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1. Introduction

In the last two decades, differential equations involving fractional derivatives, have been used in
many mathematical models to describe a wide variety of phenomena, including problems in
viscoelasticity, signal and image processing, engineering, economics, epidemiology and among
others, and the study of this kind of equations has been a topic of interest in recent years.
See [9, 16, 19, 25, 37, 41–43, 45] and the references therein.

In this paper, we consider the following multi-term fractional differential equations

∂αu(t) = Au(t) + ∂α−β f (t, u(t)), t ∈ R, (1.1)

and
∂αt u(t) = Au(t) + ∂

α−β
t f (t, u(t)), t ∈ [0,T ], (1.2)

where A is a closed linear operator defined in a Banach space X, 1 < α, β < 2, T > 0, and f is a
suitable continuous function. Here, for γ > 0 the derivatives ∂γu and ∂γt u, denote the Weyl and Caputo
fractional derivatives, respectively.
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Although the definition of the fractional derivatives in the sense of Weyl (defined on R) and Caputo
(defined on [0,∞)) are different, we notice that the mild solution to Eqs (1.1) and (1.2) can be written
in terms of the same resolvent family. In fact, if A is the generator of the fractional resolvent family
{S α,1(t)}t≥0 (see its definition in Section 2) then the mild solutions to Eqs (1.1) and (1.2) are defined,
respectively, by

u(t) =

∫ t

−∞

S α,β(t − s) f (s, u(s))ds, t ∈ R,

and

u(t) = S α,1(t)x + S α,2(t)y +

∫ t

0
S α,β(t − s) f (s, u(s))ds, t > 0,

where x = u(0) and y = u′(0) are the initial conditions in Eq (1.2), and the families {S α,β(t)}t≥0, and
{S α,2(t)}t≥0, are given respectively by

S α,β(t) = (gβ−1 ∗ S α,1)(t), and S α,2(t) = (g1 ∗ S α,1)(t).

Here, the ∗ denotes the usual finite convolution and for γ > 0 the function gγ is defined by gγ(t) :=
tγ−1/Γ(γ), where Γ(·) is the Gamma function. The fractional resolvent family {S α,1(t)}t≥0 is defined by

S α,1(t) :=
1

2πi

∫
Γ

eλtλα−1(λα − A)−1dλ, t ≥ 0,

where Γ is a suitable complex path where the resolvent operator (λα − A)−1 is well defined. By the
uniqueness of the Laplace transform it is easy to see that

S α,2(t) =
1

2πi

∫
Γ

eλtλα−2(λα − A)−1dλ and S α,β(t) =
1

2πi

∫
Γ

eλtλα−β(λα − A)−1dλ,

for all t ≥ 0. The existence of mild solutions to Eq (1.1) in case β = 1 has been widely studied in
the last years, see for instance [4, 12, 13, 24] and references therein. In these mentioned papers, the
operator A is assumed to be an ω-sectorial operator of angle θ (see definition in Section 2). In this case,
A generates a resolvent family {Eα(t)}t≥0 (see [11, 28]) which satisfies

‖Eα(t)‖ ≤
C

1 + |ω|tα
, for all t ≥ 0,

where C is a positive constant depending only on α and θ. This decay of {Eα(t)}t≥0 provides also some
tools to obtain many and interesting consequences on the study of qualitative properties of solutions to
fractional (and integral) differential (and difference) equations. See for instance [4, 7, 8, 29, 31, 44] and
the references therein for further details. We notice that, by the uniqueness of the Laplace transform,
the resolvent families {Eα(t)}t≥0 and {S α,1(t)}t≥0 are the same for 1 < α < 2.

On the other hand, the existence of mild solutions to fractional differential equations with nonlocal
conditions has been studied by several authors in the last years. The concept of nonlocal initial
condition was introduced by L. Byszewski [6] to extend the study of classical initial value problems.
This notion results more suitable to describe more precisely several phenomena in applied sciences,
because it considers additional information in the initial data. More concretely, the nonlocal
conditions have the form u(0) + g(u) = u0 instead u(0) = u0, where g is an appropriate function that
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represents the additional information in the system and provides a better description of the initial state
of the system than the classical initial value problem. The theory of nonlocal Cauchy problems has
been developed rapidly and has been studied widely in the last years, see for instance [3, 33, 38] and
the references therein for more details.

There exists a wide recent literature on the existence of mild solutions to fractional differential
equations with nonlocal initial conditions. More specifically, the problem{

∂αt u(t) = Au(t) + f (t, u(t)), t ∈ [0,T ]
u(0) + g(u) = u0,

(1.3)

where T > 0, A is a closed linear operator defined in a Banach space X, 0 < α ≤ 1, u0 ∈ X, f
is a suitable semilinear continuous function has been studied extensively in recent years. See for
instance [1, 2, 10, 26, 30, 35]. Since the fractional derivative ∂αt for α = 1 is the usual derivative d

dt , the
case α = 1 in (1.3) corresponds precisely to the semilinear Cauchy problem introduced in the seminal
paper [6] and the theory of C0-semigroups of linear operators is the main tool to obtain the existence
of solutions in this case. Similarly, for α > 0 the theory of fractional resolvent families represents one
of the main tools to study the existence of mild solutions to (1.3). Indeed, if 0 < α ≤ 1 and A generates
a resolvent family {S α,α(t)}t≥0, then the mild solution to (1.3) is given by

u(t) = S α,1(u0 − g(u)) +

∫ t

0
S α,α(t − s) f (s, u(s))ds (1.4)

where S α,1(t) := (g1−α ∗ S α,α)(t), see for instance [30]. We notice that the variation of constant
formula (1.4) coincides with the case α = 1 introduced in [6, Section 3]. Similarly, for 1 < α < 2 and
β = 1 or β = α, the Eq (1.2) subject to the nonlocal conditions u(0) + g(u) = u0, and u′(0) + h(u) = u1,

where g, h : C(I, X) → X are continuous and u0, u1 belong to X, (I := [0,T ]) has been considered by
several authors in the last years. See for instance [2, 22] for the case β = 1 and [33, 34] in case β = α.

In this paper, our concern is the study of existence of mild solutions to the fractional differential
Eqs (1.1) and (1.2). Here, we assume certain conditions on the operator A and on the parameters α and
β in order to ensure that A is the generator of a fractional resolvent family {S α,β(t)}t≥0.

More specifically, in Eq (1.1) we consider the Weyl fractional derivative, because it is defined for
functions onR.More precisely, we show that if the function f in (1.1) is an almost periodic or an almost
automorphic (among others) vector-valued function, then the Eq (1.1) has a unique almost periodic or
almost automorphic function mild solution, respectively, which is given in terms of {S α,β(t)}t≥0.

On the other hand, in Eq (1.2) the derivative is taken in the sense of Caputo, because it is defined on
the positive real axis [0,∞). Under the the nonlocal conditions u(0) + g(u) = u0, and u′(0) + h(u) = u1

we prove that (1.2) has at least one mild solution. Here, the properties of the fractional resolvent family
{S α,β(t)}t≥0 are again an important tool to obtain the result.

This paper is organized as follows. The Section 2 gives the preliminaries on fractional calculus,
sectorial operators, fractional resolvent families and some subspaces of bounded and continuous
functions. Section 3 is devoted to the existence of mild solutions to (1.1). In Section 4 is studied the
existence of mild solutions to the nonlocal problem (1.2). Finally, in Section 5 we give some
examples.
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2. Preliminaries

For a Banach space (X, ‖ · ‖), the space of all bounded and linear operators form X into X is denoted
by B(X). If A is a closed linear operator defined on X we denote by ρ(A) the resolvent set of A and
R(λ, A) = (λ − A)−1 its resolvent operator, which is defined for all λ ∈ ρ(A). For 1 ≤ p < ∞, Lp(R+, X)
denotes the space of all Bochner measurable functions g : R+ → X such that

‖g‖p :=
(∫ ∞

0
‖g(t)‖pdt

)1/p

< ∞.

We recall that a strongly continuous family {S (t)}t≥0 ⊂ B(X) is said to be exponentially bounded if
there exist two constants M > 0 and w ∈ R such that ‖S (t)‖ ≤ Mewt for all t > 0.

A closed and densely defined operator A, defined on a Banach space (X, ‖ · ‖), is said to be ω-
sectorial of angle φ, if there exist φ ∈ [0, π/2) and ω ∈ R such that its resolvent exists in the sector
ω + Σφ :=

{
ω + λ : λ ∈ C, | arg(λ)| < π

2 + φ
}
\ {ω} and ‖R(λ, A)‖ ≤ M

|λ−ω|
for all λ ∈ ω + Σφ. See [17]

and [18] for further details.
Now, we review some results on fractional calculus. We recall that for γ > 0, the function gγ is

defined by gγ(t) = tγ−1

Γ(γ) for all t ≥ 0. For γ > 0, dγe denotes the smallest integer greater than or equal
to γ, and [γ] denotes the integer part of γ. As usual, the finite convolution of f and g is defined by
( f ∗ g)(t) =

∫ t

0
f (t − s)g(s)ds.

Definition 1. Let α > 0 and n = dαe. The Caputo fractional derivative of order α of a function
u : [0,∞)→ X is defined by

∂αt u(t) :=
∫ t

0
gn−α(t − s)u(n)(s)ds.

Definition 2. Let α > 0 and n = [α] + 1. The Weyl fractional derivative of order α of a function
u : R→ X is defined by

∂αu(t) :=
dn

dtn∂
−(n−α)u(t),

where for γ > 0, ∂−γu(t) :=
∫ t

−∞
gγ(t − s)u(s)ds for all t ∈ R.

It is a well known fact that if α ∈ N, then ∂n
t = ∂n = dn

dtn , that is, the Caputo and Weyl fractional
derivatives coincide with the usual derivative if α ∈ N. Moreover, if α, β ∈ R, then ∂α∂βu = ∂β∂αu =

∂α+βu. See [25, 41] and [42] for more details and applications on fractional differential calculus.
Now, we recall the resolvent families of operators generated by an operator A.

Definition 3. Let A be closed linear operator with domain D(A), defined on a Banach space X, 1 ≤
α ≤ 2 and 0 < β ≤ 2. We say that A is the generator of an (α, β)-resolvent family, if there exists
ν ≥ 0 and a strongly continuous and exponentially bounded function S α,β : [0,∞) → B(X) such that
{λα : Reλ > ν} ⊂ ρ(A), and for all x ∈ X,

λα−β (λα − A)−1 x =

∫ ∞

0
e−λtS α,β(t)xdt, Reλ > ν.

In this case, {S α,β(t)}t≥0 is called the (α, β)-resolvent family generated by A.
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If we compare Definition 3 with the notion of (a, k)-regularized families introduced in [21], then
we notice that t 7→ S α,β(t), is a (gα, gβ)-regularized family. Moreover, the family {S α,β(t)}t≥0 is well
known in some cases. For example, S 1,1(t) is a C0-semigroup, S 2,1(t), corresponds to a cosine family
and S 2,2(t) is a sine family. In the scalar case, that is, when A = %I, where % ∈ C and I denotes the
identity operator, then by the uniqueness of the Laplace transform, S α,β(t) corresponds to the function
tβ−1Eα,β(%tα), where for z ∈ C the generalized Mittag-Leffler function is defined by
Eα,β(z) =

∑∞
k=0

zk

Γ(αk+β) , see for instance [39, 40]. See also [41] and [42] for an interesting and recent
discussion on the theory of general fractional derivatives and its applications.

We have also the following result. Its proof follows similarly as in [20, Proposition 3.7].

Proposition 4. Let 1 ≤ α, β ≤ 2. Let S α,β(t) be the (α, β)-resolvent family generated by A. Then:

1. S α,β(t)x ∈ D(A) and S α,β(t)Ax = AS α,β(t)x for all x ∈ D(A) and t ≥ 0.
2. If x ∈ D(A) and t ≥ 0, then

S α,β(t)x = gβ(t)x +

∫ t

0
gα(t − s)AS α,β(s)xds (2.1)

3. If x ∈ X, t ≥ 0, then
∫ t

0
gα(t− s)S α,β(s)xds ∈ D(A) and S α,β(t)x = gβ(t)x + A

∫ t

0
gα(t− s)S α,β(s)xds.

In particular, S α,β(0) = gβ(0)I.

The next result gives sufficient conditions on α, β and A to obtain generators of (α, β)-resolvent
families.

Theorem 5. [28] Let 1 < α < 2 and β ≥ 1 such that α − β + 1 > 0. Assume that A is ω-sectorial of
angle (α−1)π

2 , where ω < 0. Then A generates an exponentially bounded (α, β)-resolvent family.

Theorem 6. [28] Let 1 < α < 2 and β ≥ 1 such that α − β + 1 > 0. Assume that A is ω-sectorial of
angle (α−1)

2 π, where ω < 0. Then, there exists a constant C > 0, depending only on α and β, such that

‖S α,β(t)‖ ≤
Ctβ−1

1 + |ω|tα
, for all t > 0. (2.2)

Finally, we recall some spaces of functions. For a given Banach space (X, ‖ · ‖), let BC(X) :=
{ f : R → X : ‖ f ‖∞ := supt∈R ‖ f (t)‖ < ∞} be the Banach space of all bounded and continuous
functions. For T > 0 fixed, PT (X) denotes the space of all vector-valued periodic functions, that is,
PT (X) := { f ∈ BC(X) : f (t + T ) = f (t), for all t ∈ R}. We denote by AP(X) to the space of all almost
periodic functions (in the sense of Bohr), which consists of all f ∈ BC(X) such that for every ε > 0
there exists l > 0 such that for every subinterval of R of length l contains at least one point τ such that
‖ f (t + τ)− f (t)‖∞ ≤ ε. A function f ∈ BC(X) is said to be almost automorphic if for every sequence of
real numbers (s′n)n∈N there exists a subsequence (sn)n∈N ⊂ (s′n)n∈N such that

g(t) := lim
n→∞

f (t + sn)

is well defined for each t ∈ R, and

f (t) = lim
n→∞

g(t − sn), for each t ∈ R.

AIMS Mathematics Volume 6, Issue 3, 2398–2417.



2403

We denote by AA(X) the Banach space of all almost automorphic functions.
On the other hand, the space of compact almost automorphic functions is the space of all functions

f ∈ BC(X) such that for all sequence (s′n)n∈N of real numbers there exists a subsequence (sn)n∈N ⊂

(s′n)n∈N such that g(t) := limn→∞ f (t + sn) and f (t) = limn→∞ g(t − sn) uniformly over compact subsets
of R.

We notice that PT (X), AP(X), AA(X) and AAc(X) are Banach spaces under the norm || · ||∞ and

PT (X) ⊂ AP(X) ⊂ AA(X) ⊂ AAc(X) ⊂ BC(X).

We notice that all these inclusions are proper. Now we consider the set C0(X) := { f ∈ BC(X) :
lim|t|→∞ || f (t)|| = 0}, and define the space of asymptotically periodic functions as APT (X) := PT (X) ⊕
C0(X). Analogously, we define the space of asymptotically almost periodic functions,

AAP(X) := AP(X) ⊕C0(X),

the space of asymptotically compact almost automorphic functions,

AAAc(X) := AAc(X) ⊕C0(X),

and the space of asymptotically almost automorphic functions,

AAA(X) := AA(X) ⊕C0(X).

We have the following natural proper inclusions

APT (X) ⊂ AAP(X) ⊂ AAAc(X) ⊂ AAA(X) ⊂ BC(X).

For more details on this function spaces, we refer to reader to [23, 27].
Throughout, we will use the notation N(X) to denote any of the function spaces APT (X), AAP(X),

AAAc(X) and AAA(X) defined above. Finally, we define the set N(R × X; X) which consists of all
functions f : R × X → X such that f (·, x) ∈ N(X) uniformly for each x ∈ K, where K is any bounded
subset of X. Moreover, we have the following result.

Theorem 7. [23] Let {S (t)}t≥0 ⊂ B(X) be a strongly continuous and uniformly 1-integrable family,
that is

∫ ∞
0
‖S (t)‖dt < ∞. If f ∈ N(X), then the function u : R→ X defined by

u(t) :=
∫ t

−∞

S (t − s) f (s)ds,

belongs to N(X).

3. Bounded mild solutions to Eq (1.1)

Let 1 < α < 2 and β ≥ 1. In this section, we first consider the linear version of the Eq (1.1), that is,

∂αu(t) = Au(t) + ∂α−β f (t), t ∈ R. (3.1)
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Definition 8. A function u ∈ C(R, X) is called a mild solution to Eq (3.1) if the function s 7→ S α,β(t −
s) f (s) is integrable on (−∞, t) for each t ∈ R and

u(t) =

∫ t

−∞

S α,β(t − s) f (s)ds, t ∈ R. (3.2)

We notice that (3.1) can be considered as the limiting equation of the following integro-differential
equation with singular kernels v′(t) =

∫ t

0

(t − s)α−2

Γ(α − 1)
Av(s) +

(t − s)β−2

Γ(β − 1)
f (s)ds, t ≥ 0

v(0) = v0, v0 ∈ X,
(3.3)

in the sense that the mild solution to Eq (3.3) converges to the mild solution of (3.1) as t → ∞. In fact,
if ω < 0 and A is an ω-sectorial operator of angle θ =

(α−1)
2 π, then taking Laplace transform in (3.3) we

obtain

λv̂(λ) − v(0) =
1
λα−1 Av̂(λ) +

1
λβ−1 f̂ (λ), Reλ > 0,

which is equivalent to

(λα − A)v̂(λ) = λα−1v(0) + λα−β f̂ (λ), Reλ > 0.

Therefore the solution of problem (3.3) can be written as

v(t) = S α,1(t)v0 +

∫ t

0
S α,β(t − s) f (s)ds, t ≥ 0, (3.4)

where {S α,β(t)}t≥0 is the family of operators given by

S α,β(t) := (gβ−1 ∗ S α,1)(t).

On the other hand, by [28, Corollary 3.9] the function t 7→ S α,β(t) is uniformly 1-integrable and
therefore if f is a bounded continuous function (for example, if f belongs to N(X)), then the mild
solution to Eq (1.1) is given by

u(t) =

∫ t

−∞

S α,β(t − s) f (s)ds.

Since

v(t) − u(t) = S α,1(t)v0 −

∫ ∞

t
S α,β(s) f (t − s)ds,

we conclude by [28, Corollary 3.8], that v(t) − u(t)→ 0 as t → ∞.
Let 1 < α < 2, β ≥ 1 such that α − β + 1 > 0, ω < 0 and assume that A is an ω-sectorial operator

of angle θ =
(α−1)

2 π. By Theorem 5, the operator A generates a resolvent family {S α,β(t)}t≥0. Take a
bounded and continuous function f : R → X, (for example, we can take f ∈ N(X)). Define the
function φ(t) by

φ(t) :=
∫ t

−∞

S α,β(t − s) f (s)ds, t ∈ R. (3.5)
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By Theorem 6 we have ||φ||∞ ≤ ||S α,β||1 || f ||∞. If f (t) ∈ D(A) for all t ∈ R, then φ(t) ∈ D(A) for all t ∈ R
(see [5, Proposition 1.1.7]). Assume that ∂αφ exists. The Proposition 4 and Fubini’s theorem imply
that

∂αφ(t) =
dn

dtn

∫ t

−∞

gn−α(t − s)φ(s)ds

=
dn

dtn

∫ t

−∞

gn−α(t − s)
∫ s

−∞

S α,β(s − r) f (r)drds

=
dn

dtn

∫ t

−∞

gn−α(t − s)
∫ s

−∞

[
gβ(s − r) f (r) + (gα ∗ AS α,β)(s − r) f (r)

]
drds

=
dn

dtn

∫ t

−∞

gn−α(t − s)∂−β f (s)ds +

dn

dtn

∫ t

−∞

gn−α(t − s)
∫ s

−∞

∫ s−r

0
gα(s − r − v)AS α,β(v) f (r)dvdrds

= ∂α−β f (t) +
dn

dtn

∫ t

−∞

gn−α(t − s)
∫ s

−∞

∫ s

r
gα(s − w)AS α,β(w − r) f (r)dwdrds

= ∂α−β f (t) +
dn

dtn

∫ t

−∞

gn−α(t − s)
∫ s

−∞

∫ w

−∞

gα(s − w)AS α,β(w − r) f (r)drdwds

= ∂α−β f (t) +
dn

dtn

∫ t

−∞

gn−α(t − s)
∫ s

−∞

gα(s − w)Aφ(w)dwds

= ∂α−β f (t) + Aφ(t),

for all t ∈ R. This means that, φ is a (strong) solution to Eq (3.1). We recall that a function u ∈ C(R, X)
is called a strong solution of (3.1) on R if u ∈ C(R,D(A)), the fractional derivative of u, ∂αu, exists
and (3.1) holds for all t ∈ R. If merely u(t) belongs to X instead of the D(A), then u is a mild solution
to the Eq (3.1) according to Definition 8. As consequence of the above computation we have the
following result.

Theorem 9. Let 1 ≤ β < α < 2 and ω < 0. Assume that A is an ω-sectorial operator of angle
θ =

(α−1)
2 π. Then for each f ∈ N(X) there is a unique mild solution u ∈ N(X) of Eq (3.1) which is given

by

u(t) =

∫ t

−∞

S α,β(t − s) f (s)ds, t ∈ R.

Proof. By Theorem 5, the operator A generates a resolvent family {S α,β(t)}t≥0 and by [28, Corollary
3.9] the function t 7→ S α,β(t) is uniformly 1-integrable. By Theorem 7 the function u(t) =

∫ t

−∞
S α,β(t −

s) f (s)ds belongs to N(X) and it is the mild solution to (3.1). �

Next, we consider the semilinear Eq (1.1).

Definition 10. A function u ∈ C(R, X) is called a mild solution to Eq (1.1) if the function s 7→ S α,β(t −
s) f (s, u(s)) is integrable on (−∞, t) for each t ∈ R and

u(t) =

∫ t

−∞

S α,β(t − s) f (s, u(s))ds, t ∈ R. (3.6)
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Theorem 11. Let 1 ≤ β < α < 2, ω < 0 and A is an ω-sectorial operator of angle θ =
(α−1)

2 π. If
f ∈ N(R × X, X) satisfies

‖ f (t, u) − f (t, v)‖ ≤ L‖u − v‖, for all t ∈ R, and u, v ∈ X, (3.7)

where L < α
C |ω|

β/αB
(
β

α
, 1 − β

α

)−1
, and C is the constant given in Theorem 6, and B(·, ·) denotes the Beta

function, then the Eq (1.1) has a unique mild solution u ∈ N(X).

Proof. Define the operator F : N(X)→ N(X) by

(Fφ)(t) :=
∫ t

−∞

S α,β(t − s) f (s, φ(s)) ds, t ∈ R. (3.8)

By [28, Corollary 3.9] we have∫ ∞

0
‖S α,β(t)‖dt ≤

C
α
|ω|−β/αB

(
β

α
, 1 −

β

α

)
< ∞, (3.9)

and [23, Theorems 3.3 and 4.1], F is well defined, that is, Fφ ∈ N(X) for all φ ∈ N(X). For φ1, φ2 ∈

N(X) and t ∈ R, by (3.9), we have:

‖(Fφ1)(t) − (Fφ2)(t)‖ ≤
∫ t

−∞

‖S α,β(t − s)[ f (s, φ1(s)) − f (s, φ2(s))]‖ds

≤

∫ t

−∞

L‖S α,β(t − s)‖ · ‖φ1(s) − φ2(s)‖ds

≤ L‖φ1 − φ2‖∞

∫ ∞

0
‖S α,β(r)‖dr

≤
LC
α
|ω|−β/αB

(
β

α
, 1 −

β

α

)
‖φ1 − φ2‖∞.

This proves that F is a contraction, so by the Banach fixed point theorem there exists a unique u ∈ N(X)
such that Fu = u. �

Theorem 12. Let 1 ≤ β < α < 2, ω < 0 and A is an ω-sectorial operator of angle θ =
(α−1)

2 π. If
f ∈ N(R × X, X) satisfies

‖ f (t, u) − f (t, v)‖ ≤ L(t)‖u − v‖, for all t ∈ R, and u, v ∈ X,

where L(·) ∈ L1(R,R+), then the Eq (1.1) admits a unique mild solution u ∈ N(X).

Proof. It easily follows by Theorem 6 that ‖S α,β(t)‖ ≤ C̃ := max
{

C,
C
|ω|

}
. Define the operator F

as (3.8). For u, v ∈ N(X) and t ∈ R, we have

||(Fu)(t) − (Fv)(t)|| ≤
∫ t

−∞

||S α,β(t − s)[ f (s, u(s)) − f (s, v(s))]||ds

≤ C̃‖u − v‖∞

∫ ∞

0
L(t − ξ)dξ
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= C̃‖u − v‖∞

∫ t

−∞

L(s)ds.

Generally, we have

‖(Fnu)(t) − (Fnv)(t)‖ ≤ ‖u − v‖∞
(C̃)n

(n − 1)!

∫ t

−∞

L(s)
(∫ s

−∞

L(ξ)dξ
)n−1

ds


≤ ‖u − v‖∞
(C̃)n

n!

(∫ t

−∞

L(s)ds
)n

≤ ‖u − v‖∞
(‖L‖1C̃)n

n!
.

Since
(‖L‖1C̃)n

n!
< 1 for sufficiently large n, by the contraction principle F admits a unique fixed point

u ∈ N(X). �

4. Mild solutions to Eq (1.2) with nonlocal conditioins

Assume that A is an ω-sectorial operator of angle θ =
(α−1)

2 π. By Theorem 5 the operator A generates
a resolvent family {S α,β(t)}t≥0. If h : C(I, X) → X is a continuous function, f (0, u(0)) = 0 and u1 ∈ X,
then it is well known that the mild solution to problem

∂αt u(t) = Au(t) + ∂
α−β
t f (t, u(t)), 0 ≤ t ≤ T

u(0) = 0,
u′(0) + h(u) = u1,

(4.1)

is given by means of the variation-of-constant formula

u(t) = S α,2(t)[u1 − h(u)] +

∫ t

0
S α,β(t − s) f (s, u(s))ds, t ∈ [0,T ].

We assume the following

• H1. The function f satisfies the Carathéodory condition, that is f (·, u) is strongly measurable for
each u ∈ X and f (t, ·) is continuous for each t ∈ I := [0,T ].
• H2. There exists a continuous function µ : I → R+ such that

‖ f (t, u)‖ ≤ µ(t)‖u‖, ∀ t ∈ I, u ∈ C(I, X)

and f (0, u(0)) = 0.
• H3. The function h : C(I, X)→ X is continuous and there exists Lh > 0 such that

‖h(u) − h(v)‖ < Lh‖u − v‖, ∀u, v ∈ C(I, X).

• H4. The set K = {S α,β(t − s) f (s, u(s)) : u ∈ C(I, X), 0 ≤ s ≤ t} is relatively compact for each
t ∈ I.
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Proposition 13. Let 1 < α < 2 and 1 < β ≤ 2 such that α − β + 1 > 0. If A is an ω-sectorial operator
of angle θ =

(α−1)
2 π, where ω < 0, then the function t 7→ S α,β(t) is continuous in B(X) for all t > 0.

Proof. It proof follows similarly to [30, Proposition 11]. We omit the details. �

We recall the following results.

Lemma 14 (Mazur’s Theorem). If K is a compact subset of a Banach space X, then its convex closure
conv(K) is compact.

Lemma 15 (Leray-Schauder Alternative Theorem). Let C be a convex subset of a Banach space X.
Suppose that 0 ∈ C. If F : C → C is a completely continuous map, then either F has a fixed point, or
the set {x ∈ C : x = λF(x), 0 < λ < 1} is unbounded.

Lemma 16 (Krasnoselskii Theorem). Let C be a closed convex and nonempty subset of a Banach
space X. Let Q1 and Q2 be two operators such that

i) If u, v ∈ C, then Q1u + Q2v ∈ C.
ii) Q1 is a mapping contraction.

iii) Q2 is compact and continuous.

Then, there exists z ∈ C such that z = Q1z + Q2z.

We have the following existence theorem.

Theorem 17. Let 1 < α < 2 and 1 < β < 2 such that α − β + 1 > 0. Assume that A is an ω-sectorial
operator of angle θ =

(α−1)
2 π, where ω < 0. Under assumptions H1-H4, the problem (4.1) has at least

one mild solution.

Proof. By Theorem 5, the operator A generates a resolvent family {S α,1(t)}t≥0. By the uniqueness of the
Laplace transform we have S α,2(t) = (g1 ∗ S α,1)(t) and S α,β(t) = (gβ−1 ∗ S α,1)(t) for all t ≥ 0. Moreover,
by Theorem 6 there exists a constant M > 0 such that ‖S α,2(t)‖ ≤ M and ‖S α,β(t)‖ ≤ M for all t ≥ 0.
Now, we define the operator Γ : C(I, X)→ C(I, X) by

(Γu)(t) := S α,2(t)[u1 − h(u)] +

∫ t

0
S α,β(t − s) f (s, u(s))ds, t ∈ [0,T ].

Let Br := {u ∈ C(I, X) : ‖u‖ ≤ r}, where r > 0. We shall prove that Γ has at least one fixed point by the
Leray-Schauder fixed point theorem. We will consider several steps in the proof.

Step 1. The operator Γ sends bounded sets of C(I, X) into bounded sets of C(I, X). In fact, take
u ∈ Br and G := supu∈Br

‖h(u)‖. Then

‖Γu(t)‖ ≤ ‖S α,2(t)‖(‖u1‖ + ‖h(u)‖) +

∫ t

0
‖S α,β(t − s)‖‖ f (s, u(s))‖ds

≤ M(‖u1‖ + G) + M
∫ t

0
µ(s)‖u(s)‖ds

≤ M(‖u1‖ + G) + Mr
∫ t

0
µ(s)ds

≤ M(‖u1‖ + G) + Mr‖µ‖∞T := R.
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Therefore ΓBr ⊂ BR.
Step 2. Γ is a continuous operator.
Let un, u ∈ Br such that un → u in C(I, X). Then we have

‖Γun(t) − Γu(t)‖ ≤ ‖S α,2(t)‖(‖h(un) − h(u)‖) +

∫ t

0
‖S α,β(t − s)‖‖ f (s, un(s)) − f (s, u(s))‖ds

≤ MLh‖un − u‖ + M
∫ t

0
‖ f (s, un(s)) − f (s, u(s))‖ds

≤ MLh‖un − u‖ + M
∫ t

0
µ(s)(‖un(s)‖ + ‖u(s)‖)ds

≤ MLh‖un − u‖ + 2rM
∫ t

0
µ(s)ds.

We notice that the function s 7→ µ(s) is integrable on I. By the Lebesgue’s Dominated Convergence
Theorem,

∫ t

0
‖ f (s, un(s)) − f (s, u(s))‖ds → 0 as n → ∞. Since un → u we obtain that Γ is continuous

in C(I, X).
Step 3 The operator Γ sends bounded sets of C(I, X) into equicontinuous sets of C(I, X).
In fact, let u ∈ Br, with r > 0 and take t1, t2 ∈ I with t2 < t1. Then we have

‖Γu(t1) − Γu(t2)‖ ≤ ‖(S α,2(t1) − S α,2(t2))(u1 − h(u))‖ +

∫ t1

t2
‖S α,β(t1 − s) f (s, u(s))‖ds

+

∫ t2

0
‖(S α,β(t1 − s) − S α,β(t2 − s)) f (s, u(s))‖ds

:= I1 + I2 + I3.

Observe that
I1 ≤ ‖(S α,2(t1) − S α,2(t2))‖‖(u1 − h(u))‖.

Using the norm continuity of t 7→ S α,2(t) (see Proposition 13) we obtain that limt1→t2 I1 = 0.
On the other hand,

I2 ≤ M
∫ t1

t2
µ(s)‖u(s)‖ds ≤ rM‖µ‖∞(t1 − t2),

and therefore limt1→t2 I2 = 0. Finally, for I3 we have

I3 ≤

∫ t2

0
‖S α,β(t1 − s) − S α,β(t2 − s)‖‖ f (s, u(s))‖ds

≤

∫ t2

0
‖S α,β(t1 − s) − S α,β(t2 − s)‖µ(s)‖u(s)‖ds

≤ r
∫ t2

0
‖S α,β(t1 − s) − S α,β(t2 − s)‖µ(s)ds.

Since

‖S α,β(t1 − ·) − S α,β(t2 − ·)‖µ(·) ≤ 2Mµ(·) ∈ L1(I,R),
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and S α,β(t1 − s)− S α,β(t2 − s)→ 0 in B(X), as t1 → t2 (see Proposition 13) we obtain by the Lebesgue’s
dominated convergence theorem that limt1→t2 I3 = 0. The proof of the claim is finished.

Step 4. The function Γ maps Br into relatively compact sets in X.
The hypothesis and Lemma 14 imply that conv(K) is compact. Moreover, for u ∈ Br, by the

Mean-Value Theorem for the Bochner integral (see [15, Corollary 8, p. 48]), we get

Γ(u(t)) ∈ t conv(K),

for all t ∈ [0,T ]. Thus the set {Γu(t); u ∈ Br} is compact in X for every t ∈ [0,T ].
We conclude from Steps 1–4, that Γ is continuous and compact by the Arzela-Ascoli’s theorem,

which means that the function Γ is completely continuous.
Step 5. The set Ω := {u ∈ Br : u = λΓu, 0 < λ < 1} is bounded. In fact, since 0 ∈ Ω we obtain that

Ω , ∅. For u ∈ Ω we have

‖u(t)‖ ≤ λ[M(‖u1‖ + ‖h(u)‖) + M
∫ t

0
‖ f (s, u(s)‖ds]

≤ λ[M(‖u1‖ + G) + M
∫ t

0
µ(s)‖u(s)‖ds]

≤ [M(‖u1‖ + G) + Mr‖µ‖∞T ],

for all t ∈ [0,T ], which means that Ω is a bounded set.
Therefore, by Lemma 15 we conclude that Γ has a fixed point, and the proof of the Theorem is

finished. �

The same method of proof can be used to prove the next result. We omit the details.

Theorem 18. Let 1 < α < 2. Assume that A generates the resolvent family {S α,1(t)}t≥0. Under
assumptions H1–H4, the problem (4.1) has at least one mild solution.

Now, we consider the problem
∂αt u(t) = Au(t) + ∂

α−β
t f (t, u(t)), 0 ≤ t ≤ T

u(0) + g(u) = u0,

u′(0) + h(u) = u1,

(4.2)

where g, h : C(I, X) → X are continuous, f (0, u(0)) = 0 and u0, u1 ∈ X. By (2.2) in Theorem 6, there
exists a constant M > 0 such that

‖S α,1(t)‖ ≤
M

1 + |ω|tα
, ‖S α,2(t)‖ ≤

Mt
1 + |ω|tα

, ‖S α,β(t)‖ ≤
Mtβ−1

1 + |ω|tα
, t ≥ 0. (4.3)

Thus
‖S α,1(t)‖ ≤ M, ‖S α,2(t)‖ ≤ MT, ‖S α,β(t)‖ ≤ MT β−1, t ∈ [0,T ]. (4.4)

Under the same assumptions H1–H3 and

• H3’. The function g : C(I, X)→ X is continuous and there exists Lg > 0 such that

‖g(u) − g(v)‖ < Lg‖u − v‖, ∀u, v ∈ C(I, X).
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we have the following result.

Theorem 19. Let 1 < α < 2 and 1 < β < 2 such that α − β + 1 > 0. Assume that A is an ω-sectorial
operator of angle θ =

(α−1)
2 π, where ω < 0. Suppose that M‖µ‖∞T β < 1 and M(Lg + T Lh) < 1, where

M is the constant in (4.4). Assume that (λα − A)−1 is compact for all λ > ν1/α, where ν is a positive
constant. Under assumptions H1–H3 and H3’, the problem (4.2) has at least one mild solution.

Proof. By Theorem 5, the operator A generates the resolvent family {S α,1(t)}t≥0, and S α,2(t) = (g1 ∗

S α,1)(t) and S α,β(t) = (gβ−1 ∗ S α,1)(t) for all t ≥ 0. Then, the mild solution to problem (4.2) is given by

u(t) = S α,1(t)[u0 − g(u)] + S α,2(t)[u1 − h(u)] +

∫ t

0
S α,β(t − s) f (s, u(s))ds, t ∈ [0,T ].

Let Br := {u ∈ C(I, X) : ‖u‖ ≤ r}, where

r :=
M(‖u0‖ + ‖g(u)‖) + MT (‖u1‖ + ‖h(u)‖)

1 − M‖µ‖∞T β
.

On Br we define the operators Γ1,Γ2 by

(Γ1u)(t) : = S α,1(t)[u0 − g(u)] + S α,2(t)(u1 − h(u)) t ∈ [0,T ]

(Γ2u)(t) : =

∫ t

0
S α,β(t − s) f (s, u(s))ds, t ∈ [0,T ],

where u ∈ Br. We claim that Γ := Γ1 + Γ2 has at least one fixed. To prove this, we will consider several
steps.

Step 1. We claim that if u, v ∈ Br, then Γ1u + Γ2v ∈ Br. In fact,
‖(Γ1u)(t) + (Γ2v)(t)‖ ≤

≤ ‖S α,1(t)‖ ‖u0 − g(u)‖ + ‖S α,2(t)‖ ‖u1 − h(u)‖ +

∫ t

0
‖S α,β(t − s)‖ ‖ f (s, v(s))‖ds

≤ M(‖u0‖ + ‖g(u)‖) + MT (‖u1‖ + ‖h(u)‖) + M
∫ t

0
(t − s)β−1µ(s)‖v(s)‖ds

≤ M(‖u0‖ + ‖g(u)‖) + MT (‖u1‖ + ‖h(u)‖) + MT β‖µ‖∞r = r.

Thus Γ1u + Γ2v ∈ Br for all u, v ∈ Br.

Step 2. Γ1 is a contraction on Br. In fact, if u, v ∈ Br, then

‖Γ1u(t) − Γ1v(t)‖ ≤ ‖S α,1(t)‖ ‖g(u) − g(v)‖ + ‖S α,2(t)‖ ‖h(u) − h(v)‖ ≤ (MLg + MT Lh)‖u − v‖

Since M(Lg + T Lh) < 1, we get that Γ1 is a contraction.
Step 3. Γ2 is completely continuous.
Firstly, we prove that Γ2 is a continuous operator on Br. Let un, u ∈ Br such that un → u in Br. We

notice that by (4.3)

‖Γ2un(t) − Γ2u(t)‖ ≤
∫ t

0
‖S α,β(t − s)‖‖ f (s, un(s)) − f (s, u(s))‖ds ≤ 2MrT β

∫ t

0
µ(s)ds.
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Moreover, the function s 7→ µ(s) is integrable on [0,T ]. The Lebesgue’s Dominated Convergence
Theorem implies that

∫ t

0
‖ f (s, un(s)) − f (s, u(s))‖ds → 0 as n → ∞. Since un → u we obtain that Γ2 is

continuous in Br.

Now, we prove that {Γ2u : u ∈ Br} is a relatively compact set. In fact, by the Ascoli-Arzela theorem
we only need to prove that the family {Γ2u : u ∈ Br} is uniformly bounded and equicontinuous, and
the set {Γ2u(t) : u ∈ Br} is relatively compact in X for each t ∈ [0,T ]. For each u ∈ Br we have
‖Γ2u‖ ≤ MT βr‖µ‖∞, which implies that {Γ2u : u ∈ Br} is uniformly bounded.

Next, we prove the equicontinuity. For u ∈ Br and 0 ≤ t2 < t1 ≤ T we have

‖Γ2u(t1) − Γ2u(t2)‖ ≤
∫ t1

t2
‖S α,β(t1 − s) f (s, u(s))‖ds

+

∫ t2

0
‖
(
S α,β(t1 − s) − S α,β(t2 − s)

)
f (s, u(s))‖ds =: I1 + I2.

Observe that for I1, by (4.3) we have I1 ≤ MT β
∫ t1

t2
µ(s)‖u(s)‖ds ≤ MT βr‖µ‖∞(t1 − t2), and thus

limt1→t2 I1 = 0. On the other hand, for I2 we have

I2 ≤

∫ t2

0
‖S α,β(t1 − s) − S α,β(t2 − s)‖‖ f (s, u(s))‖ds ≤ r

∫ t2

0
µ(s)‖S α,β(t1 − s) − S α,β(t2 − s)‖ds.

By (4.4) we have µ(·)‖S α,β(t1 − ·) − S α,β(t2 − ·)‖ ≤ 2T β−1Mµ(·) ∈ L1([0,T ],R), and by Proposition 13
the function t 7→ S α,β(t) is norm continuous. This implies that if t1 → t2, then S α,β)(t1 − s) − S α,β)(t2 −

s) → 0 in B(X). By the Lebesgue’s dominated convergence theorem we conclude that limt1→t2 I2 = 0.
Therefore, {Γ2u : u ∈ Br} is an equicontinuous family.

Finally, we prove that H(t) := {Γ2u(t) : u ∈ Br} is relatively compact in X for each t ∈ [0,T ].
Clearly, H(0) is relatively compact in X. Now, we take t > 0. For 0 < ε < t we define on Br the
operator

(Γε2u)(t) : =

∫ t−ε

0
S α,β(t − s) f (s, u(s))ds.

By [30, Theorem 14] we have that S α,β(t) is a compact operator for all t > 0. Thus Kε := {S α,β(t −
s) f (s, u(s)) : u ∈ Br, 0 ≤ s ≤ t − ε} is a compact set for all ε > 0. By Lemma 14, conv(Kε) is also a
compact set. The Mean-Value Theorem for the Bochner integrals (see [15, Corollary 8, p. 48]), implies
that (Γε2u)(t) ∈ tconv(Kε), for all t ∈ [0,T ]. Therefore, the set Hε(t) := {(Γε2u)(t) : u ∈ Br} is relatively
compact in X for all ε > 0. Since

‖(Γ2u)(t) − (Γε2u)(t)‖ ≤
∫ t

t−ε
‖S α,β(t − s) f (s, u(s))‖ds ≤ MT β−1r

∫ t

t−ε
µ(s)ds

and the function s 7→ µ(s) belongs to L1([t − ε, t],R+) we conclude by the Lebesgue dominated
convergence Theorem that limε→0 ‖(Γ2u)(t) − (Γε2u)(t)‖ = 0. Therefore the set {Γ2u(t) : u ∈ Br} is
relatively compact in X for each t ∈ (0,T ]. The Ascoli-Arzela theorem implies that the set
{Γ2u : u ∈ Br} is relatively compact. We conclude that Γ2 is a completely continuous operator. By
Lemma 16 we have that Γ = Γ1 + Γ2 has a fixed point on Br, and therefore the problem (4.2) has a
mild solution. �
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5. Examples

Example 20.

On the Banach space X = C, let A be the scalar operator A = %I, where % ∈ R. Consider the
multi-term fractional differential equation

∂αu(t) = Au(t) + ∂α−β f (t), t ∈ R, (5.1)

where 1 ≤ β < α < 2 and f (t) is the almost periodic function f (t) = sin(t) + sin(
√

2t), see [14, p. 80].
By Theorem 9 the solution u to (5.1) is an almost periodic function, and it is given by

u(t) =

∫ t

−∞

S α,β(t − s) f (s)ds, t ∈ R.

where S α,β(t) = tβ−1Eα,β(%tα). By Theorem 6, we can write

u(t) =

∫ t

−∞

S α,β(t − s) f (s)ds =

∞∑
k=0

%k
∫ t

−∞

(t − s)αk+β−1

Γ(αk + β)
f (s)ds.

Now, we notice that if g(t) = eµt, where µ ∈ C and δ > 0, then

1
Γ(δ)

∫ t

−∞

(t − s)δ−1g(s)ds =
µ1−δ

Γ(δ)

∫ t

−∞

[µ(t − s)δ−1]eµsds =
µ−δ

Γ(δ)
eµt

∫ ∞

0
rδ−1e−rdr = µ−δeµt,

and therefore, for h(t) = sin(at) = eait−e−ait

2i , where a > 0, we have

1
Γ(δ)

∫ t

−∞

(t − s)δ−1h(s)ds = a−δ sin
(
at −

π

2
δ
)
.

This implies that

u(t) =

∞∑
k=0

%k

[
sin

(
t −

π

2
(αk + β)

)
+

1
√

2αk+β
sin

(√
2t −

π

2
(αk + β)

)]
.

In Figure 1, we have the solution u for (5.1) for % = −1 and α = 1.5, β = 1.3 on the interval
[−30, 30].

Example 21.

Consider the following partial differential equation with fractional temporal derivatives
∂αt u(t, x) =

∂2

∂x2 u(t, x) + ∂
α−β
t sin(u(t, x)), (t, x) ∈ [0,T ] × R

u(0, x) = 0, x ∈ R

u′(0, x) +

n∑
i=1

ciu(ti, x) = u1(x), x ∈ R

(5.2)

where 1 < α, β < 2, 0 ≤ t1 < ... < tn ≤ T, u1 ∈ L2(R), and ci are real constants.
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Figure 1. Solution u(t) for (5.1) on the interval [−30, 30].

On the Banach space X = L2(R), let A be the second order operator Av = v′′ with domain D(A) =

W2,2(R). By [36, Example 1.2.2, p. 3063], A generates a cosine family {S 2,1(t)}t∈R on X, and by the
Subordination Principle [32, Corollary 3.3], A is the generator of the resolvent family {S α,1(t)}t≥0 given
by

S α,1(t)x :=
∫ ∞

0
ψ α

2 ,1−
α
2
(t, s)S 2,1(s)xds, t ≥ 0, x ∈ X, (5.3)

where ψ α
2 ,1−

α
2

is the Wright type function defined by

ψ α
2 ,1−

α
2
(t, s) =

1
π

∫ ∞

0
ρ
α
2−1e−sρ

α
2 cos α

2 (π−θ)−tρ cos θ

× sin
(
tρ sin θ − sρ

α
2 sin α

2 (π − θ) + α
2 (π − θ)

)
dρ,

for θ ∈ (π − 2
α
, π/2). Define,

u(t)x = u(t, x)
f (t, u(t))(x) = sin(u(t, x))

h(u)(x) =

n∑
i=1

ciu(ti, x).

Then, (5.2) can be reformulated as the abstract problem (4.1). Moreover, an easy computation
shows that the hypotheses H1–H3 hold with µ(t) = 1 and Lh =

∑n
i=1 |ci|. Since

S α,β(t) = (gβ−1 ∗ S α,1)(t),

we obtain by (2.2) that the setK = {S α,β(t− s) sin(s, u(s)) : u ∈ C(I, X), 0 ≤ s ≤ t} is relatively compact
for each t ∈ I, and therefore H4 holds. We conclude, by Theorem 18, that the problem (4.1) has at least
one mild solution u.

AIMS Mathematics Volume 6, Issue 3, 2398–2417.
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6. Conclusions

In this paper, some sufficient conditions are established for the existence of mild and bounded
solutions to a multi-term fractional differential equation. Under the theory of fractional resolvent
families in Banach spaces, the mild solutions are given in term of these operator families. The main
results are given for the Caputo and Weyl fractional derivatives.
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26. G. M. Mophou, G. M. N’Guérékata, Existence of the mild solution for some fractional differential
equations with nonlocal conditions, Semigroup Forum, Springer-Verlag, 79 (2009), 315–322.
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