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1. Introduction

Over the past decades, a variety of control design strategies have been proposed for different
nonlinear systems [1–7]. Especially, many approximated-based control schemes have been developed
for uncertain nonlinear systems by using neural networks (NNs) or the fuzzy logic systems (FLSs)
[8–19]. Among these studies, the research of stochastic systems is much more attracted (see,
e.g. [16–19] and the references therein), due to their wide application. It is worth noting that the
aforementioned NNs-based or FLSs-based control strategies haven’t taken output constraint into
account. In fact, many practical systems are usually required to satisfy an output constraint in the
operation for considering the performance specifications or safety [20, 21]. It is well known that,
the BLF-based approaches are useful tools to settle controller design problems of output-constrained
nonlinear systems, see references [22–27] for instances. In the latest research progress of constrained
control, many kinds of adaptive neural or fuzzy control design methods have been presented by
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combining the different BLFs with NNs or FLSs approximators for various stochastic nonlinear
systems subject to output constraint and unknown nonlinearities in [28–32]. Nevertheless, the above-
mentioned works have mainly considered strict-feedback stochastic systems whose fractional powers
are all equal to one, rather than p-norm stochastic nonlinear systems in which the fractional powers are
the positive odd rational numbers and at least one of the fractional powers is greater than one.

As an important class of nonlinear systems, the p-norm stochastic nonlinear systems which are
more general and complex, have received increased attention in recent years. For such a kind of
systems, many control design problems have been well solved by utilizing the adding a power integrator
technique under some strong or weaker growth conditions [33–37]. Subsequently, references [38–40]
have taken these growth conditions away and considered the adaptive NNs control for switched and
large-scale stochastic high-order nonlinear systems. Meanwhile, the control problems have been
investigated for p-norm nonlinear systems with output/states constraints under some nonlinear growth
conditions in a few literatures, such as [41–44]. In these works, different state-feedback controllers
have been mainly constructed and finite-time stability has been obtained. Worth noting that an output-
feedback controller has been designed for high-order planar deterministic nonlinear systems in [44].
On these basics, references [45–48] have further taken both unknown nonlinearities and constraints
into accounts, and designed some fuzzy controllers for p-norm stochastic nonlinear systems with
output/states constraints. However, it should be pointed out that the above-mentioned results of p-
norm stochastic nonlinear systems have mainly focused on addressing the asymptotical convergence
rather than the finite-time convergence in the case of unknown nonlinearities. As a matter of fact, the
finite-time convergence has only been investigated for p-norm stochastic nonlinear systems with known
nonlinearities satisfying some nonlinear growth conditions. On the other hand, it can be observed that
the existing constrained controllers of p-norm stochastic nonlinear systems are mainly based on the
assumption that full-state measurements are available. In other words, when only the system output
can be accurately measured, the problem of finite-time output-feedback control for p-norm stochastic
nonlinear systems with unknown nonlinearities and output constraints, to our best knowledge, has
never been considered in the literature.

Motivated by above discussions, this paper will investigate how to design the finite-time output-
feedback controller for a kind of p-norm stochastic nonlinear systems subject to output constraint. The
main contributions can be summarized as follows: 1) It is first time to consider p-norm stochastic
nonlinear systems with output constraints and unmeasurable states. Note that the existing studies
have mainly addressed the constrained control problems under the the assumption that all the states
are measurable (e.g., [33–37, 41, 43]), while this paper investigates the constrained control design in
the case of that the states are all unmeasurable except the system output. What’s more, the system
nonlinearities are completely unknown. Thus, this work will extend and develop the existing control
design theory for p-norm stochastic nonlinear systems; 2) A finite-time controller is designed. The
developed scheme not only ensures the system output is constrained in a given compact set, but also
enables the closed-loop system is semi-global finite-time stable in probability (SGFSP).

2. Problem and Preliminaries

In this paper, we consider the following class of p-norm stochastic nonlinear systems
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dxi = xp
i+1dt + φi(x̄i)dt + gT

i (x̄i)dω, i = 1, · · · , n − 1,
dxn = updt + φn(x)dt + gT

n (x)dω,
y = x1,

(2.1)

where ω is a r-dimension standard Wiener process; x = (x1, · · · , xn)T ∈ Rn is system state vector;
u ∈ R and y ∈ R are respectively control input and output; the fractional power p∈R≥1

odd := {m/k|m ≥
k, m and k are positive odd integers}; for i = 1, · · · , n, x̄i = (x1, · · · , xi)T ∈ Ri; φi : Ri → R and
gi : Ri → Rr are unknown continuous functions satisfying φi(0) = 0, gi(0) = 0. The system output
y = x1 is measurable and constrained in Π1 = {y(t) ∈ R, |y(t)| < ε} with a constant ε > 0, while the
other states x2, · · · , xn are all unmeasurable.

The objective of this paper is to design a finite-time fuzzy output-feedback controller for system
(2.1) such that: 1) the output don’t violate the given constrained boundary; 2) all the signals of the
closed-loop system converge to a small compact of the original point in finite-time in probability in
presence of unknown nonlinearities and unmeasured states xi(i = 2, · · · , n).

Firstly, some concepts and lemmas are presented for preliminaries. Consider the following
stochastic system

dx = φ(x)dt + g(x)dω, (2.2)

where φ(x) and g(x) are continuous functions with satisfying φ(0) = g(0) = 0.

Definition 1. [1] For any given V(x) ∈ C2(Rn), associated with system (2.2), the second-order
differential operator ` is defined as follows:

`V =
∂V
∂x
φ(x) +

1
2

tr
{

gT (x)
∂2V
∂x2 g(x)

}
. (2.3)

Definition 2. [17] The equilibrium x = 0 of stochastic nonlinear system (2.2) is semi-global finite-
time stable in probability (SGFSP) if for all x(t0, ω) = x(0), there exist a constant c > 0 and a settling
time T ∗(c, x0, ω) < ∞ to make E[‖x(t, ω)‖] < c, for all t ≥ t0 + T ∗.

Lemma 1. [17] Consider the stochastic system (2.2) and assume that f (0), h(0) are bounded uniformly
in t. If there exist a C2 Lyapunov function V : Rn → R+, functions %1, %2 ∈ K∞, and constants µ̄0 > 0,
0 < ς̄0 < 1 and ν̄0 > 0 such that {

%1(|x|) ≤ V(x) ≤ %2(|x|)
`V(x) ≤ −µ̄0V(x)ς̄0 + ν̄0

,∀x ∈ Rn, (2.4)

Then, the stochastic nonlinear system (2.2) is SGFSP.

Remark 1. As stated in [17], the Eq (2.4) implies that there exists the stochastic setting time function

T ∗(x, ω) = 1
l0µ̄0(1−ς̄0)

[
E[V1−ς̄0(x(0))] −

(
ν̄0

(1−l0)µ̄0

) ς̄0
1−ς̄0

]
, such that E[V ς̄0(x)] ≤ ν̄0

(1−l0)µ̄0
for all t ≥ t0 +

T ∗(x, ω), where 0 < l0 ≤ 1 is an arbitrary constant.

Lemma 2. [7] Let a, b ∈ R+ with a ≥ 1. For any ζ, η ∈ R, the following inequalities hold:

(i) |ζa − ηa| ≤ a(2a−2 + 2)|ζ − η|(|ζ − η|a−1 + ηa−1),
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(ii) | ζ
b
a − η

b
a |≤ 21− 1

a | dζeb − dηeb |
1
a ,

(iii) (|ζ | + |η|)
1
a ≤ |ζ |

1
a + |η|

1
a ≤ 21− 1

a (|ζ | + |η|)
1
a .

Lemma 3. [42] For any constants k1, k2, ϑ, ς ∈ R+ and any variables ζ1, ζ2 ∈ R, we have the following
inequality

ϑ|ζ1|
k1 |ζ2|

k2 ≤ ς
k1

k1 + k2
|ζ1|

k1+k2 +
k1

k1 + k2
ϑ

k1+k2
k2 ς

−
k1
k2 |ζ2|

k1+k2 .

Lemma 4. [8] Let p ∈ (0,∞), for any ζi ∈ R, i = 1, · · · , n, one has

(|ζ1| + · · · + |ζn|)p ≤ b(|ζ1|
p + · · · + |ζn|

p),

where b = max{np−1, 1}.

Lemma 5. [36] If ζ, η ∈ R and p > 1 is an odd number, then

−(ζ − η)(ζ p − ηp) ≤ −
1

2p−1 (ζ − η)p+1.

Lemma 6. [12] With any a0 > 0, c0 > 0, and ζ(t) > 0, for η̇(t) = a0ζ(t) − c0η(t), if η(0) ≥ 0 can be
satisfied, then one has η(t) ≥ 0 for ∀t ≥ 0.

In this paper, the nonlinear functions φi(·) and gi(·) are all unknown. The unknown functions will
be approximated by the FLSs based on the following presented lemma.

Lemma 7. [49] Let F(X) be a continuous function defined on a compact set Π0. Then, for a given
desired level of accuracy δ > 0, there exists a fuzzy logic system ΥT Ψ(X) such that

sup
X∈Π0

|F(X) − ΥT Ψ(X)| ≤ δ,

Υ = (υ1, · · · , υN)T is the ideal constant weight vector, and Ψ(X) =
(ψ1(X),··· ,ψN (X))T∑N

j=1 ψ j(X)
is the basis function

vector, with N > 1 being the number of the fuzzy rules and ψ j(X) being chosen as Gaussian functions,
i.e., for j = 1, · · · ,N

ψ j(X) = exp

− (X − λ j)T (X − λ j)
ϑ2

j


where λ j = (λ j1, · · · , λ jn)T and ϑ j respectively denote the center vector and the width of the Gaussian
function.

Remark 2. In view of Lemma 7, any function F(X) which is defined and continuous on a compact set
Π0, can be approximated by

F(X) = ΥT Ψ(X) + ε(X),

where ε(X) is the FLS approximation error satisfying |ε(X)| < δ.
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3. Main results

3.1. State-feedback controller design

In this section, a fuzzy state-feedback controller will be explicitly designed for system (2.1) by
combining a tan-type BLF and the FLSs into the adding a power integrator technique.

First of all, we introduce a coordinate transformation as follow

χ1 = x1, χi =
xi

Hqi
, i = 2, · · · , n, ν =

u
Hqn+1

, (3.1)

where q1 = 0, q j =
q j−1+1

p ( j = 2, · · · , n + 1), and H > 1 is a constant to be determined later. Based on
(3.1) , system (2.1) turns into

dχi = Hχp
i+1dt + fi(χ̄i)dt + hT

i (χ̄i)dω, i = 1, · · · , n − 1,
dχn = Hνpdt + fn(χ)dt + hT

n (χ)dω,
y = χ1.

(3.2)

where χ̄i = (χ1, · · · , χi), f1 = φ1, h1 = g1, f j =
φ j

Hq j , and h j =
g j

Hq j , ( j = 2, · · · , n).
In what follows, a fuzzy state-feedback controller will be designed through n steps based on the

equivalent system (3.2).
Define

ξ1 = χ1, ξi = χi − βi−1, i = 2, . . . , n, (3.3)

where βi’s are the virtual signals being constructed later.
Step 1. From (3.1), we can get

dξ1 = dχ1 = (Hχp
2 + f1)dt + hT

1 dω. (3.4)

Choose the first Lyapunov function

V1 =
ε4

2π
tan

(
πξ4

1

2ε4

)
+

1
2b1

α̃2
1 , VB(ξ1) +

1
2b1

α̃2
1,

where b1 > 0 is an adjustment parameter, α̃1 = α1 − α̂1 is the estimate error and α̂1 is the estimator of
the parameter α1.

Remark 3. Clearly, VB(ξ1) = ε4

2π tan
(
πξ4

1
2ε4

)
is a tan-type BLF adopted to deal with the system output

constraint. Compared to the log-type BLF, VB(ξ1) possesses the following characteristic:

lim
ε→∞

VB(ξ1) =
ε4

2π
tan

(
πξ4

1

2ε4

)
=
ξ4

1

4
,

which implies that the proposed method is also applicable to the system without output constraints.
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Then, one can easily get from the definition of VB(ξ1) that

∂VB

∂ξ1
= S 1(ξ1)ξ3

1, (3.5)

∂2VB

∂ξ2
1

= 3S 1(ξ1)ξ2
1 +

4π
ε4 tan

(
πξ4

1

2ε4

)
S 1(ξ1)ξ6

1. (3.6)

where S 1(ξ1) = sec2
(
πξ4

1
2ε4

)
.

In view of (2.3), (3.5) and (3.6), it is not hard to gain

`V1 =
∂VB

∂ξ1
(Hχp

2 + f1) +
1
2
∂2VB

∂ξ2
1

hT
1 h1 −

1
b1
α̃1 ˙̂α1

= S 1(ξ1)ξ3
1(Hχp

2 + f1) −
1
b1
α̃1 ˙̂α1 +

3
2

S 1(ξ1)‖h1‖
2ξ2

1

+
2π
ε4 tan

(
πξ4

1

2ε4

)
S 1(ξ1)‖h1‖

2ξ6
1.

From Lemma 3, one obtains
3
2

S 1(ξ1)‖h1‖
2ξ2

1 ≤
3
4

S 1(ξ1)2‖h1‖
4ξ4

1 +
3
4
.

Then, we have

`V1 ≤ HS 1(ξ1)ξ3
1χ

p
2 + HS 1(ξ1)ξ3

1F1(Z1) −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

1
b1
α̃1 ˙̂α1 +

3
4
,

(3.7)

where Z1 = χ1,

F1(Z1) =
1
H

[
f1 +

3
4

S 1(ξ1)2‖h1‖
4ξ1

]
+

1
H

2π
ε4 tan

(
πξ4

1

2ε4

)
S 1(ξ1)‖h1‖

2ξ3
1

+

%1ε
4 sin

(
πξ4

1
2ε4

)
2Hπξ3

1

cos
(
πξ4

1

2ε4

)
.

and %1 > 0 is an adjustment parameter.
Thus, by Lemma 7, one can approximate F1(Z1) by

F1(Z1) = ΥT
1 Ψ1(Z1) + ε1(Z1), (3.8)

where |ε1(Z1)| ≤ δ1 and δ1 > 0 is a given constant.
Since ΨT

1 (·)Ψ1(·) ≤ 1, it is easily obtained from Lemma 3 that

S 1(ξ1)ξ3
1F1(Z1) ≤ S 1(ξ1)|ξ1|

3(‖Υ1‖‖Ψ1‖ + δ1)

≤
3σ11α1

p + 3
(S 1(ξ1))

p+3
3 ξ

p+3
1

+
3

p + 3
(S 1(ξ1))

p+3
3 ξ

p+3
1 +

p
p + 3

σ
− 3

p

11 +
p

p + 3
δ

p+3
p

1 ,

(3.9)
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where α1 = ‖Υ1‖
p+3

3 and σ11 > 0 is an adjustment parameter.
Substituting (3.9) into (3.7) gets

`V1 ≤ HS 1(ξ1)ξ3
1(xp

2 − β
p
1) + HS 1(ξ1)ξ3

1β
p
1 −

%1ε
4

2π
tan

(
πξ4

1

2ε4

)
+

3H
p + 3

S 1(ξ1)
p+3

3 [σ11α̂1 + 1] ξp+3
1 +

pH
p + 3

σ
− 3

p

11

+ Hα̃1

[
3σ11

p + 3
(S 1(ξ1))

p+3
3 ξ

p+3
1 −

1
b1H

˙̂α1

]
+

3
4

+
pH

p + 3
δ

p+3
p

1 .

(3.10)

Then, one could design

β1 = −M
1
p

1 ξ1 , −ϕ1ξ1 (3.11)

and

˙̂α1 =
3Hb1σ11

p + 3
(S 1(ξ1))

p+3
3 ξ

p+3
1 − d1α̂1, (3.12)

where M1 ≥
3

p+3 (S 1(ξ1))
p
3 [σ11α̂1 + 1] +

ρ1
S 1(ξ1) + %1 > 0; %1, d1 > 0 are adjustment parameters; and the

value of ρ1 > 0 will be given in the next step.
Substituting (3.11) and (3.12) into (3.10), gets

`V1 ≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
− H(ρ1 + %1)ξp+3

1 + HS 1(ξ1)ξ3
1(χp

2 − β
p
1)

+
d1

b1
α̃1α̂1 +

3
4

+
pH

p + 3
σ
− 3

p

11 +
pH

p + 3
δ

p+3
p

1 .

In addition, it is easily obtained that

d1

b1
α̃1α̂1 =

d1

b1
(α1 − α̃1)α̃1 ≤ −

d1α̃
2
1

2b1
+

d1α
2
1

2b1
.

Therefore, we can get

`V1 −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

d1α̃
2
1

2b1
− H(ρ1 + %1)ξp+3

1

+ Q1 + HS 1(ξ1)ξ3
1(xp

2 − β
p
1),

(3.13)

where Q1 = 3
4 +

pH
p+3σ

− 3
p

11 +
pH
p+3δ

p+3
p

1 +
d1α

2
1

2b1
.

Remark 4. Notice that

lim
ξ1→0

ε4 sin
(
πξ4

1
2ε4

)
cos

(
πξ4

1
2ε4

)
2πξ3

1

= lim
ξ1→0

ε4 πξ
4
1

2ε4 cos
(
πξ4

1
2ε4

)
2πξ3

1

= 0,

which means that the continuity of F1(Z1) is ensured.
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Remark 5. According to Lemma 6, one gets α̂1 ≥ 0, for ∀t ≥ 0. In each design step, this characteristic
will be always applied.

Step 2. From (3.3) and Itô’s formula, we have

dξ2 = (Hχp
3 + f2 − `β1)dt +

(
h2 −

∂β1

∂χ1
h1

)T

dω, (3.14)

where `β1 =
∂β1
∂χ1

(Hχp
2 + f1) +

∂β1
∂α̂1

˙̂α1 + 1
2
∂2β1

∂χ2
1

hT
1 h1. Combining the definition of β1 with the properties of

f1(χ1) and h1(χ1), implies that `β1 is valid and continuous.
Choose the second Lyapunov function as

V2 = V1 + Λ2 (3.15)

with

Λ2 =
1
4
ξ4

2 +
1

2b2
α̃2

2, (3.16)

where b2 > 0 is an adjustment parameter, α̃2 = α2 − α̂2 is the estimate error and α̂2 is the estimator of
the parameter α2.

Applying (2.3), (3.14) and (3.16), it can be gotten that

`Λ2 = ξ3
2(Hχp

3 + f2 − `β1) −
1
b2
α̃2 ˙̂α2 +

3
2

∥∥∥∥∥h2 −
∂β1

∂χ1
h1

∥∥∥∥∥2

ξ2
2. (3.17)

Besides, applying Lemma 3 renders

3
2

∥∥∥∥∥h2 −
∂β1

∂χ1
h1

∥∥∥∥∥2

ξ2
2 ≤

3
4

∥∥∥∥∥h2 −
∂β1

∂χ1
h1

∥∥∥∥∥4

ξ4
2 +

3
4
.

On the other hand, we gets

S 1(ξ1)ξ3
1(χp

2 − β
p
1) ≤ S 1(ξ1)|ξ1|

3|χ
p
2 − β

p
1 |

≤ DS 1(ξ1)|ξ1|
3
(
|ξ2|

p + ϕ
p
1 |ξ1|

p−1 · |ξ2|
)

≤ ρ1ξ
p+3
1 + τ2ξ

p+3
2 +

pσ12

p + 3
ξ

p+3
2 ,

(3.18)

where D = (2p−2 + 2)p; ρ1 = 1
p+3

[
3(DS 1(ξ1))

p+3
3 σ

−
p
3

12 + (p + 2)S 1(ξ1)
]
, τ2 =

S 1(ξ1)ϕp(p+3)
1

p+3 , and σ12 > 0 is
an adjustment parameter.

Thus, from (3.13), (3.17) and (3.18), we have

`V2 = `V1 + `Λ2

≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

d1

2b1
α̃2

1 − H%1ξ
p+3
1 −

1
b2
α̃2 ˙̂α2

+ Hξ3
2(χp

3 − β
p
2) + Hξ3

2β
p
2 + Hξ3

2F2(Z2) +
Hpσ12

p + 3
ξ

p+3
2 + Q1 +

3
4
,

(3.19)
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where Z2 = (x̄2, α̂1)T ,

F2(Z2) =
1
H

[ f2 − `β1] + τ2ξ
p
2 +

3
4H

∥∥∥∥∥h2 −
∂β1

∂χ1
h1

∥∥∥∥∥4

ξ2.

Obviously, the continuity of F2(Z2) can be directly proved by the fact that the functions f2(χ̄2),
h2(χ̄2) and `β1 are all continuous. Thus, F2(Z2) can be approximated as

F2(Z2) = ΥT
2 Ψ2(Z2) + ε2(Z2), (3.20)

where |ε2(Z2)| ≤ δ2 and δ2 > 0 is a given constant.
In view of the fact ΨT

2 (·)Ψ2(·) ≤ 1 and Lemma 3, we obtain

ξ3
2F2(Z2) ≤ |ξ2|

3(‖Υ2‖‖Ψ2‖ + δ2)

≤
3σ21α2

p + 3
ξ

p+3
2 +

p
p + 3

σ
− 3

p

21 +
3

p + 3
ξ

p+3
2 +

p
p + 3

δ
p+3

p

2 ,
(3.21)

where α2 = ‖Υ2‖
p+3

3 and σ21 > 0 is an adjustment parameter.
Substituting (3.21) into (3.19) yields

`V2 ≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

d1

2b1
α̃2

1 − H%1ξ
p+3
1

+ Hξ3
2(χp

3 − β
p
2) + Hξ3

2β
p
2 +

3H
p + 3

[σ21α̂2 + 1]ξp+3
2 +

Hpσ12

p + 3
ξ

p+3
2

+ Hα̃2

[
3σ21

p + 3
ξ

p+3
2 −

1
b2H

˙̂α2

]
+ Q1 +

3
4

+
pH

p + 3
σ
− 3

p

21 +
pH

p + 3
δ

p+3
p

2 .

(3.22)

Then, one can design

β2 = −M
1
p

2 ξ2 , −ϕ2ξ2 (3.23)

and

˙̂α2 =
3Hb2σ21

p + 3
ξ

p+3
2 − d2α̂2, (3.24)

where M2 ≥
3

p+3 [σ21α̂2 + 1] +
pσ12
p+3 + ρ2 + %2 > 0; %2 > 0, d2 > 0 are adjustment parameters. The value

of ρ2 > 0 will be given in the next step.
In addition, it is evident that

d2

b2
α̂2α̃2 ≤ −

d2α̃
2
2

2b2
+

d2

2b2
α̂2

2. (3.25)

Substituting (3.25) into (3.22), one gets

`V2 ≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

2∑
j=1

d j

2b j
α̃2

1 − H
2∑

j=1

% jξ
p+3
j

+ Hξ3
2(χp

3 − β
p
2) +

2∑
j=1

Q j,

(3.26)
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where Q2 = 3
4 +

pH
p+3σ

− 3
p

12 +
pH
p+3δ

p+3
p

2 +
d2α

2
2

2b2
.

Inductive Step (3 ≤ k ≤ n). In view of above two steps, we can deduce the following similar property
whose proof can be found in the Appendix.

Proposition 1. For the kth Lyapunov function Vk : Πk → R+ as

Vk = Vk−1 + Λk (3.27)

with

Λk =
1
4
ξ4

k +
1

2bk
α̃2

k , (3.28)

there exists a virtual controller βk and the adaptive law of α̂k of the following forms

βk = −M
1
p

k ξk , −ϕkξk, (3.29)

˙̂αk =
3Hbkσk1

p + 3
ξ

p+3
k − dkα̂k, (3.30)

such that

`Vk ≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

k∑
j=1

d jα̃
2
j

2b j

− Hρkξ
p+3
k − H

k∑
j=1

% jξ
p+3
j +

k∑
j=1

Q j + Hξ3
k (χp

k+1 − β
p
k ),

(3.31)

where Mk ≥
3

p+3 [σk1α̂k + 1] +
pσk−1 2

p+3 + ρk + %k > 0; bk, %k, dk > 0 are adjustment parameters; and the
value of ρk > 0 will be given in the next step.

Step n According to above steps, there exist a series of virtual controllers and adaptive parameter laws
(βk, α̂k)(k = 1, · · · , n) make that Eq (3.31) holds when k = n with χn+1 = ν. Therefore, the fuzzy
adaptive control law can be designed as

βn = −M
1
p

n ξn , −ϕnξn, (3.32)

˙̂αn =
3Hbnσn1

p + 3
ξp+3

n − dnα̂n. (3.33)

Apparently, one can further get

`Vn ≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

n∑
j=1

d jα̃
2
j

2b j

− H
n∑

j=1

% jξ
p+3
j +

n∑
j=1

Q j + Hξ3
n(νp − βp

n).

(3.34)

By the definitions of ξk(k = 1, · · · , n), one gets the fuzzy state-feedback controller

βn = −(ϕ̄1χ1 + · · · + ϕ̄nχn), (3.35)

where ϕ̄k =
∏n

j=k ϕ j for k = 1, . . . , n.
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3.2. Output-feedback controller design

In this subsection, a fuzzy output-feedback controller will be designed by combining the above-
constructed state-feedback controller with the state-observer constructed later. Since χ2, · · · , χn are
unmeasurable, a reduced-order observer is required. Firstly, define a series of new variables as follows:

zi = χi − γi . . . γ2χ1, i = 2, · · · , n.

Then, it directly gets

dzi = H(χp
i+1 − γi . . . γ2χ

p
2)dt + ( fi − γi . . . γ2 f1)dt

+ [hi − γi . . . γ2h1]T dω, i = 2, · · · , n − 1,
dzn = H(νp − γn . . . γ2χ

p
2)dt + ( fn − γn . . . γ2 f1)dt

+ [hn − γn . . . γ2h]T dω,

where γi ≥ 1(i = 2, · · · , n) are gain parameters to be determined. Hence, the (n − 1)-dimensional
observer can be constructed as [36]

˙̂zi = H(ẑi + γi . . . γ2χ1)p − Hγi . . . γ2(ẑ2 + γ2χ1)p, i = 2, · · · , n − 1,
˙̂zn = Hνp − Hγn . . . γ2(ẑ2 + γ2χ1)p.

(3.36)

According to (3.36), the estimate χ̂i of χi can be gotten by

χ̂i = ẑi + γi . . . γ2χ1, i = 2, · · · , n. (3.37)

Thus, one constructs the implementable controller of system (2.4) by using Eq (3.35) and the certainty
equivalence principle as below:

ν = −(ϕ̄1χ̂1 + · · · + ϕ̄nχ̂n). (3.38)

Therefore, the output-feedback controller of origin system (2.1) is

u = Hqn+1ν = −Hqn+1(ϕ̄1χ̂1 + · · · + ϕ̄nχ̂n). (3.39)

3.3. Selection of the observer gains

In this section, we will analyze the appropriate values of the gains γi(i = 2, · · · , n) and some constant
parameters in output-feedback controller.

To determine the observer gains γ2, · · · , γn, we first define the error dynamics

ei , χi − χ̂i, i = 2, · · · , n. (3.40)

Further, the following coordinate transformation is introduced

ẽ2 = e2, ẽ3 = e3 − γ3e2, · · · , ẽn = en − γnen−1. (3.41)

It can easily infer from (3.40) and (3.41) that

dẽi = H[(χp
i+1 − χ̂

p
i+1) − γi(χ

p
i − χ̂

p
i )]dt

+ [ fi − γi fi−1]dt + [hi − γihi−1]T dω, i = 2, · · · , n − 1
dẽn = −Hγn(χp

n − χ̂
p
n)dt + [ fn − γn fn−1]dt + [hn − γnhn−1]T dω.

(3.42)

Now, a proposition is provided for helping to determine gain constants, whose proof will be given
in Appendix.
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Proposition 2. For the Lyapunov function

Un =
1
4
γ

n∑
i=2

ẽ4
i ,

by utilizing Lemmas 2-5, Eqs (2.3) and (3.42), it is not difficult to obtain

`Un ≤ −H

 n∑
i=2

γγi

2p−1 ẽp+3
i +

n∑
i=2

c̄iẽ
p+3
i +

n∑
i=2

6γ
p+3

3

(p + 3)H
p+3

3

ẽp+3
i


+

(p − 1)H
p + 3

+ F̃1(χ),

(3.43)

where γ > 0 is an adjustment constant; c̄i = c̄i(γi+1, · · · , γn) > 0, (i = 2, · · · , n − 1) are constants
independent of H; and c̄n is a constant independent of H and γi(i = 2, · · · , n); and F̃1(χ) =

H
∑n

i=2[1
4 ( fi − γi fi−1)4 +

3γ
2
3

4H
2
3
‖hi − γihi−1‖

4 +
2p−1
p+3 χ

p+3
i ] is an unknown continuous function.

Besides, we can obtain from Lemmas 2-4 that

|ξ3
n(νp − βp

n)|
≤ D|ξn|

3|ν − βn|[|ν − βn|
p + |βn|

p]

≤ D(n − 1)p|ξn|
3 ·

n∑
i=2

ϕ̄
p
i |ei|

p + D|ξn|
3 ·

 n∑
i=2

ϕ̄i|ei|

 · ϕp−1
n |ξn|

p−1

≤
p + 1
p + 3

n∑
i=2

ep+3
i + τnξ

p+3
n

≤ ι̃i

n∑
i=2

ẽp+3
i + F̃2(ξn),

(3.44)

where F̃2(ξn) = τnξ
p+3
n ; τn = 3

p+3

∑n
i=2

[
D(n − 1)pϕ̄

p
i

] p+3
3

+
p+2
p+3

∑n
i=2 3

[
D(n − 1)pϕ

p−1
n ϕ̄i

] p+3
p+2 ; ι̃n = np+2 p+1

p+3
and ι̃i = ι̃i(γi+1, · · · , γn)(i = 2, · · · , n − 1) are positive constants.

Then, substituting (3.44) into (3.34) yields

`Vn ≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

n∑
j=1

d jα̃
2
j

2b j

− H
n∑

j=1

% jξ
p+3
j +

n∑
j=1

Q j + H
n∑

i=2

ι̃iẽ
p+3
i + F̃2(ξn).

(3.45)

Then, define the entire Lyapunov function V = Vn + Un. Apparently, it directly infers from
Proposition 2 and Eq (3.45) that

`V = `Vn + `Un

≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

n∑
j=1

d jα̃
2
j

2b j
− H

n∑
j=1

% jξ
p+3
j + F̃(·) +

n∑
j=1

Q j

− H
n∑

i=2

[
γγi

2p−1 − c̄i − ι̃i

]
ẽp+3

i + H
n∑

i=2

6γ
p+3

3

(p + 3)H
p+3

3

ẽp+3
i +

(p − 1)H
p + 3

,

(3.46)
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where F̃(·) = F̃1(·) + F̃2(·).
Using FLS to deal with the unknown function F̃(·), one deduces from Lemma 7 that F̃(·) = ΥT

0 Ψ0 +

ε0(·) ≤ ‖Υ0‖‖Ψ0‖ + δ0 ≤
3

p+3α0 +
p

p+3 + δ0 where α0 = ‖Υ0‖
p+3

3 .
Therefore, the observer gains γ2, · · · , γn and constant H can be chosen in the following recursive

manner

γn ≥ max
{

2p−1

γ
(c̄n + ι̃n + 1 + θn), 1

}
,

γn−1 ≥ max
{

2p−1

γ
(c̄n−1(γn) + ι̃n−1(γn) + 1 + θn−1), 1

}
,

...

γ2 ≥ max
{

2p−1

γ
(c̄2(γn, · · · , γ3) + ι̃2(γn, · · · , γ3) + 1 + θ2), 1

}
,

H ≥ max

1,
(

6
p + 3

) 3
p+3

γ

 .

(3.47)

Then, Eq (3.46) turns into

`V ≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

n∑
j=1

d jα̃
2
j

2b j

− H
n∑

i=1

%iξ
p+3
i − H

n∑
i=2

θiẽ
p+3
i + Q,

(3.48)

where θi(i = 2, · · · , n) are positive constants, and Q =
∑n

i=1 Q j +
(p−1)H

p+3 + 3
p+3α0 +

p
p+3 + δ0.

On the other hand, it can be verified from Lemma 3 that

ẽ4
i ≤

4
p + 3

ẽp+3
i +

p − 1
p + 3

,

ξ4
i ≤

4
p + 3

ξ
p+3
i +

p − 1
p + 3

,

(3.49)

which renders

−H
n∑

i=2

θiẽ
p+3
i ≤ −

n∑
i=2

θ̄i

4
ẽ4

i +
p − 1

4
H

n∑
i=2

θi,

−H
n∑

i=2

%iξ
p+3
i ≤ −

n∑
i=2

%̄i

4
ξ4

i +
p − 1

4
H

n∑
i=2

%i,

(3.50)

where i = 2, · · · , n, θ̄i = (p + 3)Hθi and %̄i = (p + 3)H%i. Further, we get

`V ≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

n∑
j=1

d jα̃
2
j

2b j
−

n∑
i=2

%̄i

4
ξ4

i −

n∑
i=2

θ̄i

4
ẽ4

i + Q̄, (3.51)

where Q̄ = Q +
p−1

4 H
∑n

i=2 θi +
p−1

4 H
∑n

i=2 %i.
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3.4. Stability analysis

To state the main result, the following theorem is presented.

Theorem 1. For the p-norm stochastic nonlinear system (2.1) and a given constant, there exists a
finite-time fuzzy output-feedback controller (3.39) together with the parameter adaptive laws (3.12),
(3.24), (3.30), and (3.33) such that

i) the system output isn’t violated in the sense of probability, i.e., P{|y(t)| < ε} = 1.
ii) all the signals in the closed-loop stochastic nonlinear system (2.1) are SGFSP.

Proof. i) Let µ0 = min{%1, d1, · · · , dn, %̄2, · · · %̄n,
θ̄2
γ
, · · · θ̄n

γ
} and π0 = Q̄. Then, Eq (3.51) can be expressed

as

`V ≤ −µ0V + π0. (3.52)

We can easily get from Eq (3.52) that

EV(t) ≤ V(t0)e−µ0t +
π0

µ0
. (3.53)

For x(0) = (x1(t0), · · · , xn(t0))T satisfying x1(t0) ∈ Π1, it easily obtains that the mean of V(t) is
bounded, which implies that V is bounded in probability. It can be directly deduced from the definition
of V that

P{VB(ξ1) < ∞} = 1. (3.54)

Consequently, it is clear that P{|y(t)| < ε} = P{|ξ1(t)| < ε} = 1, which demonstrates that the output
constraint of system (2.1) is not violated in the sense of probability.
ii) For ∀ 0 < ς̄0 < 1, it is easy to get from Lemma 3 that

V ς̄0 ≤ ς̄0V + (1 − ς̄0).

Further, one has

− µ0V ≤ −
µ0

ς̄0
V ς̄0 +

(1 − ς̄0)µ0

ς̄0
. (3.55)

Then, substituting (3.55) into (3.52) drives

`V≤ − µ̄0V ς̄0 + π̄0, (3.56)

where µ̄0 =
µ0
ς̄0

and π̄0 =
(1−ς̄0)µ0

ς̄0
+ π0.

Let T ∗ = 1
l0µ̄0(1−ς̄0)

[
E

(
V1−ς̄0(χ(0), ẽ(0), α̂(0))

)
−

(
π̄0

µ̄0(1−ς̄0)

) 1−ς̄0
ς̄0

]
where χ(0) = (χ1(t0), · · · , χn(t0))T ,

ẽ(0) = (ẽ2(t0), · · · , ẽn(t0))T , α̂(0) = (α̂1(t0), · · · , α̂n(t0)), 0 < l0 < 1 is a constant. Then it follows
from Lemma 1 that for ∀t ≥ t0 + T ∗, E

(
V1−ς(χ, ẽ, α̂)

)
≤

π̄0
µ̄0(1−ς̄0) , which means that all the signals in the

closed-loop systems are semi-global finite-time stable in probability. �
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Remark 6. In this paper, we construct an output-feedback controller rather than the designed state-
feedback controllers in existing results about output constraints. On the other hand, it should
be pointed out the considered constraint is symmetric rather than asymmetric, which leads that
the proposed scheme can not be directly employed or further extended to the case of asymmetric
constraints. However, a control scheme based on a new BLF can be developed for asymmetric output
constraints in a similar way to this paper. In addition, another limitation is that all of the fractional
powers are equal to p. If pi’s are taken different values, the proposed strategy seems not applicable. In
the future, we will address the two issues.

4. Simulation example

The validation of the proposed strategy will be testified by the following system.
dx1 = x

13
5

2 dt + 2 ln(1 + x2
1)dt + 4x2

1dω,
dx2 = u

13
5 dt + x1x2

2dt + x2
2dω,

y = χ1,

(4.1)

where the output y = x1 is measurable and constrained by Π1 = {y(t) ∈ R, |y(t)| < 1}, and the state x2 is
unmeasurable.
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0 0.02 0.04
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0.6

0.8

Figure 1. Trajectory of x1(t) with ε = 1.
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14

x 2

x2

x̂2

Figure 2. Trajectory of x2(t) with ε = 1.
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According to the controller design procedure, we can respectively design the finite-time output-
feedback controller, the adaptive laws and the observer as follows:

u = −H
90
169 (M

5
13
1 x1 + M

5
13
2 χ̂2),

˙̂α1 =
15Hb1σ11

28
(S 1(x1))

28
15 x

28
5

1 − d1α̂1,

˙̂α2 =
15Hb2σ21

28
ξ

28
5

2 − d2α̂2,

˙̂z2 = Hν
13
5 − Hγ2(ẑ2 + γ2x1)

13
5 ,

χ̂2 = ẑ2 + γ2x1,

(4.2)

where M1 = 15
28 (S 1(x1))

13
15 [σ11α̂1 + 1] +

ρ1
S 1(x1) + %1 and M2 = 15

28 [σ21α̂2 + 1] + 13σ12
28 + ρ2 + %2.

Now, we choose the related parameters as γ = 1.5, σ11 = 22, σ21 = 20, σ12 = 1, θ2 = 3, b1 =

b2 = 40, d1 = d2 = 2, %1 = %2 = 1 and infer H = 1.6, γ2 = 8.1. Next, the initial states and adaptive
parameters are selected as [x1(0), x2(0), x̂2(0), α̂1, α̂2]T = [0.4, 8, 8, 10, 10]T the simulation results are
displayed in Figures 1–4.

0 1 2 3 4 5 6 7 8 9 10

time(s)

-25

-20

-15

-10

-5

0

5

10

u

Figure 3. Trajectory of u.

0 1 2 3 4 5 6 7 8 9 10
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2

4
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8

10

12
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,̂1

,̂2

Figure 4. Trajectory of α̂.

Figure 1 provides the trajectory of x1(t), which indicates that the system output constraint is not
violated under controller (4.2). Meanwhile, the trajectories of x2(t) and x̂2(t) are given in Figure 2,
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which shows that x2(t) is well estimated by x̂2(t). Moreover, the trajectory of the controller u is
displayed in Figure 3. Finally, Figure 4 expresses the curves of the adaptive parameter vector under the
developed strategy. Also, one could evidently observe from these figures that all the signals of system
(4.1) are semi-global finite-time stable in probability under controller (4.2).

5. Conclusion

In this paper, the output-feedback controller design problem is investigated for a class of p-norm
stochastic nonlinear systems with output constraints. Through using a tan-type BLF, an adaptive fuzzy
state-feedback controller is proposed by the adding a power integrator technique. Then, a finite-time
fuzzy output-feedback controller is constructed by combining the proposed state-feedback controller
and a reduced-order observer. Both rigorous proof and the simulation example verify that the designed
controller can ensure the achievement of the system output constraint and semi-global finite-time
stability of all the signals in probability. In the future, we will consider the situations of asymmetric
constraints, different fractional powers, or multi-input multi-output stochastic nonlinear systems.
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Appendix

Proof of Proposition 1. Firstly, suppose there exist βk−1(3 ≤ k ≤ n) such that

`Vk−1 ≤ −
%1ε

4

2π
tan

(
πξ4

1

2ε4

)
−

k−1∑
j=1

d jα̃
2
j

2b j
− Hρk−1ξ

p+3
k−1

− H
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j=1

% jξ
p+3
j +

k−1∑
j=1

Q j + Hξ3
k−1(χp

k − β
p
k−1).

(A.1)

At the same time, from Itô’s formula and (3.1), one gets

dξk = (Hχp
k−1 + fk − `βk−1)dt +

hk −

k−1∑
j=1

∂βk−1

∂χ j
h j


T

dω, (A.2)

where `βk−1 =
∑k−1

j=1
∂βk−1
∂χ j

(Hχp
j+1 + f j) + Σk−1

j=1
∂βk−1
∂α̂ j

˙̂α j + 1
2

∑k−1
j,l=1

∂2βk−1
∂χ j∂χl

hT
j hl. Clearly, `βk−1 is valid and

continuous, which can be illustrated in a similar way by following the lines to obtain `β1.
We choose the Lyapunov function as

Vk = Vk−1 + Λk (A.3)

with

Λk =
1
4
ξ4

k +
1

2bk
α̃2

k , (A.4)

where bk > 0 is an adjustment parameter, α̃k = αk − α̂k is the parameter error, and α̂k is the estimation
of the unknown parameter αk.

AIMS Mathematics Volume 6, Issue 3, 2244–2267.



2264

Applying (2.3), (A.2) and (A.4), one can obtain

`Λk = ξ3
k (Hχp
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1
bk
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2
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k .

(A.5)

It is not difficult to get from Lemma 3 that

3
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3
4
. (A.6)

On the other hand, from Lemmas 2 and 3, one can verify

ξ3
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(
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p
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≤ D|ξk−1|

3
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(A.7)

where ρk−1 = 1
p+3

[
3D

p+3
3 σ

−
p
3

12 + p + 2
]
, τk =

ϕ
(p−1)(p+3)
1

p+3 , and σk−1 2 > 0 is an adjustment parameter.
From (A.1)-(A.7), it can be deduced that

`Vk = `Vk−1 + `Λk
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where Zk = (χ̄T
k ,

¯̂αT
k−1)T , ¯̂αk−1 = (α̂1, · · · , α̂k−1)T and

Fk(Zk) =
1
H
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3
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Similar to the first two steps, Fk(Zk) can also be approximated as

Fk(Zk) = ‖ΥT
k Ψk(Zk)‖ + εk(Zk), (A.9)

where |εk(Zk)| ≤ δk and δk > 0 is a given constant.
One directly obtains from Eq (A.9) and Lemma 3 that

ξ3
k Fk(Zk) ≤ |ξk|
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k ,
(A.10)

where αk = ‖Υk‖
p+3

3 and σk1 > 0 is an adjustment parameter.
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Substituting (A.10) into (A.8) renders
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Then, we can design

βk = −M
1
p
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(A.12)

where Mk ≥
3

p+3 [σk1α̂k + 1] +
pσk−1 2

p+3 + ρk + %k; %k, dk > 0 are adjustment parameters; and the value of
ρk > 0 will be given in (k + 1)th step.

Moreover, one has
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From (A.1)-(A.13), it can be deduced that
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where Qk = 3
4 +
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p+3σ

− 3
p

k1 +
pH
p+3δ

p+3
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k +
dkα

2
k

2bk
. The proof of Proposition 1 is completed.

Proof of Proposition 2. By the definition of Un, one has
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AIMS Mathematics Volume 6, Issue 3, 2244–2267.



2266

By Lemma 5, one can infer
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Since χi − χ̂i − ẽi =
∑i−1

j=2 γi · · · γ j+1ẽ j, we can get that through applying Lemmas 2-5

| − γγiẽ3
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where ãi j = ãi j(γi, · · · , γ j+1) is a constant independent of H.
Noting that ei =
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j=2 γi · · · γ j+1ẽ j + ẽi, one has
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(A.18)

where c̃i j = c̃i j(γi, · · · , γ j+1) is a constant independent of H.
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In addition, we have
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Substituting (A.16)-(A.19) into (A.15) yields
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 ,
where c̄i =

∑i
j=2(ã ji + c̃ ji). The proof of Proposition 2 is completed.
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