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Abstract: The present work is to design a novel Neuro swarm computing standards using artificial 

intelligence scheme to exploit the Gudermannian neural networks (GNN)accomplished with global 

and local search ability of particle swarm optimization (PSO) and sequential quadratic programming 

scheme (SQPS), called as GNN-PSO-SQPS to solve a class of the second order Lane-Emden 

singular nonlinear model (SO-LES-NM). The suggested intelligent computing solver 

GNN-PSO-SQPS using the Gudermannian kernel are unified with the configuration of the hidden 

layers of GNN of differential operators for solving the SO-LES-NM. An error based fitness function 

(FF) applying the differential form of the differential model and corresponding boundary conditions. 

The FF is optimized together with the combined heuristics of PSO-SQPS. Three problems of the 

SO-LES-NM are solved to validate the correctness, effectiveness and competence of the designed 

GNN-PSO-SQPS. The performance of the GNN-PSO-SQPS through statistical operators is tested to 

check the constancy, convergence and precision. 

Keywords: Lane-Emden singular system; Gudermannian neural networks; Sequential quadratic 

scheme; Gudermannian kernel; Numerical results; Particle swarm optimization. 
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1. Introduction 

The singular based models have gotten much importance due to its valued applications in 

physiology, physics and mathematics submissions. The Lane-Emden based model is one the historic 

paramount singular model introduced by famous astrophysics Lane and the further explored by 

Emden [1,2]. The general form of the second order Lane-Emden singular nonlinear model 

(SO-LES-NM) is given as [3]: 

1 2

( ) ( ) ( , ) 0, , 0, 0 1,

(0) , (0) ,

v v g v

v i v i


    




 + + =   


 = =

 
(1)

 

where 1i  and 2i  are constants,  is the shape factor, while ( , )g v  is known as the real valued 

continuous function. 

The singular Lane-Emden nonlinear systems are widely implemented to solve an assortment of 

phenomena in the fields of physical science [4], gaseous star density [5], electromagnetic theory [6], 

morphogenesis study [7], stellar structure model [8], study of mathematical physics [9], oscillating 

magnetic fields [10], dusty fluid system [11] and an isotropic standard [12]. The singular models due to 

singularity are found to be hard and grim at the origin. A small number of numerical and analytical 

approaches are available to tackle such nonlinear singular systems are given in these references [13–16]. 

All above-mentioned approaches shave their specific sensitivity, efficiency, potential and 

perfection, as well as, weaknesses, disadvantages, imperfections, flaws and demerits over one 

another. The potential of the wide-ranging computing heuristic of the scheme is applied to the 

singular models using the extensive approximation aptitude of artificial neural networks (ANNs) 

mutually with the local and global methodologies [17–23]. Some notable illustrations contain 

mosquito dispersal study in a heterogeneous conditions [24], nonlinear dusty plasma system [25], 

nonlinear functional differential singular models[26,27], plasma physics studies [28], Thomas-Fermi 

system [29], HIV infection system of CD4+ T cells [30], biological prey-predator model [31], 

nonlinear singular periodic differential system [32],nanotechnology systems [33], Jeffery Hamel 

flow problem [34], corneal shape system based on eye surgery [35], singular differential model [36] 

and atomic physics system [37]. 

These prospective and potential submissions demonstrated the importance, value and 

significance of the numerical stochastic based computing solvers in terms of exactitude, stability and 

convergence. Consequently, the novel features of the Gudermannian neural network (GNN) are 

designed together with particle swarm optimization (PSO) and the sequential quadratic programming 

scheme, i.e., GNN-PSO-SQPS to solve the SO-LES-NM. 

The motive of this research work is to solve SO-LES-NM by integrating the intelligent 

computing approach based on the GNN-PSO-SQPS. The innovative features of the GNN-PSO-SQPS 

are given as follows: 

• A novel computingGNN-PSO-SQPSintelligentsolveris exploited and explored using the GNN 

along with the hybrid-combination of PSO-SQPS. 
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• The designed GNN-PSO-SQPS are tested precisely and accurately for solving three different 

problems of the SO-LES-NM. 

• The coinciding of the outcomes achieved by the proposed GNN-PSO-SQPS and the exact 

results demonstrations the correctness of the scheme to solve SO-LES-NM. 

• The results through proposed GNN-PSO-SQPS for single/multiple runsvia performance 

investigations of mean, root mean square error (RMSE), semi inter quartile range(S-I-R), 

Theil’s inequality coefficient (TIC), median and standard deviation certified the competence, 

consistency, precision, accuracy and correctness of the designed GNN-PSO-SQPS. 

The rest parts of this research paper are given as: The methodology is given in Sec 2, the 

performance indices information is given in Sec 3, the detail of numerical results together with future 

research clarifications is given in Section 4. 

2. Materials and method 

In this section, the design of the differential operator GNN is presented to solve the 

SO-LES-NM. The detail of the differential model, fitness function (FF) and optimization using the 

suggested PSO-SQPS are provided. 

2.1. Proposed procedure: Gudermannian function 

The models based on neural network are familiar to provide the reliable, standardized and 

consistent solutions for a number of applications indifferent fields. In the below modeling, 
ˆ( )v  represents the obtained outcomes from the GNN-PSO-SQPS together with its nth derivatives are 

given as: 

1

ˆ( ) ( )
m

k k k
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where, m and n represent the neurons and derivative order, respectively. The activation function is h, 

whereas, a , w  and q are the unidentified weight vectors defined as [ ]=W a,w,q , for 

1 2 3[ , , ,..., ]ma a a a=a , 1 2 3[ , , ,..., ]mw w w w=w  and 1 2 3[ , , ,..., ]mq q q q=q . The literature form of the 

Gudermannian function is given as: 
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The Gudermannian activation function using the above equation becomes as: 
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To solve the SO-LES-NM, the formulation of FF using the mean squared error metric is written as: 

1 2 ,FIT FIT FIT  − −= +
        (5)

 

where 1FIT − and 2FIT − are the unsupervised error functions connected to the SO-LES-NM and 

relevant conditions of the SO-LES-NM (1) are given as: 
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where ˆ ˆ ˆ ˆ1, ( ), ( , ) ( , ( ))k k k k kNh v v g v g v   = = = and k kh = . 

While the networks presented in (6,7), used Gudermannian function (3) and its derivatives as a 

activation function. Now after learning of the weights of the networks, one can optimize the 

fitness/cost function in (6,7) and accordingly the solution of system (1) is approximately by proposed 

methodology. 

2.2. Optimization of the network: PSO-SQPS 

The capability of the ANNs based optimization models to solve the SO-LES-NM using the 

designed GNN-PSO-SQPS. 

PSO is used as an alteration of the genetic algorithm and work as a global search method [38-39]. 

PSO is an easy implementation, needs less memory and global search optimization process introduced 

in the previous century [40]. Recently, PSO is applied in many applications like as Some recent PSO 

applications are traveling salesman problem [41], SFO-DTC induction motor drive [42], to evaluate 

the parameters of the reaction kinetic parameters [43], prediction of asphalting precipitation [44], 

reducing cost and increasing reliability [45] and object detection in autonomous driving [46]. 

To modify the PSO parameters, the scheme provides optimal iterative solutions,
1

LB

−
P  and 

1

GB

−
P denote the swarm’s position and velocity, written as: 

1 1,k k k

i i i

− −= +X X V  (8) 

where Vi and Xi denote the velocity and position, 1 and 2 are the constant values of the 

accelerations, while [0,1] shows the weight inertia vector. 

In order to perform the rapid convergence, the global PSO approach is hybridized with an 

appropriate local search scheme taking the PSO results. Therefore, an operative local search scheme 

named as SQS is executed to regulate the obtained outcomes through the GNN-PSO-SQPS. Some 

latest applications of SQS are transient heat conduction model [47], geometric optimization of 

radioactive enclosures [48], nonlinear predictive control model [49], cognitive radio system [50] and 

optimal management of automated vehicles at intersections [51]. The detail of the optimization 
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procedure using the hybrid of PSO-SQPS are tabulated in the pseudo code Table 1. 

Table 1. Pseudo code for the GNN-PSO-SQPS to solve the SO-LES-NM. 

PSO process starts  

 Step-1: Start: Generate the arbitrarily initial  swarms and adjust the PSO 

parameters using the  optimoptions. 

 Step-2:Fitness Scheme: Examine the fit values to each  particle in the Eq. (5). 

 Step-3: Ranking: Rank all those element that have minimum  standards of the FF. 

 Step-4: Stopping Measures: Stop, when one of the below  condition meets. 

• Selected flights  

• Fit Level 

 Move to Step-5 

 Step-5: Renewal: For the position and velocity, use Eqs  (08) and (09). 

 Step-6: Elevation: Repeat the steps 02-06 until the   whole flights are completed. 

Step-7: Storage: store the best fit and designated as WPSO. 

End of PSO 

 

Start of PSO-SQPS 

 Inputs:WPSO 

 Output:Thebest-achievedfit is WPSO-SQPS Initialize:Use WPSO as a start point. 

 Terminate:Stop,when ‘ Fit  = 10-20’, TolX = 10-21 ‘TolCon = TolFun = 10-20’, 

‘MaxFunEvals =  268000’  Iteration = 520. 

 While: Terminate 

 Fit Assessment: For Fit , Implement the Eq (5)  

 Adjustments: Invoke the ‘fmincon’ using the SQS to adjust the values of the 

weight vector. 

 Store the fit for the weight vector  

 Store:Save WPSO-SQPS, function count, time, Fit and  generations for the current run. 

End of PSO-SQPS 

Data Generations: The process PSO-SQPS repeats 100 times to find a comprehensive 

data-set of the optimization process for the SO-LES-NM 

3. Performance form 

The presentation of two different measures for solving the SO-LES-NM are constructed in 

terms of the RMSE and TIC that are executed to verify the proposed PSO-SQPS, the mathematical 

notations of these procedures are given as:  

( )
2

1
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k kk

k

v v
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−
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4. Result simulations 

The detailed simulation based results of the numerical results through the GNN-PSO-SQPS for 

the SO-LES-NM are described in this section. 

Example1: Consider the SO-LES-NM (1)having exponential function 2 ( ) ( )( , ) 0.5v vg v e e  = −  as: 

2 ( ) ( )0.5 1
( ) ( ) ( ) 0, (0,1),

2
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v vv v e e

v v

   



 + + − = 
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For the Eq (12), the FF becomes as: 
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The true solution of the Eq (12) is 2ln 2 ln( 1)− + . 

Example 2: Consider the SO-LES-NM (1) involving fifth order nonlinearity for 5( , ) ( )g v v =  as: 

52
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v v

   

 + + = 


 = =
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For the Eq (14), the FF becomes as: 

( ) ( ) ( )( )
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The true solution takes the form as

1

2

2

3

3

 
 

+ 
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Example3: Consider the SO-LES-NM (1) involving exponential function ( )( , ) vg v e  =  as: 
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For the Eq (16), the FF becomes as: 

( ) ( ) ( )( )
2
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The true solution of the Eq (16) is

2

2

4 2 2
ln

(3 2 2) 1

 −
  − + 

. 

The optimization for all the examples of the SO-LES-NM optimized by the hybrid of 

PSO-SQPS using the Gudermannian activation function for hundred independent runs to get the 

system variables of the parameter. A set of the best weights authenticate the numerical results by 

taking 10 neurons and the mathematical notations of these proposed outcomes is written as: 
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Figure 1 represents the set of the best weights for 10 neurons along with the comparison of the 

exact, best and mean performances of the results for the SO-LES-NM based Examples 1–3. The value 

of the best weight sets by using the Eqs 18 to 20 are plotted in the Figure 1 for all the problems. The 

numerical performances of the exact, best and mean results have been performed between 0 and 1 with 

the step size 0.1 along with 10numbers of neurons throughout this research study. The comparison of 

these mentioned exact, best and mean results for all the examples of the SO-LES-NM is matched over 

one another. These valuations of the outcomes represented in the Figure 1 specify the exactness, 

perfection and accuracy of the advised GNN-PSO-SQPS. The performance soundings based on the 
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FIT, RMSE and TIC operators along with the mean, worst and best AE values for all measures of 

SO-LES-NM is plotted in Figure 2. To investigate the performances for the example 1, one can 

observe that the best FIT and TIC values lie around 10−08 to 10−10and the best RMSE values exist in10−05 

to 10−06 interval. The mean FIT, RMSE and TIC values for example 1 exist in the ranges of10-04 to 

10−06, 10−03 to 10−04 and 10−07 to 10−08, respectively. For examples 2 and 3, the best values of the FIT, 

RMSE and TIC values lie around 10−08 to 10−10. The mean values of the FIT, RMSE and TIC values lie 

around 10−02 to 10−04, 10−05 to 10−06 and 10−01 to 10−03. The worst values for all the performance indices 

are also found in good ranges. Toevaluate the absolute error (AE) for the examples 1, 2 and 3, the best 

values are calculated around 10−05–10−06, 10−04 to 10−05 and 10−04 to 10−06. The mean gage values are 

found around 10−03 to 10−04, 10−01 to 10−03and 10−02 to 10−03, respectively. On the behalf of these 

indices, one can calculate the specific, accurate and precise values of the RMSE and TIC for all 

theSO-LES-NM based examples 1 to 3. The statistical investigation based on Fitness, RMSE and TIC 

values using the histogram and the box plots for the SO-LES-NM is provided in Figures 3 to 5. It is 

interpreted that most of the independent executions have been achieved best values of FIT, RMSE 

and TIC.  

Statistical representations have been scrutinized applying the GNN-PSO-SQPS to solve the 

SO-LES-NM for 100 independent executions using the mean, semi inter quartile range (S.I.R), 

maximum (Max), standard deviation (STD), minimum (Min) and median (MED) are tabulated in 

Table 2. The Min gage value shows the best outcomes, whereas the Max values show the worst runs 

for the GNN-PSO-SQPS. S.I.R is one-half of the 3rd and 1st quartile difference. These statistic 

measures for all examples of the SO-LES-NM are obtained satisfactory. The global demonstrations for 

all examples of the SO- LES-NM applying the proposed GNN-PSO-SQPS are provided in Table 3. 

The Min [G-FIT], [G-RMSE] and [G-TIC] values lie 10−08 to 10−10, 10−05 to 10−06 and 10−09 to 10−10, 

respectively, whereas the MED values are examined in the ranges of 10−07 to 10−08, 10−04 to 10−05and 

10−08 to 10−09, respectively for the SO-LES-NM using the designed GNN-PSO-SQPS. These optimal 

achieved values from the designed GNN-PSO-SQPS based global operatives approve the accuracy of 

the scheme. The complexity performances for the SO-LES-N Musing the designed GNN-PSO-SQPS 

based on the iterations, period of executions and function evaluations are provided in Table 4. One can 

see that the generations values, executed time together with the count of function lie around 35.553778, 

1561.16667 and 53176.38667, respectively, for solving the SO-LES-NM using the designed 

GNN-PSO-SQPS. 
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Figure 1. A set of best weights for 10 neurons along with the comparison of the exact, 

best and mean performances of the results for the SO-LES-NM based Examples 1–3. 
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Figure 2. Performance soundings based on the FIT, RMSE and TIC operators along with 

the mean, worst and best AE values for all the measures of SO-LES-NM. 
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(a) Fitvalues using convergence investigationsfor Examples 1 to 3. 

  

 

 

(b) HistforExample1 (c) Hist for Example 2 (d) Hist for Example 3 

   

(e) Boxplot: Example 1 (f) Boxplot: Example 2 (g) Boxplot: Example 3 

Figure 3. Statistical investigation via Fitness, histogram along with boxplots for the 

SO-LES-NM using the GNN-PSO-SQPS. 
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(a) RMSE values using convergence investigations for Examples 1 to 3 

  

 

 

(b) Hist for Example 1 (c) Hist for Example 2 (d) Hist for Example 3 

   

(e) Boxplot: Example 1 (f) Boxplot: Example 2 (g) Boxplot: Example 3 

Figure 4. Statistical investigation via Fitness, histogram along with boxplots for the 

SO-LES-NM using the GNN-PSO-SQPS. 
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(a) TIC values using convergence investigations for Examples 1 to 3 

  

 

 

(b) Histfor Example 1 (c) Hist for Example 2 (d) Hist for Example 3 

   

(e) Boxplot: Example 1 (f) Boxplot: Example 2 (g) Boxplot: Example 3 

Figure 5. Statistical investigation via Fitness, histogram along with boxplots for the 

SO-LES-NM using GNN-PSO-SQPS. 
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Table 2. Statistical presentations for all examples of the SO-LES-NM using the designed 

GNN-PSO-SQPS. 

Index Gages 
The outcomes through GNN-PSO-SQPS for the SO-LES-NM 

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0 

E 1 

Min 1×10-07 5×10-06 5×10-06 6×10-06 7×10-08 2×10-06 6×10-06 5×10-06 5×10-06 4×10-06 3×10-06 

Mean  1×10-04 2×10-04 4×10-04 6×10-04 6×10-04 6×10-04 6×10-04 6×10-04 5×10-04 4×10-04 4×10-04 

Max 2×10-03 3×10-03 5×10-03 5×10-03 7×10-03 8×10-03 9×10-03 8×10-03 8×10-03 7×10-03 6×10-03 

Med 4×10-05 1×10-04 3×10-04 4×10-04 4×10-04 4×10-04 4×10-04 4×10-04 3×10-04 2×10-04 2×10-04 

STD 3×10-04 3×10-04 6×10-04 8×10-04 1×10-03 1×10-03 1×10-03 1×10-03 9×10-04 8×10-04 7×10-04 

S-I-R 5×10-05 1×10-04 2×10-04 3×10-04 2×10-04 2×10-04 2×10-04 2×10-04 2×10-04 2×10-04 2×10-04 

E 2 

Min 1×10-06 1×10-05 1×10-05 2×10-05 1×10-05 1×10-05 1×10-05 1×10-05 1×10-05 1×10-05 1×10-05 

Mean  2×10-02 2×10-02 2×10-02 2×10-02 1×10-02 1×10-02 1×10-02 1×10-02 8×10-03 6×10-03 4×10-03 

Max 7×10-01 7×10-01 6×10-01 5×10-01 4×10-01 3×10-01 2×10-01 2×10-01 2×10-01 1×10-01 1×10-01 

Med 1×10-04 1×10-04 9×10-05 7×10-05 8×10-05 8×10-05 8×10-05 7×10-05 6×10-05 5×10-05 4×10-05 

STD 1×10-01 1×10-01 1×10-01 8×10-02 7×10-02 6×10-02 5×10-02 4×10-02 3×10-02 2×10-02 2×10-02 

S-I-R 1×10-04 1×10-04 1×10-04 1×10-04 1×10-04 1×10-04 1×10-04 1×10-04 8×10-05 6×10-05 4×10-05 

E 3 

Min 7×10-08 2×10-07 2×10-06 8×10-07 1×10-07 8×10-07 6×10-08 1×10-06 2×10-07 1×10-06 1×10-10 

Mean  2×10-02 1×10-02 1×10-02 8×10-03 6×10-03 5×10-03 4×10-03 3×10-03 2×10-03 1×10-03 8×10-04 

Max 2×10-01 1×10-01 1×10-01 8×10-01 6×10-01 5×10-01 4×10-01 3×10-01 2×10-01 1×10-01 8×10-02 

Med 1×10-04 9×10-05 6×10-05 5×10-05 5×10-05 4×10-05 4×10-05 2×10-05 1×10-05 1×10-05 1×10-06 

STD 2×10-01 1×10-01 1×10-01 8×10-02 6×10-02 5×10-02 4×10-02 3×10-02 2×10-02 1×10-02 8×10-03 

S-I-R 1×10-04 6×10-05 5×10-05 3×10-05 3×10-05 2×10-05 2×10-05 2×10-05 1×10-05 9×10-06 6×10-06 

Table 3. Global values for the SO-LES-NM using the designed GNN-PSO-SQPS. 

Example 
[G-FIT] [G-RMSE] [G-TIC] 

Min MED Min MED Min MED 

1 1.00696E-10 7.28133E-07 5.36058E-06 3.81384E-04 8.66807E-10 6.33787E-08 

2 9.02993E-10 3.33640E-07 2.04610E-05 8.11596E-05 2.86113E-09 1.16280E-08 

3 1.14757E-08 4.48479E-08 8.71755E-06 6.65576E-05 1.37498E-09 9.27960E-09 

Table 4. Complexity performances for the SO-LES-NM using the GNN-PSO-SQPS. 

Example Generation Executed Time Function Calculations 

Mean STD Mean STD Mean STD 

1 32.341614 10.792954 1375.580000 1118.437060 48632.910000 15590.684384 

2 38.944620 13.014598 1533.930000 1257.031988 57831.440000 18477.308549 

3 35.375101 13.738706 1773.990000 1590.724900 53064.810000 19709.332159 

4. Conclusions 

The present research investigations are associated to present a novel Gudermannian neural 

network to solve the nonlinear second order singular Lane-Emden system using the hybrid 
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computing GNN-PSO-SQPS framework involving singularities at the origin. An error based 

objective function is optimized by using the global capability of particle swarm optimization and 

fast/rapid sequential quadratic scheme using 10 numbers of neurons throughout the present study. 

The design of the Gudermannian neural network is successfully exploited to solve the nonlinear 

second order singular Lane-Emden system. The obtained results using the process of optimization 

through the Gurmannian kernels have been compared with the true solutions for three different 

examples to check the precision and correctness of the suggested GNN-PSO-SQPS. One can find 

that the obtained and exact results overlapped over one another and examined the accuracy of order 5 

to 7 decimal places. Furthermore, the performance of the scheme is investigated through the RMSE 

and TIC operators by taking the mean, worst and best AE values for all examples of the nonlinear 

second order singular Lane-Emden system. It is observed that the best values lie around 10-06-10-08, 

while the mean results and even the worst results lie in the good ranges for all the measures. The 

statistical clarifications for the 100 independent trials are implemented to the nonlinear second order 

singular Lane-Emden system in terms of the gages minimum, median, standard deviation, maximum, 

semi inter quartile range, mean authenticates the trustworthiness, robustness, accurateness and 

exactness of the proposed GNN-PSO-SQPS that is identified further by the performance measures of 

RMSE and TIC. 

In the future, the considered GNN-PSO-SQPS can be used to the biological systems [52,53], as 

well as, two or three-dimensional systems of fluid dynamics [54–57]. 
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