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1. Introduction

As is known to all, time delay unavoidably exists in the process of signal transmission, which
may lead to performance degradation, oscillation and even instability of the system [1-9]. Analyzing
the dynamic behaviors of the system under the influence of time delay has become a fundamental
problem [10, 11]. Especially, unlike bounded time-varying delay, distributed delay and constant delay,
proportional delay is a class of monotonically increasing unbounded time-varying delay, which has the
strengths of predictability and controllability [12]. Moreover, in many practical applications of neural
networks dynamics, neutral delay with D operator has more realistic significance than one based on
non-operator [13—15]. As a result, the global exponential convergence of equilibrium points for the
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high-order proportional delayed cellular neural networks (HPDCNNS5) involving D operator:
[xi(2) = mi(D)xi(kit)|

= = biOx() + D (DT (0) + ) vif(OF (x; (digt)) W
=1 =1 :

+ Z Z eijl(t)Rj(xj (hijlt) )R[(X[ (rijlt)) + I;(1), t>1ty>0.
j=1 I=1
was investigated in [16—18]. Here n is the units number, x;(¢) denotes the ith neuron state, b;(¢) is the
decay rate, m;(t), w;;(t), v;;(t) and 6;;(¢) designate the connection weights, J;, F; and R; represent the
activation functions, the proportional delay factors ki, dij, hij, riji € 0,1), for all
i,j,l € Z = {1,2,---,n}. The detailed biological description of input function /;(f) can be seen
in [17,18]. The initial condition of system (1.1) can be characterized via:

xi(s) = ¢i(s), s € [eito, o], i € C([eity, o], R), e; = gmg {dij, hiji, riji, ki), i € Z. (1.2)
,JE

A noticeable phenomenon is that the relevant state variables are often regarded as the light intensity
level, proteins, molecules or electric charge in the process of establishing neural networks, which
needs to ensure that they are nonnegative [19-21]. The systems mentioned above are often called as
nonnegative systems. In recent years, more attention has been paid to the positivity and stability for
the equilibrium points [3,22-25], periodic solutions [26-28] and almost periodic solutions [29, 30] in
many various neural networks systems. However, the aforementioned literature are all based on non-
operator neural networks systems, and their methods for positivity cannot be used for neural networks
systems involving D operator directly. Besides, the proportional delay is monotonically increasing and
obviously does not satisfy the periodicity, which will increase the difficulty of investigating periodic
solutions for HPDCNNSs. For all we know, there exists no reference on the existence and stability of
the nonnegative periodic solution for HPDCNNS (1.1).

In view of the above considerations, we desire to establish a criterion on the existence and stability
of the nonnegative periodic solution for HPDCNNs (1.1). The main approaches of this paper are
Lyapunov functional methods, as well as employing some dynamic inequalities. It should be pointed
out that the results obtained are novel and complement some existing ones in [16—18,22-31].

The main framework of this paper is furnished as below. A criterion is proposed in Section 2 to
insure that all global solutions are exponentially attractive to each other. The existence and global
exponential stability for the nonnegative periodic solution are stated and guaranteed in Section 3. A
numerical case is presented to prove the efficacy of our method in Section 4. We summarize this paper
in Section 5.

2. Exponential attractivity of solutions
For the sake of convenience, we first describe some basic notations:
Ey=(Dusns € = (€1, €2, ,€,)" €R", |lell = max leil,

h* = sup |A(t)l, h™ = inf |A()],
teR

teR
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where E, designates the identity matrix of order n, & is a bounded and continuous function defined on
R. Furthermore, let T" and T be two matrices or vectors, I' > 0 is denoted that each item of T is greater
than or equal to zero, the definition of I' > 0 is similar. And " > T (resp. I' > I') means that ' = T" > 0

(resp. T =T > 0).

Lemma 2.1. (see [3]). If B > 0is an n X n matrix and the spectral radius p(B) < 1, then E, — B is

an M-matrix, and (E, — B)™! > 0.

Throughout this paper, we assume that b;, m;, w;j, vij, 0ii, I; : R — [0, +0c0) are continuous 7'-
periodic functions (7 > 0) with respect to time ¢ and the following assumptions are true for i, j,/ € Z.
(S1)J;, Fj,R; : R > R are non-decreasing functions. Moreover, there are constants Lf , Lf , Lf , Qf €

[0, +0c0) such that

J;(0) = F;(0) = Rj(0) = 0,J,(a) — J;(b)| < L; la = bl,|Fj(a) = F(b)| < Lf|a - bl,

and
IRj(a) - R;(b)| < Lfja - bl, IR;(a)| < QF, forall a,beR.

(S2) A <0, m ™G <1, p(V) < 1, I > m*bryi, N;+m? < 1, i € Z, where

b: X InL n ,u i) LI.:V"(Z‘) ln%
A; = sup |1 = bi() + O 4 3 e 4 "mi e
teR l-mfe K J=11- m/e "% J—11 b
n n ORL 1 RLR L
+ Z 2 ljl(t)( ! / : ll,-jz + — I ]
j=11=1 1- m]e "j 1 mle

V= (Vij)”X" ( b7 (1-m}) [#:-IL]J + V;:Lf + Z GZILRQR])nxn’
I
B=18) = s | 2 = b = (Ea - Vs
N; = sup ,,,—(,)[bi(t)mi(t) vy Lijpij(0) + > Ly vis()
R = !

+3 121 6()(QFLE + QRLE)].

Remark 2.1. From (S ,) and Lemma 2.1, it is easy to see that (E,—V) is an M-matrix, (E,—V)™! > 0,

and then there is a positive vector £ such that & = (E, — V)& > 0.

Lemma 2.2. (see [17], Lemma 2.1). Under the above assumptions, HPDCNNs (1.1) involving

initial value (1.2) has unique solution x(¢) on [z, +0).
Lemma 2.3. Suppose (S) and (S,) be satisfied, and let

Y1) = (10,7200, -+, ya(0)) and £(8) = (L0, &), -+, L)

be two arbitrary solutions of HPDCNNs (1.1) obeying the following initial conditions

yi(s) = 1 (), &i(s) = 5(s), s € [eito, tol, @], @5 € Cleito, 0], R), i € Z,

then there are two positive constants P = P(¢”, ¢°) and k > 1 satisfying that

, forall t>1, icZ
1+t) or a 0, I

1
i) — () < P( o

(2.1
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Proof. Let #(s) = m*e"™ 7 and

“i(s)
b.(H)m;(t LS Lo o Livi(n)
=sup |s — b(r) + 4 om0 )m(l) e +Z—] ’ — S 1
reR l-m +‘” jﬂl—nﬂJ“@ T 1l-m +‘“k (2.2)
sln - QRLR sln L
e %j +Zzez]l(t) e ! hiji ﬁe : riﬂ):l.
j=1 =1 "'j l—m;“e‘ ki
]
From (S,), we gain
(1)< 1and %(1) <0, i € Z, (2.3)

which, together with the continuities of 7Z(s) and ¥(s), results that there is a positive constant x €

(1, min b;) such that
i€Z

m;reklnk% <1, ieZ
and
bi(t)m;(t Wl LJ-M:"(I)
sup[;<—b,-(t)+u «l kl,-+Z !
teR 1 —m.eklnk 1— + Klnk
Oy O
+ Oiit)| —————e il 4 ———
ZZ ﬂ() + Klnk 1 _m;.eklnk]
]

According to (2.5) and the fact that

(2.4)

“ Lfvi (0

In -
T l-mte " E

1
kln —
dij

(2.5)

kln -

wﬂ<o,iez

1+t U U
L+d;jt + Z Z Qljl(t)
j=1 =1

K 1+1¢ 1
ESK’IH(1+ t)sln—,forallt20,0<a<1,
a a
we obtain
K b;(H)m,(t L+t
Sup - bl(t) + M kIn T+k;1
er L1+1 1 - m:re““k
- LJ'/Jij(t) u Lfvij(f)
+ _— _—
Z KlIlk Z kln - €
1-m? j:ll—m}re ki
R R R7TR
Ql Lj «ln QjL
x(—le it + 1
1 _m;eklnrj 1 _m;.eknkl
bi(H)m;(t TR
< sup[;<—b,-(t)+—() (D) ynt +Z
reR 1 m+eKm" =1 1 -
X LFVU(I) R S E
o35 S
JT 5 =1 I=1
AIMS Mathematics
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QRLR «ln 1 QRLR KIn L
X( elmﬂ+J—llel ul)]<0 i€’/
1 _ + klnk 1— m;.eklnl‘f]
Set
YD) = ¢]() = gl (eito). (D) = g (1) = @ (eito), forall 1 € [kieto, eito].
and

0i(t) = yi(®) = §i(0),  Xi(®) = 0i() — mi(D)oi(kit), i € Z,
it follows from (1.1) that

X[ (t) = =bi(H)Xi(t) — bi(t)m()o;(k;t) + Z,Uij(f)(fj()’j(f)) — Ji(Zi(D))

Jj=1

- Z vi(D(F Oy (i) = Fi(£i(ih) + Z Z 0

=
X [Rj()’j(hijzf))Rz(Yz(riﬂf)) — R;(£i(hiuD)R(&i(riji)], i€
Label

llgllo = max sup |(](1) — mi(O)g] (kit)) = (¢ (1) — mi(D)¢!

€2 1efe;ty lo)
and suppose [|¢]lo > 0, then, for any € > 0, one can choose a constant M > n + 1 such that
—k1n AL —kIn AL .
IXOIl < (lello + &)e ™ o < M(llgllo + &)e ™ o, forall 7 € [eito, o], i € Z.
Now, we will reveal that
e lp L
X < M(llello + €)e «In o - for all t > t,.
Otherwise, there must exist i € Z and 6 > ¢, satisfying that

—kIn 20
X)) = M(lgllo +£)e ™" ™o,
1+1

IXOI < Mgl + €)e ™" o, forall 1 € [ejto, 6),

which, together with (2.7), implies that

Tiy g Ly
Mo lo;n) < €M Flo(v) — mj<v)gj<k -v>| + € 0 I (v)o (kv
e «In 1+k v
< &M X))+ e T e T |Q <k v>|
€1 d+s
< Mlgllo + &) +mie™ S sup e Toloy(s))
SE[kje_,'l‘(), k_,'l‘]
In L BET)
< M(lgllo + &) + mie "5 sup " Tulo(s),
s€lejto, 1]
for all v € [e;ty, 1], t € [to, 0), j € Z, and then
M(llglly + &)

b5
Kln l+fo |Q ()] < sup ekln 1+ |Q](S)| < L’
s€lejito, 1] 1 - m{—e g
J

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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forall 7 € [ejty, 0), j€Z.
In views of (2.9), we get

X = Xi(to)e ot 4 f el bf““d"( — bi(sm(s)oilkis)
+ " 1)) = TEi(9) + > vis$)(F iy (digs) = Fi(£(dijs))
=1

J=1

+ Z Z 9ij1(S)[Rj(yj(hijzS))Rz(?’l(rijzs)) = Ri(£i(hiji))Ri(yi(ris))

P
+R;(£(hijis))Ri(yi(rijs)) — Rj((j(hiﬂs))Rz({z(riﬂS))])dS, t € [1,6],

which follows from (2.6), (2.13) and (2.15) that

9
X(0)] = ‘X[<ro>e‘ff3b"““”+ f e‘ff’“")ﬂ‘“(—b,-<s>m,-<s>g,-(kl-s>
fo

+ 1S i(9) = ) + Y vig)(F (v (digs) = Fi(L(dy;9)))
j=1

J=1

+ 20 05| Ry (iR irins)) = Ry iR ris))

j=1 =1

FRIE R rias) = Ry(€(his)RA&ris) | Jas

IA

9 0
Ol + 1B+ [P0 b msya o)

fo

+ 3 Lo+ LEvii(s)lo;(dys)
J=1 Jj=1

+ 20 05N QF Ll (hijs)] + QR Lfloy(ris)))|ds

j=1 =1

— 1+6 HbA — X \d B 140
(”(;0”0 +&)e kIn T+ o fto( i()— 747 )du i M(”(,D”o +&)e Klnm0

0
Xf g‘fxg(bi(“)_lﬁl)d”[ bi(s)mi(s)l o l'ﬁ(;
o 1—mre

o Lip(s) o Livi(s)

n n
1 I+s
+ g + E e " T 4 E E 0;1(5)
+ Kln% + Kl]’l%
J . J

IA

j=1 1 — mie j=1 1 — mie J=1 =1
RTR RTR
Ql Lj Kln i Qj Ll Kln
X(—]le ijl* 4 —116 '/l‘) ds
l—m;eknrj 1—m7€Knkf/

—xln E 1 By Y
< Mgl + &)™ F[1 = (1 = <o bt
1+
< Mlglly +e)e ™" .
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g

This contradicts with the fact of |X;(8)| = M(||¢|lo + &)e " 1%3 Hence, (2.12) holds. Applying a similar

proof to (2.15), from (2.12), we gain

Mlglly + &) —ein 12
—_—¢€

loj(®) < sup |oj(s)| < o, forall t>ty,je€Z (2.16)

s€lejto, 1] 1 —mte j
J

Let € — 07, then

1+12)\"
loi(D] = lyi(®) — ()] < P(T?) , forall t>1,i€Z,

%. The proof is completed.
Remark 2.2. According to Lemma 2.3, if w(f) is an equilibrium point or a periodic solution for
HPDCNN:Ss (1.1), all solutions of HPDCNNSs (1.1) will exponentially converge to w(#), which indicates

that w() is globally generalized exponentially stable.

where P =

3. The existence and stability on the nonnegative periodic solution

Based on the above preparations, we now reveal the existence and global exponential stability of
the nonnegative periodic solutions for HPDCNNs (1.1).

Theorem 3.1. If the assumptions in Section 2 hold, then HPDCNNs (1.1) has a globally
exponentially stable nonnegative periodic solution.

Proof. Set 9,(¢) = x;(t) — m;(H)x;(k;t), i € Z, it follows from (1.1) that

9;(1) =[x(t) — m(O)x; (ki) I

== bi(0)9(t) — bi()m;(t)x;(k;t) + Z,uij(t)Jj(xj(t)) + Z vij(0)
5 5 3.1)

X F](x](d,]t)) + Z Z Oijl(l)Rj(Xj(l’lijll'))Rl(Xl(l"ij]l')) + I,'(l'), 1€ /.

j=1 =1

We define

9(1) = f e L] — by (symi(s)pithis) + D ()T (5(5))
. Z

Y OF edy) + 3> 6(s) G2
=1

=1 =1
X Rj(p,(hins)Ri(pi(riis)) + Iis)ds,
and the nonlinear operator # by setting
(Pe)i(t) = miDpi(kit) + 97 (1), t€R.

Take a large enough number p > 0 such that g > ﬁf, one has
1
2 =E,-V)'B>=(E,-V)'l&>0.
o

AIMS Mathematics Volume 6, Issue 3, 2228-2243.
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Let B* = {¢(t) = (¢1(0), 2(0), -

@u0) € CR.R") : 0 < (1) < xi. ¥t € R, i € Z), then (B |- |l)

is a Banach space, where |||l = maZx sup |¢;(¢)| . From (S ) and (S ,), we gain
€2 teR

and

AIMS Mathematics

(P‘P)i(t)

(7)90)1'(0

\%

\%

\%

mi(O)pi(kit) + 94(t)

= mit)gilkit) + f e L0 — p(symi(s)eikis)

—00

* Z#U(S)J () + Z Vii($)F (¢5(d;5))

j=1

* Z Z Oui()R (0 (hijns))Rilpi(rijns)) + Ii(s) |ds

=1 I=1

m;r)(,-+f fbdu[z'uulv)(l Z Vij ]
+ Z Z 65, L0y, + I} |ds

j=1 I=1

IA

IA

mixi+ (L=m) Y v+ (1= mHB;
j=1

= xi, forall teR, ie€Z, 3.3)

mi(Di(kit) + 94 (1)
mi(t)gi(kit) + f el 0] — by (symi(s)pilhis)

—00

+ Zm,(s)J () + D WO ()

j=1

+ Z Z 0,1 (i) Ri(oi(ris) + Ii(s)]ds

j=1 =1

mi_‘pi(kit)+f ff;h"wm”[—bi(S)mi(S)SOi(kiS)

(%)

+ Z Hii {(p(9) + Z viF i(@(di;s))

j=1

+ Z Z 0;iR /(@ (hijis))Ri(pi(riis)) + Ii_]ds

=1 =1
!
f e ks bitndu _ p.(symy(s)pi(k;s) + I |ds
¢ !
[ e Frem—mpnas+ [ e eas

Volume 6, Issue 3, 2228-2243.
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> —m;"/\(,- + b_l'"
> 0, forall reR,ie€Z, 3.4)

which entail that # is a continuous mapping from B* to B*. Now, we prove % is a contraction mapping
of B*. With the help of (§;) and (S,), we obtain

|(P90)i(f) - (Plﬂ)l(f)|
miO)gikit) + () — (mi(ekit) + 97 ()|
mi)(@ikit) — witkid)| + [99(2) — 07 (1)

I (@ikit) — witkit))| + f LT o]

(o)

IA

IA

— bi($)mi(s)(@ikis) = Wikis))|
+ Z #ij(S)|Jj(€0j(S)) - Jj(‘/’j(s))| + Z Vij(5)|Fj(90j(dijs))
j=1

=

—Fj(¢j(dij8))| + Z Z 9ij1(S)|Rj(90j(hiﬂS))RI(SDI(Vile))

P
=R (W j(hiji$))Ri(@i(rijis)) + R (W j(hijs))Ri(@i(rijis))
—Rj(l//j(hiﬂS))Rz(llfz(rijzs))”ds

! n
(m:r + f e bf(“)d”[b,-(s)m,-(s) + Z Ljp,-j(s)
oo =

IA

# L)+ Y D B)QNLE + QNI ds)le = il
=1 =1 =
(m; + N)llp — ¥llw, forall teR, g, € B, i€Z,

IA

and then
I(Pp) — (Pl < (m] + Nl = Yllw, mj +N; <1, (3.5)

which follows from (3.3) and (3.4) that # is a contraction mapping from B* to B*. Consequently, the
mapping P exists unique fixed point x*(r) = (Px*)(r) € B* satisfying that

X (t) = mi(Ox; (kit) + 97 (t)

= m(t)x; (kit) + f e‘fs"’f(“)d“[—bi(s)m,-(s)x;f(kis)

—00
n

+ Z,uij(s)-]j(xj‘(s)) + Z Vij(S)Fj(x;(dijS)) (3.6)
=1

J=1

+ Z Z 6:j1 ()R (X (hijs))Ri(x] (rijis)) + Ii(S)]dS,

j=1 I=1

and
[x; (1) = mi(D)x} (kit) |

AIMS Mathematics Volume 6, Issue 3, 2228-2243.
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= b (1) = bi(OmiD)x; (kit) + D iy (x;(0)
j=1

+ > v OF (x5 (digt) + > " @R, (x5 (hit)) R (rit) ) + 1)
=1

j=1 =1
= —bOxX )+ D T (x50) + D vifOF ; (x5 (dijt)) + D biao)
J=1 Jj=1 j=1 =1
XR; (xj (h,-.,-lt)) Ry(x) (rijlt)) +1(n), t21>0,i€Z (3.7)

which entails that x*(¢) is a nonnegative solution of HPDCNNSs (1.1). For any natural number m, we
get

|xi ¢+ mT) = mi(0)x; (ki x (¢ + mT)|

== DOt + mT) + > ()] (x5t + mT)
j=1

+ D v OF (x)(diy X ¢+ mT)) + 3" 3" 0,(0)
J=1 =1 =1
X Rj(xj‘(hijl X (1 + mT)))Rz(x}"(riﬂ X (t+ mT))) + Ii(),

(3.8)

thus, x*(t + mT) € B* is a solution of HPDCNNSs (1.1). Particularly, v(#) = x*(¢ + T') is a solution of
HPDCNNS (1.1) obeying the initial condition

vi(t) = @; (D), 1 € [eito, o], @] € C([eity, 1], R),i € Z. (3.9)

According to Lemma 2.3, there is a positive constant P = P(¢* , ¢") satisfying that

() = Vi) < P(1 Al

) , forall t>1¢,i€Z
1+t

Then, for all i € Z and any ¢ + [T > 0,

X+IT) - X+ 1+ DT =

1+1 “
“(+IT) =it + IT)| < Pl ———
Xt +IT) —vi(t +1T)| < (1+t+lT)’

which follows from

—_

Xt +mT) = x50+ ) |5+ U+ DT) = x5t +1T)], ieZ
=0

and k > 1 that {x*(t + mT) € B*},, uniformly converges to a continuous function w() € B* on any
compact set of R. Furthermore, it is easy to obtain

wt+T)= lim x(¢t+T +mT) = ( 111)m X(t+m+ DT) = w(r),
m+1)—+oo

m—+oo

AIMS Mathematics Volume 6, Issue 3, 2228-2243.
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which suggests that w(?) is T-periodic. Letting m — +oco in (3.8) yields
[wi(?) = mi(Dw; (kit) |

= — bi(wi(1) + ZMU(I)J (@(0) + > vy F j(w; (dift))
“ = (3.10)

+ Z Z H[j,(t)Rj(a)j (h,'j[t) )R[(wl (riﬂt)) + I,‘(l), 1>t > 0.

j=1 I=1

Therefore, w(?) is a nonnegative 7-periodic solution of HPDCNNSs (1.1). Again from Remark 2.2, we
gain w(?) is globally generalized exponentially stable. This ends the proof.

4. Numerical simulations

We propose the following HPDCNN:Gs:

[x1(0) = 2, (D] = = (2+ Flsin21]) x1(2) + (7551 sin 2¢]) x, (1)
(100|51n2t|)x2(t)+(100|sm2t|)x1( )+(100|s1n V21))

><x2(§) + |sm2t|[arctan xl(g) + arctan® xZ(E)

W
+2 arctan x; () arctan xZ(L)] + 20| sin 27| + 3,

—(2+ 3l cos 2t|) xo(t) + (7551 sin 2e]) x, (1)

(100| sin 24)) xo(1) + (a5 sin 2e]) x1(4) + (51 sin 2]

Xx2(5) + ﬁl sin 2t|[ arctan’ xi1(g) + arctan? x2(5)

4.1)

[xa(0) - =201

+2 arctan x; (g) arctan xz(l—‘z)] + 30| cos 21| + 5,
to verify the correctness of the obtained results. Clearly,

g . V4
bi, mj, i, vij, 0iji, I; :€ C(R — R") are T-periodic functions(T = 5)

and
Ji(x) = Fij(x) = x, Rj(x) = arctanx, i,j€Z={1,2},

which indicates that 1

m;r:m<1b‘—2>01 1,2.
Take P
J _7F _ 7R _ R _ P —
Lj_Lj_Lj_l,Qj_E,J_l,Z
then 1150 1150 |, 600
a a o 1 = + 50 d I7 3
SR E SRRt = ATFINH
a a [Pl T B [ 1 | 5
where a = %82 Using some direct calculations, we gain

A <0, mie™s <1, p(V) < 1, I- > mibiyi, Ni+m' <1, forall ieZ={1,2}.
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Therefore, the HPDCNNG s (4.1) satisfies all the assumptions proposed in Section 2. Applying Theorem
3.1, we know that the HPDCNNS (4.1) has a unique nonnegative periodic solution, which is globally
exponentially stable. This can be seen in Figure 1.

15 :
14 ,\"‘ X1(t) |
“ﬁl‘|‘ x2(t)
13 | ]
N
12 L 1
|
o 11 il
BT
= N
59 31
7k {/ / { ) 1 i) { ) (0 [ [/ / ) [ {
8 =
7 -
6 J
5 L 1 L L
0 5 10 15 20 25

t
Figure 1. Numerical solutions x(f) to system (4.1) with initial values (¢(s), p2(s)) =
(10 cos(2s), 10 + 10sin(2s)), (12 cos(2s), 11 + 12sin(2s)), (5 + 13 sin(2s), 15 cos(2s)).

Remark 4.1. It should be noted that the existence and global exponential stability of the nonnegative
periodic solution for high-order proportional delayed cellular neural networks involving D operator

have not been studied in the previous references, and all results proposed in [16—18,22-61] are invalid
for HPDCNNSs (4.1).

5. Conclusions

Our main aim in this paper is to study the existence and global exponential stability of nonnegative
periodic solutions for high-order proportional delayed cellular neural networks involving D operator.
The main contributions of this paper are listed as follows.

(1) To the best of our knowledge, this is the first time to study the existence and stability of
nonnegative periodic solutions for high-order proportional delayed cellular neural networks involving
D operator.

(2) To establish the existence on nonnegative periodic solutions for the addressed neural networks
models, the principle of contractive mapping, Lyapunov functional method and new analysis
techniques are used in this paper to avoid the difficulties caused by unbounded delays.

(3) A very interesting fact shows that under certain conditions, the HPDCNNs will produce a
globally exponentially stable nonnegative periodic solution. And these conditions are easy to check
through some basic computations in practice.

Moreover, the method of this paper can also be used to study the periodicity for the other
proportional delayed neural networks involving D operator. It is our future work to study the positive

AIMS Mathematics Volume 6, Issue 3, 2228-2243.
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periodicity for neutral neural networks involving proportional delays and D operator.
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