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1. Introduction and preliminaries

A standard problem in the theory of functional equations is the subsequent subject:
When is it true that a function which approximately satisfies a functional equation must be close to an
approximate solution of the functional equation?

We conclude that the functional equation is stable, if the problem satisfies the solution of the func-
tional equation. In 1940, the stability problems of functional equations about group homomorphisms
was introduced by Ulam [26]. In 1941, Hyers [10] gave is affirmative answer to Ulam’s quaestion
for additive groups (under the assumption that groups are Banach spaces). Rassias in [18] proved the
generalized Hyers theorem for additive mappings.

The Rassias stability results provided manipulate during the last three decades in the growth of
a generalization of the Hyers-Ulam stability conception. This novel method is called as generalized
Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. Also, in 1994, Rassias’s

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021145


2386

generalization theorem was delivered by Gavruta [9] by replacing a general function ε (‖x‖p + ‖y‖p) by
ϕ(x, y).

In 1982, J.M. Rassias [17] followed the modern approach of the Th.M.Rassias theorem in which he
replaced the factor product of norms instead of sum of norms. Ravi et al., [21] investigated Gavruta’s
theorem for the unbounded Cauchy difference in the spirit of Rassias approach.

We mention here some quadratic functional equations papers concerning the stability (Ref. [7, 11,
16, 19, 20]). Recently, the stability of many functional equations in various spaces such as Banach
spaces, fuzzy normed spaces and Random normed spaces have been broadly inspected by a numeral
Mathematicians (Ref. [1–3, 6, 14, 15, 24]). In the consequence, we take on the usual terminology,
notions and conventions of the theory of random normed spaces as in [4, 5, 12, 13, 22, 23].

All through this work, ∆+ is the distribution functions spaces, i.e., the space of all mappings V :
R ∪ {−∞,∞} → [0, 1], such that F is left continuous and increasing on R,V(0) = 0 and V(+∞) = 1.
D+ ⊂ ∆+ consisting of all functions V ∈ ∆+ for which l−V(+∞) = 1, where l−φ(s) denotes l−φ(s) =

limt→s− φ(t). The space ∆+ is partially ordered by the usual point wise ordering of functions, i.e.,
V ≤ W ⇐⇒ V(t) ≤ W(t) ∀t ∈ R. The maximal element for ∆+ in this order is the distribution function
ε0 given by

ε0(t) =

0, if t ≤ 0,
1, if t > 0.

Definition 1.1. A Random Normed space (briefly, RN-space) is a triple (E,Ψ,Υ), where E is a vector
space, Υ is a continuous t−norm and Ψ : E → D+ satisfying the following conditions:

1. Ψs(t) = ς0(t) for all t > 0 if and only if s = 0;
2. Ψαs(t) = Ψs

(
t
|α|

)
for all s ∈ E, t ≥ 0 and α ∈ R with α , 0;

3. Ψs1+s2(t + u) ≥ Υ
(
Ψs1(t),Ψs2(u)

)
for all s1, s2 ∈ E and t, u ≥ 0.

Definition 1.2. Let (E,Ψ,Υ) be a RN-space.

(RN1) A sequence {sm} in E is said to be convergent to a point s ∈ E if limm→∞Ψsm−s(t) = 1, t > 0.
(RN2) A sequence {sm} in E is called a Cauchy sequence if limm→∞Ψsm−sl(t) = 1, t > 0.
(RN3) A RN-space (E,Ψ,Υ) is said to be complete if every Cauchy sequence in E is convergent.

Theorem 1.3. [17] If (E,Ψ,Υ) is a RN-space and {sm} is a sequence in E such that sm → s, then
limm→∞Ψsm(t) = Ψs(t) almost everywhere.

The authors introduce the finite variable quadratic functional equation is of the form

m∑
a=1

φ

−sa +

m∑
b=1;b,a

sb

 = (m − 4)
∑

1≤a<b≤m

φ (sa + sb) +
(
−m2 + 6m − 4

) m∑
a=1

φ(sa)

(1.1)

where m ≥ 5, and derive its solution. Also, we investigate its Hyers-Ulam stability in Random Normed
space(RN-space) by using direct and fixed point methods.
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2. General solution

Theorem 2.1. If a mapping φ : E → F satisfies the functional equation (1.1), then the mapping
φ : E → F is quadratic.

Proof. Assume that the mapping φ : E → F satisfies the functional equation (1.1). Replacing
(s1, s2, · · · , sm) by (0, 0, · · · , 0) in (1.1), we obtain φ(0) = 0. Replacing (s1, s2, · · · , sm) by (s, 0, · · · , 0)
in (1.1), we have φ(−s) = φ(s) for all s ∈ E. Therefore, the function φ is even. Next, replacing
(s1, s2, · · · , sm) by (s, s, 0, · · · , 0) in (1.1), we obtain

φ(2s) = 22φ(s) (2.1)

for all s ∈ E. Replacing s by 2s in (2.1), we have

φ(22s) = 24φ(s) (2.2)

for all s ∈ E. Replacing s by 2s in (2.2), we get

φ(23s) = 26φ(s) (2.3)

for all s ∈ E. In general, for any positive integer n, we conclude that

φ(2ns) = 22nφ(s) (2.4)

for all s ∈ E. Now, replacing (s1, s2, · · · , sm) by (u, v, 0, · · · , 0) in (1.1), we reach our desired results of
φ. �

Remark 2.2. Let F be a linear space and a mapping φ : E → F satisfies the functional equation (1.1),
then the following results are true:

(1) φ(rts) = rtφ(s) for all s ∈ E, r ∈ Q, t integers.
(2) φ(s) = sφ(1) for all s ∈ E if φ is continuous.

For our notational handiness, we define a mapping φ : E → F by

Dφ(s1, s2, · · · , sm) =

m∑
a=1

φ

−sa +

m∑
b=1;b,a

sb

 − (m − 4)
∑

1≤a<b≤m

φ (sa + sb)

−
(
−m2 + 6m − 4

) m∑
a=1

φ(sa)

for all s1, s2, · · · , sm ∈ E.
Throughout the paper, we consider E be a linear space and (E,Ψ,Υ) is a complete RN-space.
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3. Result and discussion: Direct method

Theorem 3.1. Let a mapping φ : E → F for which there exists a mapping Φ : Em → D+ with

lim
t→∞

T∞a=0

(
Φ2t+a s1,2t+a s2,··· ,2t+a sm

(
22(t+a+1)ε

))
= lim

t→∞
Φ2t s1,2t s2,··· ,2t sm

(
22tε

)
= 1

(3.1)

for all s1, s2, · · · , sm ∈ E and all ε > 0 such that the functional inequality with φ(0) = 0 such that

ΨDφ(s1,s2,··· ,sm)(ε) ≥ Φs1,s2,··· ,sm(ε) (3.2)

for all s1, s2, · · · , sm ∈ E and all ε > 0. Then there exists a unique quadratic mapping Q2 : E → F
satisfying the functional equation (1.1) with

ΨQ2(s)−φ(s)(ε) ≥ T∞a=0

(
Φ2a+1 s,2a+1 s,0,··· ,0

(
22(a+1)ε

))
, (3.3)

for all s ∈ E and all ε > 0. The mapping Q2 : E → F is defined by

ΨQ2(s)(ε) = lim
t→∞

Ψ φ(2t s)
22t

(ε) (3.4)

for all s ∈ E and all ε > 0.

Proof. Replacing (s1, s2, · · · , sm) by (s, s, 0, · · · , 0) in (3.1), we obtain

Ψ2φ(2s)−8φ(s)(ε) ≥ Φs,s,0,··· ,0(ε) (3.5)

for all s ∈ E and all ε > 0. It follows from (3.5) and (RN2), we get

Ψ φ(2s)
22 −φ(s)(ε) ≥ Φs,s,0,··· ,0 (8ε) (3.6)

for all s ∈ E and ε > 0. Replacing s by 2ts in (3.6), we have

Ψ φ(2t+1 s)
22(t+1) −

φ(2t s)
22t

(ε) ≥ Φ2t s,2t s,0,··· ,0

(
22(t+1)2ε

)
≥ Φs,s,0,··· ,0

(
22(t+1)2ε
αt

)
(3.7)

for all s ∈ E and ε > 0. Since

φ(2ms)
22m − φ(s) =

m−1∑
t=0

φ(2t+1s)
22(t+1) −

φ(2ts)
22t (3.8)

for all s ∈ E and ε > 0. From (3.7) and (3.8), we get

Ψ φ(2m s)
22m −φ(s)

m−1∑
t=0

αtε

22(t+1)2

 ≥ Φs,s,0,··· ,0(ε)

Ψ φ(2m s)
22m −φ(s)(ε) ≥ Φs,s,0,··· ,0

 ε∑m−1
t=0

αt

22(t+1)2

 (3.9)
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for all s ∈ E and ε > 0. Replacing s by 2ls in (3.9), we obtain

Ψ φ(2m+l s)
22(m+l) −

φ(2m s)
22m

(ε) ≥ Φs,s,0,··· ,0

 ε∑m+l−1
t=l

αt

22(t+1)2

 (3.10)

for all s ∈ E and ε > 0. As Φs,s,0,··· ,0

(
ε∑m+l−1

t=l
αt

22(t+1)2

)
→ 1 as l,m→ ∞, then

{
φ(2m s)

22m

}
is a Cauchy sequence

in (F,Ψ,Υ). Since (F,Ψ,Υ) is a complete RN-space, this sequence converges to some point Q2(s) ∈ F.
Fix s ∈ E and put l = 0 in (3.10), we obtain

Ψ φ(2m s)
22m −φ(s)(ε) ≥ Φs,s,0,··· ,0

 ε∑m−1
t=0

αt

22(t+1)2

 (3.11)

and so, for every ζ > 0, we get

ΨQ2(s)−φ(s)(ε + ζ) ≥ Υ

(
ΨQ2(s)− φ(2m s)

22m
(ζ),Ψ φ(2m s)

22m −φ(s)(ε)
)

≥ Υ

ΨQ2(s)− φ(2m s)
22m

(ζ),Φs,s,0,··· ,0

 ε∑m−1
t=0

αt

22(t+1)2

 (3.12)

for all s ∈ E and all ε, ζ > 0. Taking the limit m→ ∞ and using inequality (3.12), we have

ΨQ2(s)−φ(s)(ε + ζ) ≥ Φs,s,0,··· ,0

(
2(22 − α)ε

)
(3.13)

for all s ∈ E and all ε, ζ > 0. Since ζ was arbitrary, by taking ζ → 0 in (3.14), we get

ΨQ2(s)−φ(s)(ε) ≥ Φs,s,0,··· ,0

(
2(22 − α)ε

)
(3.14)

for all s ∈ E and all ε > 0. Replacing (s1, s2, · · · , sm) by (2ms1, 2ms2, · · · , 2msm) in (3.2), we obtain

ΨDφ(2m s1,2m s2,··· ,2m sm)(ε) ≥ Φ2m s1,2m s2,··· ,2m sm

(
22mε

)
(3.15)

for all s1, s2, · · · , sm ∈ E and all ε > 0. Since

lim
t→∞

T∞a=0

(
Φ2t+a s1,2t+a s2,··· ,2t+a sm

(
22(t+a+1)ε

))
= 1

for all s1, s2, · · · , sm ∈ E and all ε > 0. We conclude that Q2 satisfies the functional equation (1.1).
To prove the uniqueness of the quadratic mapping Q2 . Assume that there exists a quadratic mapping
R2 : E → F, which satisfies the inequality(3.14). Fix s ∈ E. Clearly, Q2(2ms) = 22mQ2(s) and
R2(2ms) = 22mR2(s) for all s ∈ E. It follows from (3.14) that

ΨQ2(s)−R2(s)(ε) = lim
m→∞

Ψ Q2(2m s)
22m −

R2(2m s)
22m

(ε)

Ψ Q2(2m s)
22m −

R2(2m s)
22m

(ε) ≥ min
{
Ψ Q2(2m s)

22m −
φ(2m s)

22m

(
ε

2

)
,Ψ φ(2m s)

22m −
R2(2m s)

22m

(
ε

2

) }
≥ Φ2m s,2m s,0,··· ,0

(
22m2(22 − α)ε

)
≥ Φs,s,0,··· ,0

(
22m2(22 − α)ε

αm

)
(3.16)

for all s ∈ E and all ε > 0. Since, limm→∞

(
22m2(22−α)ε

αm

)
= ∞, we get limm→∞Φs,s,0,··· ,0

(
22m2(22−α)ε

αm

)
= 1.

Therefore, it follows that ΨQ2(s)−R2(s)(ε) = 1 for all s ∈ E and all ε > 0. And so Q2(s) = R2(s). This
completes the proof. �
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Theorem 3.2. Let a ampping φ : E → F for which there exists a mapping Φ : Em → D+ with the
condition

lim
t→∞

T∞a=0

(
Φ s1

2t+a ,
s2

2t+a ,··· ,
sm

2t+a

(
ε

22(t+a+1)

))
= lim

t→∞
Φ s1

2t ,
s2
2t ,··· ,

sm
2t

(
ε

22t

)
= 1

(3.17)

for all s1, s2, · · · , sm ∈ E and all ε > 0 such that the functional inequality with φ(0) = 0 such that

ΨDφ(s1,s2,··· ,sm)(ε) ≥ Φs1,s2,··· ,sm(ε) (3.18)

for all s1, s2, · · · , sm ∈ E and all ε > 0. Then there exists a unique quadratic mapping Q2 : E → F
satisfying the functional equation (1.1) and

ΨQ2(s)−φ(s)(ε) ≥ T∞a=0

(
Φ s

2a+1 ,
s

2a+1 ,0,··· ,0

(
ε

22(a+1)

))
, ∀s ∈ E, ε > 0. (3.19)

The mapping Q2(s) is defined by
ΨQ2(s)(ε) = lim

t→∞
Ψ22tφ

(
s

2t

)(ε) (3.20)

for all s ∈ E and all ε > 0.

Corollary 3.3. Let ς be positive real numbers. If φ : E → F be a quadratic function which satisfies

ΨDφ(s1,s2,··· ,sm) ≥ Φς(ε)

for all s1, s2, · · · , sm ∈ E and all ε > 0. Then there exists a unique quadratic mapping Q2 : E → F
such that

ΨQ2(s)−φ(s)(ς) ≥ Φ ε

2|22−1|
(ε)

for all s ∈ E and ε > 0.

Proof. If s1, s2, · · · , sm = ς, then the proof is true from Theorem 3.1 and 3.2 by taking α = 20. �

Corollary 3.4. Let ς and θ be nonnegative real numbers with θ ∈ (0, 2) ∪ (2,+∞). If a quadratic
mapping φ : E → F satisfies

ΨDφ(s1,s2,··· ,sm) ≥ Φς
∑m

i=1 ‖si‖θ(ε)

for all s1, s2, · · · , sm ∈ E and all ε > 0. Then there exists a unique quadratic mapping Q2 : E → F
such that

ΨQ2(s)−φ(s)(ς) ≥ Φ ε‖s‖θ

|22−2θ |

(ε)

for all s ∈ E and ε > 0.

Proof. If s1, s2, · · · , sm = ς
∑m

i=1 ‖si‖
θ, then the proof is true from Theorem 3.1 and 3.2 by taking

α = 2θ. �

Corollary 3.5. Let ς and θ be nonnegative real numbers with mθ ∈ (0, 2) ∪ (2,+∞). If a quadratic
mapping φ : E → F satisfies

ΨDφ(s1,s2,··· ,sm) ≥ Φς(∑m
i=1 ‖si‖mθ+

∏m
i=1 ‖si‖θ)(ε)
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for all s1, s2, · · · , sm ∈ E and all ε > 0. Then there exists a unique quadratic mapping Q2 : E → F
such that

ΨQ2(s)−φ(s)(ς) ≥ Φ ε‖s‖mθ

|22−2mθ |

(ε)

for all s ∈ E and ε > 0.

Proof. If s1, s2, · · · , sm = ς
(∑m

i=1 ‖si‖
mθ +

∏m
i=1 ‖si‖

θ
)
, then the proof is true from Theorem 3.1 and 3.2

by taking α = 2mθ. �

4. Result and discussion: Fixed point method

Theorem 4.1. If a mapping φ : E → F for which there exists a function Φ : Em → D+ with

lim
t→∞

Φζt
a s1,ζ

t
a s2,··· ,ζ

t
a sm

(
ζ2t

a ε
)

= 1 (4.1)

for all s1, s2, · · · , sm ∈ E and all ε > 0 and where ζa =

2 if a = 0;
1
2 if a = 1;

satisfying the inequality

ΨDφ(s1,s2,··· ,sm) (ε) ≥ Φs1,s2,··· ,sm (ε) (4.2)

for all s1, s2, · · · , sm ∈ E and all ε > 0. If there exists L = L(a) such that the function s → τ(s, ε) =

Φ s
2 ,

s
2 ,0,··· ,0 (2ε) has the property, that

τ(s, ε) ≤ L
1
ζ2

a
τ (ζas, ε) , ∀s ∈ E, ε > 0. (4.3)

Then there exists a unqiue quadratic mapping Q2 : E → F satisfies the functional equation (1.1) and
satisfies

ΨQ2(s)−φ(s)

(
L1−a

1 − L
ε

)
≥ τ(s, ε) (4.4)

for all s ∈ E and all ε > 0.

Proof. Consider a general metric ρ on ∆ such that ρ(n1, n2) = inf
{
v ∈ (0,∞)/Ψn1(s)−n2(s)(vε) ≥

τ(s, ε), s ∈ E, ε > 0
}
. It is easy to view that (∆, ρ) is complete. Let us define a mapping Υ : ∆ → ∆ by

Υn1(s) = 1
ζ2

a
n1(ζas), for all s ∈ E. Now for n1, n2 ∈ ∆, we have ρ(n1, n2) ≤ v.

⇒ Ψ(n1(s)−n2(s)) (vε) ≥ τ(s, ε)

⇒ ΨΥn1(s)−Υn2(s)

(
vε
ζ2

a

)
≥ τ(s, ε)

⇒ ρ (Υn1(s) − Υn2(s)) ≤ vL

⇒ ρ (Υn1,Υn2) ≤ Lρ (n1, n2) (4.5)

for all n1, n2 ∈ ∆. Therefore, υ is strictly contractive mapping on ∆ with Lipschitz constant L. If
follows from (3.5) that

Ψ2φ(2s)−8φ(s)(ε) ≥ Φs,s,0,··· ,0(ε) (4.6)
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for all s ∈ E and all ε > 0. It follows from (4.6) that

Ψ φ(2s)
24 −φ(s)(ε) ≥ Φs,s,0,··· ,0 (8ε) (4.7)

for all s ∈ E and all ε > 0. Using (4.3) for a = 0, it reduces to

Ψ φ(2s)
24 −φ(s)(ε) ≥ Lτ(s, ε)

for all s ∈ E and all ε > 0. Hence, we obtain

ρ
(
ΨΥφ(s)−φ(s)

)
≥ L = L1−a < ∞ (4.8)

for all s ∈ E. Replacing s by s
2 in (4.7), we have

Ψ φ(s)
24 −φ( s

2 ) (ε) ≥ Φ s
2 ,

s
2 ,0,··· ,0 (8ε) (4.9)

for all s ∈ E and all ε > 0. Using (4.3) for a = 1, it reduces to

Ψ φ(s)
24 −φ( s

2 ) (ε) ≥ τ(s, ε)

for all s ∈ E and all ε > 0. Hence, we arrive

ρ
(
ΨΥφ(s)−φ(s)

)
≥ L = L1−a < ∞ (4.10)

for all s ∈ E. From (4.8) and (4.10), we can conclude

ρ
(
ΨΥφ(s)−φ(s)

)
≥ ∞ (4.11)

for all s ∈ E. In order to prove Q2 : E → F satisfies the functional equation (1.1), the remaining proof is
similar as in Theorem 3.1. As the function Q2 is unique fixed point of Υ in Ω = {φ ∈ ∆/ρ(φ,Q2) < ∞}.
Finally, Q2 is an unique function such that

ΨQ2(s)−φ(s)

(
L1−a

1 − L
ε

)
≥ τ(s, ε)

for all s ∈ E and all ε > 0. This completes the proof.
�

Corollary 4.2. Let ς and θ be positive real numbers. If a quadratic mapping φ : E → F satisfies

ΨDφ(s1,s2,··· ,sm) ≥


Φς(ε)
Φς

∑m
i=1 ‖si‖θ(ε)

Φς(∑m
i=1 ‖si‖mθ+

∏m
i=1 ‖si‖θ)(ε)

for all s1, s2, · · · , sm ∈ E and all ε > 0. Then there exists a unique quadratic mapping Q2 : E → F
such that

ΨQ2(s)−φ(s)(ς) ≥


Φ ε

2|22−1|
(ε)

Φ ε‖s‖θ

|22−2θ |

(ε); 0 < θ < 2 or θ > 2,

Φ ε‖s‖mθ

|22−2mθ |

(ε); 0 < θ < 2
m or θ > 2

m ,

for all s ∈ E and ε > 0.
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Proof. Suppose

ΨDφ(s1,s2,··· ,sm) ≥


Φς(ε)
Φς

∑m
i=1 ‖si‖θ(ε)

Φς(∑m
i=1 ‖si‖mθ+

∏m
i=1 ‖si‖θ)(ε)

for all s1, s2, · · · , sm ∈ E and all ε > 0. Then

Φζt
a s1,ζ

t
a s2,··· ,ζ

t
a sm

(
ζ2t

a ε
)

=


Φςζ2t

a
(ε)

Φς
∑m

i=1 ‖si‖θζ
(2−θ)t
a

(ε)

Φς
(∑m

i=1 ‖si‖mθζ
(2−θ)t
a +

∏m
i=1 ‖si‖θζ

(2−mθ)t
a

)(ε)

=


→ 1 as t → ∞,

→ 1 as t → ∞,

→ 1 as t → ∞.

But, we have τ(s, ε) = Φ s
2 ,

s
2 ,0,··· ,0 (2ε) has the property L 1

ζ2
a
τ(ζas, ε) for all s ∈ E and all ε > 0. Now,

τ(s, ε) =


Φ ς

2
(ε)

Φ 2ς‖s‖θ

2θ2

(ε)

Φ 2ς‖s‖mθ

2mθ2

(ε)

L
1
ζ2

a
τ(ζas, ε) =


Φζ−2

a τ(s)(ε)
Φζθ−2

a τ(s)(ε)
Φζmθ−2

a τ(s)(ε)

By using Theorem 4.1, we prove the following cases:
Case-1: L = 2−2 if a = 0

ΨQ2(s)−φ(s)(ε) ≥ L
1
ζ2

a
τ(ζas, ε) ≥ Φ ς

2(22−1)
(ε)

Case-2: L = 22 if a = 1

ΨQ2(s)−φ(s)(ε) ≥ L
1
ζ2

a
τ(ζas, ε) ≥ Φ ς

2(1−22)
(ε)

Case-3: L = 2θ−2 for θ < 2 if a = 0

ΨQ2(s)−φ(s)(ε) ≥ L
1
ζ2

a
τ(ζas, ε) ≥ Φ ς‖s‖θ

(22−2θ)

(ε)

Case-4: L = 22−θ for θ > 2 if a = 1

ΨQ2(s)−φ(s)(ε) ≥ L
1
ζ2

a
τ(ζas, ε) ≥ Φ ς‖s‖θ

(2θ−22)

(ε)
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Case-5: L = 2mθ−2 for θ < 2
m if a = 0

ΨQ2(s)−φ(s)(ε) ≥ L
1
ζ2

a
τ(ζas, ε) ≥ Φ ς‖s‖mθ

(22−2mθ)

(ε)

Case-6: L = 22−mθ for θ > 2
m if a = 1

ΨQ2(s)−φ(s)(ε) ≥ L
1
ζ2

a
τ(ζas, ε) ≥ Φ ς‖s‖mθ

(2mθ−22)

(ε)

Hence the proof is complete.
�

Counter example

Next, we show the following counter example replaced by the well-known counter example of
Gajda [8] to the functional equation(1.1):

Example 4.3. Let a mapping φ : E → F defined by

φ(s) =

+∞∑
l=0

ξ (2ms)
22m

where

ξ(s) =

ψs2, −1 < s < 1
ψ, otherwise,

(4.12)

where ψ is a constant, then the mapping φ : E → F satisfies the inequality

|Dφ(s1, s2, · · · , sm)| ≤
(
−m2 + 7m − 7

) 64
3
ψ

 m∑
j=1

|s j|
2

 , (4.13)

for all s1, s2, · · · , sl ∈ E, but there does not exist a quadratic mapping Q2 : E → F with a constant ε
such that

|φ(s) − Q2(s)| ≤ ε|s|2 (4.14)

for all s ∈ E.

Proof. It is easy to notice that φ is bounded by 4
3ψ on E. If

∑l
j=1 |s j|

2 ≥ 1
22 or 0, then the left side of

(4.13) is less than
(
−m2 + 7m − 7

)
4
3ψ, and thus (4.13) is true. Assume that 0 <

∑m
j=1 |s j|

2 < 1
22 . Then

there exists an integer l such that

1
22(l+2) ≤

m∑
j=1

|s j|
2 <

1
22(l+1) . (4.15)
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So that 22l|s1| <
1
22 , 22l|s2| <

1
22 , · · · , 22l|sm| <

1
22 and 2ms1, 2ms2, · · · , 2msm ∈ (−1, 1) for all

m = 0, 1, 2, · · · , l − 1. So, for m = 0, 1, · · · , l − 1

m∑
a=1

ξ

2m

−sa +

m∑
b=1;b,a

sb


 − (m − 4)

∑
1≤a<b≤m

φ (2m (sa + sb))

−
(
−m2 + 6m − 4

) m∑
a=1

φ(2msa) = 0.

By the definition of φ, we obtain

|Dφ(s1, s2, · · · , sm)| ≤

+∞∑
j=l

1
22 j |ξ(2

js1, 2 js2, · · · , 2 jsm)|

≤

+∞∑
j=l

1
22 j

(
−m2 + 7m − 7

)
ψ

≤
(
−m2 + 7m − 7

) 22(1−l)

3
ψ.

It follows from (4.15) that

|Dφ(s1, s2, · · · , sl)| ≤
(
−m2 + 7m − 7

) 64
3
ψ

 m∑
j=1

|s j|
2

 , (4.16)

for all s1, s2, · · · , sm ∈ E. Thus the function φ satisfies the inequality (4.13) for all s1, s2, · · · , sl ∈ E.
We propose that there exists an quadratic mapping Q2 : E → F with a constant ε > 0 satisfying the
inequality (4.14). Since the function φ is bounded and continuous for all s in E, Q2 is bounded on evry
open interval containing the origin and continuous at the origin. By Remark 2.2, Q2 must have the
form Q2(v) = γs2 for all s ∈ E. Thus we have

|φ(s)| ≤ (ε + |γ|) |s|2

for all s ∈ E. However, we can select a non-negative integer l and lψ > ε + |γ|. If s ∈
(
0, 2−l

)
, then

2ms ∈ (0, 1) for all m = 0, 1, · · · , l − 1 and for this s, we obtain

φ(s) =

+∞∑
m=0

ξ(2ms)
22m ≥

l−1∑
m=0

ψ(2ms)
22m = lψs > (ε + |γ|)|s|2,

which is contradictory. �

5. Conclusions

We have introduced the generalized quadratic functional equation (1.1) and have obtained its general
solution. Mainly, we have investigated Hyers-Ulam stability of the generalized quadratic functional
equation (1.1) in Random Normed spaces by using direct and fixed point methods. Furthermore, we
proved the counter example for the non-stability to the functional equation (1.1).
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