation cDς;Ψ
a+ u(ξ) + ru(ξ) = f(ξ, u(ξ)), for each ξ ∈ I and the

condition u(a) = ua.

Now, we present the definition of lower and upper solutions of Ψ-Caputo FDE (1.1).

Definition 3.2. A function u ∈ C(I,Y) is called a lower solution of the Ψ-Caputo FDE (1.1) if it
satisfies the following inequalities

cDς;Ψ
a+ u(ξ) + ru(ξ) ≤ f(ξ, u(ξ)), ξ ∈ (a, d],

u(a) ≤ ua.
(3.1)

If all inequalities of (3.1) are inverted, we say that u is an upper solution of the Ψ-Caputo FDE (1.1).

The following key lemma is substantial to forward in demonstrating the main results.

Lemma 3.3. [34, Lemma 4] Let ς ∈ (0, 1] be fixed, r ∈ R and h ∈ C(I,R). Then, the linear initial
value problem cDς;Ψ

a+ u(ξ) + ru(ξ) = h(ξ), ξ ∈ I := [a, d],
u(a) = ua,

(3.2)

has a unique solution is given by

u(ξ) =uaMς

(
−r(Ψ(ξ) − Ψ(a))ς

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ν−1Mς,ς

(
−r(Ψ(ξ) − Ψ(`))ς

)
h(`)d`.

(3.3)

As a result of Lemma 3.3, the problem (1.1) can be converted to an integral equation which takes
the following form

u(ξ) =uaMς

(
−r(Ψ(ξ) − Ψ(a))ς

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1

×Mς,ς

(
−r(Ψ(ξ) − Ψ(`))ς

)
f(`, u(`))d`. (3.4)

Now, we are willing to give and prove our main findings.

Theorem 3.4. Let Y be an ordered Banach space, whose positive cone K is normal with normal
constant ν. Let the following assumpitions are fulfilled

(H1) There exist u0, y0 ∈ C(I,Y) such that u0 and y0 are lower and upper solutions of the Ψ-Caputo
FDE (1.1) respectively, with u0 ≤ y0.

(H2) The function f : I × Y −→ Y be continuous.

(H3) f is increasing with respect to the second variable. i.e

f(ξ, z1) ≤ f(ξ, z2),

for any ξ ∈ I, and z1, z2 ∈ Y with u0(ξ) ≤ z1 ≤ z2 ≤ y0(ξ).
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(H4) There exists a constant L > 0, such that for any ξ ∈ I and decreasing or increasing monotone
sequence {un(ξ)} ⊂ [u0(ξ), y0(ξ)],

Υ({f(ξ, un(ξ))}) ≤ LΥ({un(ξ)}).

Then the Ψ-Caputo FDE (1.1) has minimal and maximal solutions that are between u0 and y0 which
can be acquired by a monotone iterative procedure starting from u0 and y0, respectively.

Proof. Transform the integral representation (3.4) of the problem (1.1) into a fixed point problem as
follows:

u = T u, u ∈ C(I,Y),

where T : C(I,Y) −→ C(I,Y) is defined by

T u(ξ) =uaMς

(
−r(Ψ(ξ) − Ψ(a))ς

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1

×Mς,ς

(
−r(Ψ(ξ) − Ψ(`))ς

)
f(`, u(`))d`. (3.5)

From the continuity of f, T is well defined. On the other side, for any u ∈ D = [u0, y0] = {y ∈ C(I,Y) :
u0 ≤ y ≤ y0}. and ξ ∈ I, (H3) implies

f(ξ, u0(ξ)) ≤ f(ξ, u(ξ)) ≤ f(ξ, y0(ξ)),

i.e.

θ ≤f(ξ, u(ξ)) − f(ξ, u0(ξ)) ≤ f(ξ, y0(ξ)) − f(ξ, u0(ξ)).

Therefore, from the normality of K we can get

‖f(ξ, u(ξ)) − f(ξ, u0(ξ))‖ ≤ ν‖f(ξ, y0(ξ)) − f(ξ, u0(ξ))‖.

Thus

‖f(ξ, u(ξ))‖ ≤ ‖f(ξ, u(ξ)) − f(ξ, u0(ξ))‖ + ‖f(ξ, u0(ξ))‖
≤ ν‖f(ξ, y0(ξ)) − f(ξ, u0(ξ))‖ + ‖f(ξ, u0(ξ))‖
:= c.

Hence

‖f(ξ, u(ξ))‖ ≤ c, u ∈ D. (3.6)

Now, we complete the proof by a series of steps.

Step 1: In this step, we will show the continuity of the operator T on D. To do this, let {un} be a
sequence in D such that un → u in D as n→ ∞. With ease, we find that f(`, un(`))→ f(`, u(`)), as n→
+∞, due to f is a continuous. Also, from 3.6 we get the following inequality:

Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1

Γ(ς)
‖f(`, un(`)) − f(`, u(`))‖ ≤

2cΨ′(`)(Ψ(ξ) − Ψ(`))ς−1

Γ(ς)
.
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From fact that the function ` 7→ 2cΨ′(`)(Ψ(ξ) − Ψ(`))ς−1 is Lebesgue integrable over [a, ξ] along with
the Lebesgue dominated convergence theorem, we attain∫ ξ

a

Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1

Γ(ς)
‖f(`, un(`)) − f(`, u(`))‖d` → 0 as n→ +∞.

It follows that ‖T un − T u‖ → 0 as n→ +∞. Hence the operator T is continuous.

Step 2: We shall show that the operator T has the following two properties:

(P1) T is an increasing operator in D;

(P2) u0 ≤ T u0,T y0 ≤ y0.

To prove (P1), let z1, z2 ∈ D, such that z1 ≤ z2. Then, from (H3) we obtain

T z1(ξ) =uaMς

(
−r(Ψ(ξ) − Ψ(a))ς

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1

×Mς,ς

(
−r(Ψ(ξ) − Ψ(`))ς

)
f(`, z1(`))d`

≤uaMς

(
−r(Ψ(ξ) − Ψ(a))ς

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1

×Mς,ς

(
−r(Ψ(ξ) − Ψ(`))ς

)
f(`, z2(`))d`

=T z2(ξ),

which implies that T z1 ≤ T z2. Therefore, T is an increasing operator.
To prove (P2), let h(ξ) = cDς;Ψ

a+ u0(ξ) + ru0(ξ). Definition 3.2, implies h(ξ) ≤ f(ξ, u0(ξ)). By Lemma
3.3, we obtain

u0(ξ) =uaMς

(
−r(Ψ(ξ) − Ψ(a))ς

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1

×Mς,ς

(
−r(Ψ(ξ) − Ψ(`))ς

)
h(`)d`

≤uaMς

(
−r(Ψ(ξ) − Ψ(a))ς

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1

×Mς,ς

(
−r(Ψ(ξ) − Ψ(`))ς

)
f(`, u0(`))d`

=T u0(ξ).

Hence, u0 ≤ T u0. In the same way, we get T y0 ≤ y0. Therefore, for every u ∈ D, we have

u0 ≤ T u0 ≤ T u ≤ T y0 ≤ y0.

From the above arguments, we conclude that T : D→ D is a continuous increasing operator.
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Step 3: T(D) is equicontinuous on I. To do this, choosing, ξ1, ξ2 ∈ I, with ξ1 ≤ ξ2. By (3.6) and
Lemma 2.14 we have

‖T u(ξ2) − T u(ξ1)‖

≤‖ua‖
∣∣∣Mς

(
−r(Ψ(ξ2) − Ψ(a))ς

)
−Mς

(
−r(Ψ(ξ1) − Ψ(a))ς

)∣∣∣
+

∫ ξ1

a

Ψ′(`)
[
(Ψ(ξ1) − Ψ(`))ς−1 − (Ψ(ξ2) − Ψ(`))ς−1

]
Γ(ς)

‖f(`, u(`))‖d`

+

∫ ξ2

ξ1

Ψ′(`)(Ψ(ξ2) − Ψ(`))ς−1

Γ(ς)
‖f(ξ, u(`))‖ d`

≤‖ua‖
∣∣∣Mς

(
−r(Ψ(ξ2) − Ψ(a))ς

)
−Mς

(
−r(Ψ(ξ1) − Ψ(a))ς

)∣∣∣
+

2c
Γ(ς + 1)

(Ψ(ξ2) − Ψ(ξ1))ς.

Since the function Mς

(
−r(Ψ(ξ) − Ψ(a))ς

)
is continuous on I, the right-hand side of the previous

inequality approaches to zero when ξ1 → ξ2 independently of u ∈ D. This implies that T(D) is
equicontinuous on I.

Now define two sequences {un} and {yn} in D, by the iterative scheme

un = T un−1, yn = T yn−1, for n = 1, 2, . . . (3.7)

Then from the monotonicity of T , we have

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ yn ≤ · · · ≤ v1 ≤ y0. (3.8)

Step 4: We show that {un} and {yn} are convergent in C(I,Y).
Let Ω = {un : n ∈ N} and Ω0 = {un−1 : n ∈ N}. By (3.8) and the normality of the positive cone K ,

we get that Ω and Ω0 are bounded. From Ω0 = Ω ∪ {u0}, we have

Υ (Ω(ξ)) = Υ (Ω0(ξ)) , for all ξ ∈ I.

Let
ρ(ξ) = Υ (Ω(ξ)) = Υ (Ω0(ξ)) , for all ξ ∈ I.

Since Ω = TΩ0, we have
Υ (Ω(ξ)) = Υ (TΩ0(ξ)) , for all ξ ∈ I.

Now, we will show that ρ(ξ) ≡ 0 on I. By (H4), Lemmas 2.7, 2.14 and the properties of Υ we obtain
the following estimates:

ρ(ξ) = Υ (Ω(ξ)) = Υ (TΩ0(ξ)) ≤ Υ

{∫ ξ

a

Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1

Γ(ς)
f(`, un−1(`))d`

}
≤

2
Γ(ς)

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1Υ({f(`, un−1(`))})d`

≤
2L

Γ(ς)

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1Υ({un−1(`)})d`
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≤
2L

Γ(ς)

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1Ω0(`)d`

=
2L

Γ(ς)

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1ρ(`)d`.

Hence by Lemma 2.15, we obtain ρ(ξ) ≡ 0 on I. Since Ω is equi-continuous, we have from Lemma
2.5 that

Υ (Ω) = Υ (Ω0) = max
ξ∈I

Υ (Ω0(ξ)) = 0. (3.9)

So, {un} are relatively compact in C(I,Y). Hence, {un} has a convergent subsequence in C(I,Y).
Combining this with the monotonicity and the normality of the cone K , without difficulty we can
prove that {un} itself is convergent in C(I,Y), i.e., there exists u ∈ C(I,Y) such that limn→∞ un = u.

Similarly, it can be proved that there exists ȳ ∈ C(I,Y) such that limn→∞ yn = ȳ.

Using Lebesgue dominated convergence theorem, and letting n→ ∞ in, (3.7) we see that

u = T u, ȳ = T ȳ.

Therefore, u, ȳ ∈ C(I,Y) are fixed points of T .

Step 5: We show the minimal and maximal property of u, ȳ. Suppose that z∗ is a fixed point of T
in D, then we have

u0(ξ) ≤ z∗(ξ) ≤ y0(ξ), ξ ∈ I.

By the monotonicity of T , it is uncomplicated to find that

u1(ξ) = (T u0)(ξ) ≤ (T z∗)(ξ) = z∗(ξ) ≤ (T y0)(ξ) = v1(ξ), ξ ∈ I.

Repeating the above arguments, we get

un ≤ z∗ ≤ yn, n = 1, 2, . . . . (3.10)

Taking n → ∞ in (3.10), we get u ≤ z∗ ≤ ȳ. Thus u, ȳ are the minimal and maximal fixed points of T
in D, so, they also are the minimal and maximal solutions of problem (1.1) in D. Moreover, u and ȳ
can be obtained by the iterative procedure (3.7) beginning from u0 and y0, respectively. This finishes
the proof. �

Our next theorem to prove the uniqueness of solution for the Ψ-Caputo FDE (1.1) by applying the
monotone iterative technique.

Theorem 3.5. Let Y be an ordered Banach space whose positive cone K is normal with normal
constant ν. Suppose that (H1)–(H3) are fulfilled. Further, we suppose that:

(H5) There exists a constant k > 0 with

f(ξ, z2) − f(ξ, z1) ≤ k(z2 − z1), for any ξ ∈ I,

and u0 ≤ z1 ≤ z2 ≤ y0.
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Then Ψ-Caputo FDE (1.1) has a unique solution between u0 and y0, which can be acquired by the
iterative procedure beginning from u0 or y0.

Proof. Let {zn} ⊂ D be an increasing monotone sequence, and n,m ∈ N with n > m. (H2) and (H5)
imply

θ ≤ f(ξ, zn) − f(ξ, zm) ≤ k(zn − zm).

From the normality of positive cone K , we obtain

‖f(ξ, zn) − f(ξ, zm)‖ ≤ kν‖zn − zm‖.

So by Lemma 2.4, we get
Υ
(
{f(ξ, zn)}

)
≤ kνΥ({zn}).

Then condition (H4) holds and from the Theorem 3.4, we realize that Ψ-Caputo FDE (1.1) has minimal
and maximal solutions u and ȳ in D. Next we prove that u(ξ) ≡ ȳ(ξ) in I.

Thanks to Lemma 2.14 and (H5), for each ξ ∈ I, we obtain

θ ≤ȳ(ξ) − u(ξ) = T ȳ(ξ) − T u(ξ)

=

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1Mς,ς

(
−r(Ψ(ξ) − Ψ(`))ς

)
×

(
f(`, ȳ(`)) − f(`, u(`))

)
d`

≤
k

Γ(ς)

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1(

ȳ(`) − u(`)
)
d`.

By the normality of positive cone K , it follows that

∥∥∥ȳ(ξ) − u(ξ)∥∥∥ ≤ kν
Γ(ς)

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς−1‖ȳ(`) − u(`)‖d`. (3.11)

By Lemma 2.15, we attain ȳ(ξ) ≡ u(ξ) on I. Hence, ȳ ≡ u is the unique solution of the Ψ-Caputo FDE
(1.1) in D. Thus, the proof is finished. �

4. Coupled systems of Ψ-Caputo FRDS (1.2)–(1.3)

In this portion, we plan to prove our main theoretical findings of the existence and uniqueness of
solution for the Ψ-Caputo FRDS (1.2)–(1.3).

Here, we offer the definition and lemma of a solution for Ψ-Caputo FRDS (1.2)–(1.3).

Definition 4.1. By a solution of coupled systems of Ψ-Caputo FRDS (1.2)–(1.3), we mean a pair of
continuous functions (u, v) ∈ C(I,ℵ)×C(I,ℵ) those satisfy equations (1.2) on I, and conditions (1.3).

Now by using the basic concepts mentioned in [13, 34] we can easily derive the following lemma
which is useful to prove our main results.
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Lemma 4.2. [13, 34] Let ς1, ς2 ∈ (0, 1] be fixed, r1, r2 > 0 and G1,G2 ∈ C(I × ℵ × ℵ,ℵ). Then the
coupled systems of Ψ-Caputo FRDS (1.2)–(1.3) is equivalent to the following integral equations

u(ξ) = µ1Mς1

(
−r1(Ψ(ξ) − Ψ(a))ς1

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς1−1

×Mς1,ς1

(
−r1(Ψ(ξ) − Ψ(`))ς1

)
G1(`, u(`), v(`))d`

v(ξ) = µ2Mς2

(
−r2(Ψ(ξ) − Ψ(a))ς2

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς2−1

×Mς2,ς2

(
−r2(Ψ(ξ) − Ψ(`))ς2

)
G2(`, u(`), v(`))d`.

(4.1)

In order to establish our main results, we introduce the following assumptions.

(H′1) G1,G2 : I × ℵ × ℵ −→ ℵ are continuous functions.

(H′2) There exist constants Li > 0, i = 1, 2 such that

‖Gi(ξ, u1, v1) − Gi(ξ, u2, v2)‖ ≤ Li
(
‖u1 − u2‖ + ‖v1 − v2‖

)
,

for all ξ ∈ I and each u1, v1, u2, v2 ∈ ℵ.

(H′3) There exist real constants K1,K2 > 0 and a continuous non-decreasing function φi : R+ −→

R+, i = 1, 2 such that

‖Gi(ξ, u, v)‖ ≤ Kiφi(‖u‖ + ‖v‖), for any ξ ∈ I and each u, v ∈ ℵ.

(H′4) For each bounded setH ⊂ ℵ × ℵ, and each ξ ∈ I, the following inequality holds

Υ(Gi(ξ,H)) ≤ KiΥ(H), i = 1, 2.

Our first theorem on the uniqueness relies on the fixed point theorem of Banach combined with the
Bielecki norm.

Theorem 4.3. If the assumptions (H′1)–(H′2) are true, then the coupled system of Ψ-Caputo FRDS
(1.2)–(1.3) has a unique solution.

Proof. Let C(I,ℵ) be a Banach space equipped with the Bielecki norm type ‖ · ‖B defined in (2.4).
Consequently, the product space E := C(I,ℵ)×C(I,ℵ) is a Banach space, endowed with the Bielecki
norm

‖(u, v)‖E,B = ‖u‖B + ‖v‖B.

We define an operator S =
(
S1,S2

)
: E → E by:

S(u, v) =
(
S1(u, v),S2(u, v)

)
. (4.2)

where

Si(u, v)(ξ) =µiMςi

(
−ri(Ψ(ξ) − Ψ(a))ςi

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ςi−1

×Mςi,ςi

(
−ri(Ψ(ξ) − Ψ(`))ςi

)
Gi(`, u(`), v(`))d`.

(4.3)
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It should be noted that S is well-defined since both G1 and G2 are continuous. Now, we make use of the
fixed point theorem of Banach to show that S has a unique fixed point. In this moment, we must show
that S is a contraction mapping on E with respect to Bielecki’s norm ‖ · ‖E,B. Note that by definition of
operator S, for any (u1, v1), (u2, v2) ∈ E and ξ ∈ I, using (H′2), and Lemmas 2.14, 2.17, we can get∥∥∥Si(u1, v1)(ξ) − Si(u2, v2)(ξ)

∥∥∥
≤Li

(
‖u1 − u2‖B + ‖v1 − v2‖B

) ∫ ξ

a

Ψ′(`)(Ψ(ξ) − Ψ(`))ςi−1

Γ(ςi)
eλ(Ψ(`)−Ψ(a))d`

≤
eλ(Ψ(ξ)−Ψ(a))

λςi
Li

(
‖u1 − u2‖B + ‖v1 − v2‖B

)
.

Hence ∥∥∥Si(u1, v1) − Si(u2, v2)
∥∥∥
B
≤
Li

λςi

(
‖u1 − u2‖B + ‖v1 − v2‖B

)
.

This implies that

∥∥∥S(u1, v1) − S(u2, v2)
∥∥∥
E,B
≤

[
L1

λς1
+
L2

λς2

]
‖(u1, v1) − (u2, v2)‖E,B.

We can choose λ > 0 such that L1
λς1 + L2

λς2 < 1, so the operator S is a contraction with respect to Bielecki’s
norm ‖ · ‖E,B. Thus, an application of Banach’s fixed point theorem shows that S has a unique fixed
point. So the coupled system of Ψ-Caputo FRDS (1.2)–(1.3) has a unique solution in the space E. This
completes the proof. �

Theorem 4.4. Let the hypotheses (H′1), (H′3) and (H′4) be fulfilled. Then the coupled system of Ψ-
Caputo FRDS (1.2)–(1.3) has at least one solution defined on I

Proof. In order to use the Theorem 2.8, we define a subset Bδ of E by

Bδ =
{
(u, v) ∈ E : ‖(u, v)‖E,∞ ≤ δ

}
,

with δ > 0, such that

δ ≥

2∑
i=1

(
‖µi‖ + Pςi,ΨKiφi(δ)

)
.

where

Pςi,Ψ =
(Ψ(d) − Ψ(a))ςi

Γ(ςi + 1)
, i = 1, 2.

Notice that Bδ is convex, closed and bounded subset of the Banach space E. We shall prove that S,
satisfies all conditions of Theorem 2.8 in a two steps.

Step 1: we show that the operator S maps the set Bδ into itself. Indeed, for any (u, v) ∈ Bδ and for
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each ξ ∈ I. By Lemma 2.14 together with assumption (H′3) we can get

∥∥∥Si(u, v)(ξ)
∥∥∥ ≤ ‖µi‖ +

∫ ξ

a

Ψ′(`)(Ψ(ξ) − Ψ(`))ςi−1

Γ(ςi)
‖Gi(`, u(`), v(`))‖ d`

≤ ‖µi‖ +

∫ ξ

a

Ψ′(`)(Ψ(ξ) − Ψ(`))ςi−1

Γ(ςi)
Kiφi(‖u(`)‖ + ‖v(`)‖) d`

≤ ‖µi‖ + Kiφi(δ)
∫ ξ

a

Ψ′(`)(Ψ(ξ) − Ψ(`))ςi−1

Γ(ςi)
d`

≤ ‖µi‖ + KiPςi,Ψφi(δ), i = 1, 2.

Hence ∥∥∥S(u, v)∥∥∥
E,∞
≤

2∑
i=1

(
‖µi‖ + KiPςi,Ψφi(δ)

)
≤ δ.

This proves that S transforms the ball Bδ into itself. Moreover, in view of assumptions (H′1), (H′3) and
by a similar deduction in Theorem 3.4, one can easily verify that S : Bδ −→ Bδ is continuous and
S(Bδ) is equi-continuous on I.

Step 2: Now we prove that the Mönch’s condition holds. For this purpose, let ∆ = ∆1 ∩ ∆2 and ∆i

be a subset of BR such that ∆i ⊂ conv (Si(∆i) ∪ {0}) , i = 1, 2. ∆i is bounded and equi-continuous, and
therefore the function fi(ξ) = Υ (∆i(ξ)) is continuous on I. By the properties of the KMN, Lemma 2.5
and (H′4), we have

f1(ξ) = Υ (∆1(ξ)) ≤ Υ(conv(T1(∆1)(ξ) ∪ {0})) ≤ Υ(T1(∆1)(ξ))

≤ Υ

{∫ ξ

a

Ψ′(`)(Ψ(ξ) − Ψ(`))ς1−1

Γ(ς1)
G1(`, u(`), v(`))d` : (u, v) ∈ ∆1

}
≤

∫ ξ

a

Ψ′(`)(Ψ(ξ) − Ψ(`))ς1−1

Γ(ς1)
Υ (G1(`,∆1(`))) d`

≤
K1

Γ(ς1)

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς1−1Υ (∆1(`)) d`

≤
K1

Γ(ς1)

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς1−1

f1(`)d`.

Hence by means of Lemma 2.15, we get f1(ξ) = Υ (∆1(ξ)) = 0, for each ξ ∈ I. Similarly, we have
f2(ξ) = 0. Hence Υ(∆(ξ)) ≤ Υ(∆1(ξ)) = 0 and Υ(∆(ξ)) ≤ Υ(∆2(ξ)) = 0, this shows that ∆(ξ) is relatively
compact in ℵ×ℵ. By Ascoli-Arzelá theorem, ∆ is relatively compact in Bδ. Invoking Theorem 2.8 we
deduce that T has a fixed point which is a solution of Ψ-Caputo FRDS (1.2)–(1.3). This finishes the
proof. �

5. Stability analysis for the Ψ-Caputo FRDS (1.2)–(1.3)

In this part of the manuscript, we analyze the UH stability for the proposed Ψ-Caputo FRDS (1.2)–
(1.3).
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For some ε1, ε2 > 0, we consider the following inequalities:
∥∥∥( cDς1;Ψ

a+ ũ)(ξ) + r1ũ(ξ) − G1(ξ, ũ(ξ), ṽ(ξ))
∥∥∥ ≤ ε1,∥∥∥( cDς2;Ψ

a+ ṽ)(ξ) + r2ṽ(ξ) − G2(ξ, ũ(ξ), ṽ(ξ))
∥∥∥ ≤ ε2.

ξ ∈ I. (5.1)

Definition 5.1. The Ψ-Caputo FRDS (1.2)–(1.3) is UH stable with respect to the Bielecki’s norm if
there exists a positive real number c such that for each pair (ε1, ε2) ∈ R+ × R+ and for each solution
(ũ, ṽ) ∈ E of the inequalities (5.1), there exists a unique solution (u, v) ∈ E of (1.2)–(1.3) with

‖(ũ, ṽ) − (u, v)‖E,B ≤ cε,

where ε = max{ε1, ε2}.

Remark 5.2. A function (ũ, ṽ) ∈ E is a solution of the inequalities (5.1) if and only if there exist a
functions g1, g2 ∈ C(I,ℵ) ( which depend upon ũ and ṽ respectively, such that

(i) ‖g1(ξ)‖ ≤ ε1, ‖g2(ξ)‖ ≤ ε2, ξ ∈ I;

(ii) and  cDς1;Ψ
a+ ũ(ξ) + r1ũ(ξ) = G1(ξ, ũ(ξ), ṽ(ξ)) + g1(ξ),

cDς2;Ψ
a+ ṽ(ξ) + r2ṽ(ξ) = G2(ξ, ũ(ξ), ṽ(ξ)) + g2(ξ).

ξ ∈ I,

.

Lemma 5.3. Let (ũ, ṽ) ∈ E be the solution of the inequalities (5.1), then the following of the inequalities
will be satisfied: 

∥∥∥ũ(ξ) − S1(ũ, ṽ)(ξ)
∥∥∥ ≤ ε1Pς1,Ψ∥∥∥ṽ(ξ) − S2(ũ, ṽ)(ξ)
∥∥∥ ≤ ε2Pς2,Ψ,

where S1 and S2 are defined by (4.3).

Proof. By Remark 5.2 (ii), we have cDς1;Ψ
a+ ũ(ξ) + r1ũ(ξ) = G1(ξ, ũ(ξ), ṽ(ξ)) + g1(ξ),

cDς2;Ψ
a+ ṽ(ξ) + r2ṽ(ξ) = G2(ξ, ũ(ξ), ṽ(ξ)) + g2(ξ),

ξ ∈ I, (5.2)

with the following initial conditions ũ(a) = µ1,

ṽ(a) = µ2.
(5.3)

Thanks to Lemma 3.3, the integral representation of (5.2)–(5.3) is expressed as
ũ(ξ) = µ1Mς1

(
−r1(Ψ(ξ) − Ψ(a))ς1

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς1−1

×Mς1,ς1

(
−r1(Ψ(ξ) − Ψ(`))ς1

)(
G1(`, ũ(`), ṽ(`)) + g1(`)

)
d`

ṽ(ξ) = µ2Mς2

(
−r2(Ψ(ξ) − Ψ(a))ς2

)
+

∫ ξ

a
Ψ′(`)(Ψ(ξ) − Ψ(`))ς2−1

×Mς2,ς2

(
−r2(Ψ(ξ) − Ψ(`))ς2

)(
G2(`, ũ(`), ṽ(`)) + g2(`)

)
d`.

(5.4)
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It follows from (5.4), together with Remark 5.2 (i), and Lemma 2.14 that
∥∥∥ũ(ξ) − S1(ũ, ṽ)(ξ)

∥∥∥ ≤
∫ ξ

a
Ψ′(`)(Ψ(ξ)−Ψ(`))ς1−1

Γ(ς1) g1(`)d` ≤ ε1Pς1,Ψ∥∥∥ṽ(ξ) − S2(ũ, ṽ)(ξ)
∥∥∥ ≤

∫ ξ

a
Ψ′(`)(Ψ(ξ)−Ψ(`))ς2−1

Γ(ς2) g2(`)d` ≤ ε2Pς2,Ψ.

�

Theorem 5.4. Let the assumptions (H′1)–(H′2) are satisfied. Then Ψ-Caputo FRDS (1.2)–(1.3) is UH
stable with respect to the Bielecki’s norm.

Proof. Let (u, v) ∈ E be the unique solution of Ψ-Caputo FRDS (1.2)–(1.3) and (ũ, ṽ) be any solution
satisfying (5.1), then by (H′2) and Lemmas 2.17, 5.3 and we can get∥∥∥ũ(ξ) − u(ξ)∥∥∥ ≤ ∥∥∥ũ(ξ) − S1(ũ, ṽ)(ξ)

∥∥∥ +
∥∥∥S1(ũ, ṽ)(ξ) − S1(u, v)(ξ)

∥∥∥
≤ ε1Pς1,Ψ +

eλ(Ψ(ξ)−Ψ(a))

λς1
L1

(
‖ũ − u‖B + ‖ṽ − v‖B

)
.

Hence we get

‖ũ − u‖B ≤ ε1Pς1,Ψ +
L1

λς1
‖(ũ, ṽ) − (u, v)‖E,B.

Similarly, we have

‖ṽ − v‖B ≤ ε2Pς2,Ψ +
L2

λς2
‖(ũ, ṽ) − (u, v)‖E,B.

This leads to [
1 −

[
L1

λς1
+
L2

λς2

]]
‖(ũ, ṽ) − (u, v)‖E,B ≤ ε1Pς1,Ψ + ε2Pς2,Ψ, (5.5)

Since we can choose λ > 0 such that L1
λς1 + L2

λς2 < 1. Therefore, (5.5) is equivalent to

‖(ũ, ṽ) − (u, v)‖E,B ≤
[
1 −

[
L1

λς1
+
L2

λς2

]]−1 (
Pς1,Ψ + Pς2,Ψ

)
ε,

where ε = max{ε1, ε2}.
Hence, the Ψ-Caputo FRDS (1.2)–(1.3) is UH stable with respect to Bielecki’s norm ‖ · ‖B. �

Remark 5.5. Importing the same logic as in Theorem 5.4. One can easily show that the Ψ-Caputo
FRDS (1.2)–(1.3) is generalized HU, HU-Rassias and generalized HU-Rassias stable with respect to
Bielecki’s norm ‖ · ‖B.

6. Examples

To illustrate our results, we provide two examples.
Let

ℵ = `1 =

z = (z1, z2, . . . , z j, . . .),
∞∑
j=1

|z j| < ∞

 ,
be the Banach space with the norm ‖z‖ =

∑∞
j=1 |z j|.
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Example 6.1. Consider the following Ψ-Caputo FRDS assumed in `1 :
cD0.5;Ψ

a+ u(ξ) + 2u(ξ) = G1(ξ, u(ξ), v(ξ)), ξ ∈ I := [a, d] ,
cD0.5;Ψ

a+ v(ξ) + 3v(ξ) = G2(ξ, u(ξ), v(ξ)), ξ ∈ I := [a, d] ,
u(0) = (0.5, 0.25, . . . , 0.5n, . . . ) ,
v(0) = (1, 0, . . . , 0, . . . ) .

(6.1)

In this case we take
ς1 = ς2 = 0.5, r1 = 2, r2 = 3,

and G1,G2 : I × `1 × `1 −→ `1 given by

G1(ξ, u(ξ), v(ξ)) =

{
1

ξ + 1

(
1
2k +

uk(ξ) + vk(ξ)
‖u(ξ)‖ + ‖v(ξ)‖ + 1

)}
k≥1

,

G2(ξ, u(ξ), v(ξ)) =

{(
1
k3 + sin(|uk(ξ)| + |vk(ξ)|)

)
e−ξ

}
k≥1

.

It is clear that condition (H′1) holds, and as

‖Gi(ξ, u1, v1) − Gi(ξ, u2, v2)| ≤
(
‖u1 − u2‖ + ‖v1 − v2‖

)
, i = 1, 2,

for all ξ ∈ I and each u1, v1, u2, v2 ∈ `
1. Hence condition (H′2) holds with L1 = L2 = 1. Moreover,

if we choose, λ > 4, it follows that the mapping S is a contraction with respect to Bielecki’s norm.
Hence by Theorem 4.3 the coupled system (6.1) has a unique solution which belong to the space
C(I, `1) × C(I, `1). Besides, Theorem 5.4 implies that the coupled system (6.1) is Ulam–Hyers stable
with respect to the Bielecki’s norm.

Let Now

ℵ = c0 = {z = (z1, z2, . . . , zn, . . . ) : zn → 0 (n→ ∞)} ,

be the Banach space of real sequences converging to zero, endowed its usual norm

‖z‖∞ = sup
n≥1
|zn|.

Example 6.2. Consider the following Ψ-Caputo FRDS posed in c0 :
cD0.85u(ξ) + 0.1u(ξ) = G1(ξ, u(ξ), v(ξ)), ξ ∈ I := [0, 1] ,
cD0.75v(ξ) + 0.1v(ξ) = G2(ξ, u(ξ), v(ξ)), ξ ∈ I := [0, 1] ,
u(0) = (0, 0, . . . , 0, . . . ) ,
v(0) = (0, 0, . . . , 0, . . . ) .

(6.2)

Notice that, the proposed problem is a special case of the Ψ-Caputo FRDS (1.2)–(1.3), where

ς1 = 0.85, ς2 = 0.75, r1 = 0.1, r2 = 0.3, a = 0, b = 1,Ψ(ξ) = ξ,
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and G1,G2 : I × c0 × c0 −→ c0 given by

G1(ξ, u(ξ), v(ξ)) =

{
1

eξ + 9

(
1
2n + ln(1 + |un(ξ)| + |vn(ξ)|)

)}
n≥1

,

G2(ξ, u(ξ), v(ξ)) =

{
sin(ξ)
ξ + 2

(
1
n2 + arctan(|un(ξ)| + |vn(ξ)|)

)}
n≥1

.

It is obvious that, assumption (H′1) of the Theorem 4.4 is satisfied. On the one side, for each ξ ∈ I we
have

‖G1(ξ, u(ξ), v(ξ))‖∞ ≤

∥∥∥∥∥∥ 1
eξ + 9

(
1
2n + (|un(ξ)| + |vn(ξ)|)

)∥∥∥∥∥∥
∞

≤
1
10

(‖u(ξ)‖ + ‖v(ξ)‖ + 1)

= K1φ1(‖u(ξ)‖ + ‖v(ξ)‖),

and

‖G2(ξ, u(ξ), v(ξ))‖∞ ≤

∥∥∥∥∥∥ 1
ξ + 2

(
1
n2 + (|un(ξ)| + |vn(ξ)|)

)∥∥∥∥∥∥
∞

≤
1
2

(‖u(ξ)‖ + ‖v(ξ)‖ + 1)

= K2φ2(‖u(ξ)‖ + ‖v(ξ)‖).

Thus, assumption (H′3) of the Theorem 4.4 is satisfied with K1 = 1
10 ,K2 = 1

2 , and φ1(w) = φ2(w) =

1 + w, w ∈ [0,∞), On the other hand, for any bounded setH ⊂ c0 × c0, we have

Υ(Gi(ξ,H)) ≤ KiΥ(H), i = 1, 2.

Hence (H′4) is satisfied. Consequently, Theorem 4.4 implies that Ψ-Caputo FRDS (6.2) has at least one
solution (u, v) ∈ C(I, c0) ×C(I, c0).

7. Conclusion

The existence and uniqueness theorems of solutions to two classes of Ψ-Caputo-type FDEs and
FRDS in Banach spaces have been developed. For the mentioned theorems, the obtained results have
been derived by different methods of nonlinear analysis like the method of upper and lower solutions
along with the monotone iterative technique, Banach contraction principle, and Mönch’s fixed point
theorem concerted with the measures of noncompactness. Also, some convenient results about UH
stability have been established by utilizing some results of nonlinear analysis. The acquired results
have been justified by two pertinent examples. To the best of our knowledge, the current results are
recent for FDEs and FRDS involving generalized Caputo fractional derivative. Moreover, these results
proven in Banach spaces. Apart from this, the FDEs and FRDS for different values of Ψ includes
the study of FDEs and FRDS involving the fractional derivative operators: standard Caputo, Caputo-
Hadamard, Caputo-Katugampola, and many other operators.
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Finally, we would like to point out that the use of fractional operators with different kernels, reflected
by the use of the increasing function Ψ used in the power law, is important in modeling certain physical
and engineering problems in which we have memory. This confirms the need of the non-locality nature
when we deal with such models. Moreover, the dependency of the kernel on the function Ψ provides
us with more possibilities or choices in fitting the real data of some models.

In the future, the above results and analysis can be extended to more sophisticated and applicable
problems of FDEs and FRDS involving Ψ-Hilfer operator. It will be also of interest to discuss the
implementation of certain conditions in such case studies using the monotone iterative technique.
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Calc. Appl. Anal., 10 (2007), 249–267.

15. R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math.
Sci. Soc., 42 (2019), 1687–1697.

16. R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo
derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41
(2018), 336–352.

17. R. Almeida, M. Jleli, B. Samet, A numerical study of fractional relaxation-oscillation equations
involving Ψ-Caputo fractional derivative, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat.
RACSAM, 113 (2019), 1873–1891.

18. S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential
equations in Banach spaces, Fract. Calc. Appl. Anal., 21 (2018), 1027–1045.

19. M. S. Abdo, A. G. Ibrahim, S. K. Panchal, Nonlinear implicit fractional differential equation
involving ψ-Caputo fractional derivative, Proc. Jangjeon Math. Soc., 22 (2019), 387–400.

20. M. S. Abdo, S. K. Panchal, A. M. Saeed, Fractional boundary value problem with ψ-Caputo
fractional derivative, Proc. Indian Acad. Sci. Math. Sci., 129 (2019), 65.

21. M. S. Abdo, Further results on the existence of solutions for generalized fractional quadratic
functional integral equations, J. Math. Anal. Model., 1 (2020), 33–46.

22. A. Aghajani, E. Pourhadi, J. J. Trujillo, Application of measure of noncompactness to a Cauchy
problem for fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 16 (2013),
962–977.

23. C. Derbazi, Z. Baitiche, Coupled systems of Ψ-Caputo differential equations with initial conditions
in Banach spaces, Mediterr. J. Math., 17 (2020), 169.

24. K. D. Kucche, A. D. Mali, J. V. C. Sousa, On the nonlinear Ψ-Hilfer fractional differential
equations, Comput. Appl. Math., 38 (2019), 73.

25. A. Seemab, J. Alzabut, M. ur Rehman, Y. Adjabi, M. S. Abdo, Langevin equation with nonlocal
boundary conditions involving a ψ-Caputo fractional operator, (2020), arXiv: 2006.00391v1.

26. J. Vanterler da Costa Sousa, E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type
problem by means of Ψ-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106.

27. J. Vanterler da C. Sousa, E. Capelas de Oliveira, Existence, uniqueness, estimation and continuous
dependence of the solutions of a nonlinear integral and an integrodifferential equations of fractional
order, (2018), arXiv: 1806.01441.

AIMS Mathematics Volume 6, Issue 3, 2486–2509.



2508

28. H. A. Wahash, M. S. Abdo, A. M. Saeed, S. K. Panchal, Singular fractional differential equations
with ψ-Caputo operator and modified Picard’s iterative method, Appl. Math. E-Notes., 20 (2020),
215–229.

29. H. A. Wahash, S. K. Panchal, Positive solutions for generalized two-term fractional differential
equations with integral boundary conditions, J. Math. Anal. Model., 1 (2020), 47–63.

30. J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations
with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., (2011), 1–10.

31. M. Al-Refai, M. Ali Hajji, Monotone iterative sequences for nonlinear boundary value problems
of fractional order, Nonlinear Anal., 74 (2011), 3531–3539.

32. C. Chen, M. Bohner, B. Jia, Method of upper and lower solutions for nonlinear Caputo fractional
difference equations and its applications, Fract. Calc. Appl. Anal., 22 (2019), 1307–1320.

33. P. Chen, Y. Kong, Monotone iterative technique for periodic boundary value problem of fractional
differential equation in Banach spaces, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 595–599.

34. C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional
differential equations with Ψ-Caputo derivative via monotone iterative technique, Axioms., 9
(2020), 57.

35. Y. Ding, Y. Li, Monotone iterative technique for periodic problem involving Riemann-Liouville
fractional derivatives in Banach spaces, Bound. Value Probl., 2018 (2018), 119.

36. S. W. Du, V. Lakshmikantham, Monotone iterative technique for differential equations in a Banach
space, J. Math. Anal. Appl., 87 (1982), 454–459.

37. K. D. Kucche, A. D. Mali, Initial time difference quasilinearization method for fractional
differential equations involving generalized Hilfer fractional derivative, Comput. Appl. Math., 39
(2020), 31.

38. X. Lin, Z. Zhao, Iterative technique for a third-order differential equation with three-point nonlinear
boundary value conditions, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 12.

39. G. Wang, W. Sudsutad, L. Zhang, J. Tariboon, Monotone iterative technique for a nonlinear
fractional q-difference equation of Caputo type, Adv. Differ. Equ., 2016 (2016), 211.

40. S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville
fractional derivatives, Nonlinear Anal., 71 (2009), 2087–2093.
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