Mathematics

Research article

Nonnegative periodicity on high-order proportional delayed cellular neural networks involving D operator

Xiaojin Guo ${ }^{1}$, Chuangxia Huang ${ }^{1, *}$ and Jinde Cao ${ }^{2,3, *}$
${ }^{1}$ Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science and Technology, Changsha, 410114, China
${ }^{2}$ School of Mathematics, Southeast University, Nanjing 211189, China
${ }^{3}$ Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
* Correspondence: Email: cxiahuang@csust.edu.cn, jdcao@ seu.edu.cn; Tel: +86073185258287.

Abstract

This paper aims to deal with the dynamic behaviors of nonnegative periodic solutions for one kind of high-order proportional delayed cellular neural networks involving D operator. By utilizing Lyapunov functional approach, combined with some dynamic inequalities, we establish a new assertion to guarantee the existence and global exponential stability of nonnegative periodic solutions for the addressed networks. The obtained results supplement and improve some existing ones. In addition, the correctness of the analytical results are verified by numerical simulations.

Keywords: high-order cellular neural network; proportional delay; nonnegative periodic solution; global exponential stability; D operator
Mathematics Subject Classification: 34C25, 34K13, 34K25

1. Introduction

As is known to all, time delay unavoidably exists in the process of signal transmission, which may lead to performance degradation, oscillation and even instability of the system [1-9]. Analyzing the dynamic behaviors of the system under the influence of time delay has become a fundamental problem $[10,11]$. Especially, unlike bounded time-varying delay, distributed delay and constant delay, proportional delay is a class of monotonically increasing unbounded time-varying delay, which has the strengths of predictability and controllability [12]. Moreover, in many practical applications of neural networks dynamics, neutral delay with D operator has more realistic significance than one based on non-operator [13-15]. As a result, the global exponential convergence of equilibrium points for the
high-order proportional delayed cellular neural networks (HPDCNNs) involving D operator:

$$
\begin{align*}
& {\left[x_{i}(t)-m_{i}(t) x_{i}\left(k_{i} t\right)\right]^{\prime} } \\
= & -b_{i}(t) x_{i}(t)+\sum_{j=1}^{n} \mu_{i j}(t) J_{j}\left(x_{j}(t)\right)+\sum_{j=1}^{n} v_{i j}(t) F_{j}\left(x_{j}\left(d_{i j} t\right)\right) \tag{1.1}\\
& +\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t) R_{j}\left(x_{j}\left(h_{i j l} t\right)\right) R_{l}\left(x_{l}\left(r_{i j l} t\right)\right)+I_{i}(t), \quad t \geq t_{0}>0 .
\end{align*}
$$

was investigated in [16-18]. Here n is the units number, $x_{i}(t)$ denotes the i th neuron state, $b_{i}(t)$ is the decay rate, $m_{i}(t), \mu_{i j}(t), v_{i j}(t)$ and $\theta_{i j l}(t)$ designate the connection weights, J_{j}, F_{j} and R_{j} represent the activation functions, the proportional delay factors $k_{i}, d_{i j}, h_{i j l}, r_{i j l} \in(0,1)$, for all $i, j, l \in Z=\{1,2, \cdots, n\}$. The detailed biological description of input function $I_{i}(t)$ can be seen in $[17,18]$. The initial condition of system (1.1) can be characterized via:

$$
\begin{equation*}
x_{i}(s)=\varphi_{i}(s), s \in\left[e_{i} t_{0}, t_{0}\right], \varphi_{i} \in C\left(\left[e_{i} t_{0}, t_{0}\right], \mathbb{R}\right), e_{i}=\min _{l, j \in Z}\left\{d_{i j}, h_{i j l}, r_{i j l}, k_{i}\right\}, i \in Z . \tag{1.2}
\end{equation*}
$$

A noticeable phenomenon is that the relevant state variables are often regarded as the light intensity level, proteins, molecules or electric charge in the process of establishing neural networks, which needs to ensure that they are nonnegative [19-21]. The systems mentioned above are often called as nonnegative systems. In recent years, more attention has been paid to the positivity and stability for the equilibrium points [3,22-25], periodic solutions [26-28] and almost periodic solutions [29,30] in many various neural networks systems. However, the aforementioned literature are all based on nonoperator neural networks systems, and their methods for positivity cannot be used for neural networks systems involving D operator directly. Besides, the proportional delay is monotonically increasing and obviously does not satisfy the periodicity, which will increase the difficulty of investigating periodic solutions for HPDCNNs. For all we know, there exists no reference on the existence and stability of the nonnegative periodic solution for HPDCNNs (1.1).

In view of the above considerations, we desire to establish a criterion on the existence and stability of the nonnegative periodic solution for HPDCNNs (1.1). The main approaches of this paper are Lyapunov functional methods, as well as employing some dynamic inequalities. It should be pointed out that the results obtained are novel and complement some existing ones in [16-18,22-31].

The main framework of this paper is furnished as below. A criterion is proposed in Section 2 to insure that all global solutions are exponentially attractive to each other. The existence and global exponential stability for the nonnegative periodic solution are stated and guaranteed in Section 3. A numerical case is presented to prove the efficacy of our method in Section 4. We summarize this paper in Section 5.

2. Exponential attractivity of solutions

For the sake of convenience, we first describe some basic notations:

$$
\begin{gathered}
E_{n}=(1)_{n \times n}, e=\left(e_{1}, e_{2}, \cdots, e_{n}\right)^{T} \in \mathbb{R}^{n},\|e\|=\max _{i \in \mathcal{Z}}\left|e_{i}\right|, \\
h^{+}=\sup _{t \in \mathbb{R}}|h(t)|, h^{-}=\inf _{t \in \mathbb{R}}|h(t)|,
\end{gathered}
$$

where E_{n} designates the identity matrix of order n, h is a bounded and continuous function defined on \mathbb{R}. Furthermore, let Γ and $\bar{\Gamma}$ be two matrices or vectors, $\Gamma \geq \mathbf{0}$ is denoted that each item of Γ is greater than or equal to zero, the definition of $\Gamma>\mathbf{0}$ is similar. And $\Gamma \geq \bar{\Gamma}$ (resp. $\Gamma>\bar{\Gamma}$) means that $\Gamma-\bar{\Gamma} \geq \mathbf{0}$ (resp. $\Gamma-\bar{\Gamma}>\mathbf{0}$).

Lemma 2.1. (see [3]). If $B \geq 0$ is an $n \times n$ matrix and the spectral radius $\rho(B)<1$, then $E_{n}-B$ is an M-matrix, and $\left(E_{n}-B\right)^{-1} \geq \mathbf{0}$.

Throughout this paper, we assume that $b_{i}, m_{i}, \mu_{i j}, v_{i j}, \theta_{i j l}, I_{i}: \mathbb{R} \rightarrow[0,+\infty)$ are continuous T periodic functions ($T>0$) with respect to time t and the following assumptions are true for $i, j, l \in Z$.
$\left(S_{1}\right) J_{j}, F_{j}, R_{j}: \mathbb{R} \rightarrow \mathbb{R}$ are non-decreasing functions. Moreover, there are constants $L_{j}^{J}, L_{j}^{F}, L_{j}^{R}, Q_{j}^{R} \in$ $[0,+\infty)$ such that

$$
J_{j}(0)=F_{j}(0)=R_{j}(0)=0,\left|J_{j}(a)-J_{j}(b)\right| \leq L_{j}^{J}|a-b|,\left|F_{j}(a)-F_{j}(b)\right| \leq L_{j}^{F}|a-b|,
$$

and

$$
\left|R_{j}(a)-R_{j}(b)\right| \leq L_{j}^{R}|a-b|, \quad\left|R_{j}(a)\right| \leq Q_{j}^{R}, \text { for all } a, b \in \mathbb{R}
$$

$\left(S_{2}\right) \Lambda_{i}<0, m_{i}^{+} e^{\ln \frac{1}{k_{i}}}<1, \rho(V)<1, I_{i}^{-}>m_{i}^{+} b_{i}^{+} \chi_{i}, N_{i}+m_{i}^{+}<1, i \in Z$, where

Remark 2.1. From (S_{2}) and Lemma 2.1, it is easy to see that $\left(E_{n}-V\right)$ is an M-matrix, $\left(E_{n}-V\right)^{-1} \geq \mathbf{0}$, and then there is a positive vector ξ^{*} such that $\xi=\left(E_{n}-V\right) \xi^{*}>\mathbf{0}$.

Lemma 2.2. (see [17], Lemma 2.1). Under the above assumptions, HPDCNNs (1.1) involving initial value (1.2) has unique solution $x(t)$ on $\left[t_{0},+\infty\right)$.

Lemma 2.3. Suppose (S_{1}) and $\left(S_{2}\right)$ be satisfied, and let

$$
\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t), \cdots, \gamma_{n}(t)\right)^{T} \text { and } \zeta(t)=\left(\zeta_{1}(t), \zeta_{2}(t), \cdots, \zeta_{n}(t)\right)^{T}
$$

be two arbitrary solutions of HPDCNNs (1.1) obeying the following initial conditions

$$
\begin{equation*}
\gamma_{i}(s)=\varphi_{i}^{\gamma}(s), \zeta_{i}(s)=\varphi_{i}^{\zeta}(s), s \in\left[e_{i} t_{0}, t_{0}\right], \varphi_{i}^{\gamma}, \varphi_{i}^{\zeta} \in C\left(\left[e_{i} t_{0}, t_{0}\right], \mathbb{R}\right), i \in Z, \tag{2.1}
\end{equation*}
$$

then there are two positive constants $P=P\left(\varphi^{\gamma}, \varphi^{\zeta}\right)$ and $\kappa>1$ satisfying that

$$
\left|\gamma_{i}(t)-\zeta_{i}(t)\right| \leq P\left(\frac{1+t_{0}}{1+t}\right)^{k}, \text { for all } t \geq t_{0}, i \in Z
$$

Proof. Let $\mathscr{H}_{i}(s)=m_{i}^{+} e^{s \ln \frac{1}{k_{i}}}$ and

$$
\begin{align*}
& \mathscr{G}_{i}(s) \\
& =\sup _{t \in \mathbb{R}}\left[s-b_{i}(t)+\frac{b_{i}(t) m_{i}(t)}{1-m_{i}^{+} e^{s \ln \frac{1}{k_{i}}}} e^{s \ln \frac{1}{k_{i}}}+\sum_{j=1}^{n} \frac{L_{j}^{J} \mu_{i j}(t)}{1-m_{j}^{+} e^{s \ln \frac{1}{k_{j}}}+\sum_{j=1}^{n} \frac{L_{j}^{F} v_{i j}(t)}{1-m_{j}^{+} e^{s \ln \frac{1}{k_{j}}}}} \begin{array}{r}
\quad \times e^{s \ln \frac{1}{\alpha_{i j}}}+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t)\left(\frac{Q_{l}^{R} L_{j}^{R}}{1-m_{j}^{+} e^{s \ln \frac{1}{k_{j}}}} e^{s \ln \frac{1}{h_{i j l}}}+\frac{Q_{j}^{R} L_{l}^{R}}{\left.\left.1-m_{l}^{+} e^{s \ln \frac{1}{k_{l}}} e^{s \ln \frac{1}{r_{i j l}}}\right)\right] .}\right.
\end{array} . .\right. \tag{2.2}
\end{align*}
$$

From $\left(S_{2}\right)$, we gain

$$
\begin{equation*}
\mathscr{H}_{i}(1)<1 \text { and } \mathscr{G}_{i}(1)<0, i \in Z \tag{2.3}
\end{equation*}
$$

which, together with the continuities of $\mathscr{H} \mathscr{C}_{i}(s)$ and $\mathscr{G}_{i}(s)$, results that there is a positive constant $\kappa \in$ ($1, \min _{i \in Z} b_{i}^{-}$) such that

$$
\begin{equation*}
m_{i}^{+} e^{\kappa \ln \frac{1}{k_{i}}}<1, \quad i \in Z, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
& \sup _{t \in \mathbb{R}}\left[\kappa-b_{i}(t)+\frac{b_{i}(t) m_{i}(t)}{1-m_{i}^{+} e^{\kappa \ln \frac{1}{k_{i}}}} e^{\kappa \ln \frac{1}{k_{i}}}+\sum_{j=1}^{n} \frac{L_{j}^{J} \mu_{i j}(t)}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}}+\sum_{j=1}^{n} \frac{L_{j}^{F} v_{i j}(t)}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}} e^{\kappa \ln \frac{1}{\lambda_{i j}}}\right. \\
& \left.+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t)\left(\frac{Q_{l}^{R} L_{j}^{R}}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}} e^{\kappa \ln \frac{1}{h_{i j l}}}+\frac{Q_{j}^{R} L_{l}^{R}}{1-m_{l}^{+} e^{\kappa \ln \frac{1}{k_{l}}}} e^{\kappa \ln \frac{1}{\Gamma_{i j l}}}\right)\right]<0, \quad i \in Z . \tag{2.5}
\end{align*}
$$

According to (2.5) and the fact that

$$
\frac{\kappa}{1+t} \leq \kappa, \ln \left(\frac{1+t}{1+\alpha t}\right) \leq \ln \frac{1}{\alpha}, \text { for all } t \geq 0,0<\alpha<1,
$$

we obtain

$$
\begin{aligned}
& \sup _{t \in \mathbb{R}}\left[\frac{\kappa}{1+t}-b_{i}(t)+\frac{b_{i}(t) m_{i}(t)}{1-m_{i}^{+} e^{\kappa \ln \frac{1}{k_{i}}} e^{\kappa \ln \frac{1+t}{1+k_{i} t}}}\right. \\
& +\sum_{j=1}^{n} \frac{L_{j}^{J} \mu_{i j}(t)}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}}+\sum_{j=1}^{n} \frac{L_{j}^{F} v_{i j}(t)}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}} e^{\kappa \ln \frac{1+t}{1+t_{i j} t}}+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t) \\
& \left.\times\left(\frac{Q_{l}^{R} L_{j}^{R}}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}} e^{\kappa \ln \frac{1+t}{1+h_{i j l}}}+\frac{Q_{j}^{R} L_{l}^{R}}{1-m_{l}^{+} e^{\kappa \ln \frac{1}{k_{l}}}} e^{\kappa \ln \frac{1++}{1+r_{j i l}}}\right)\right] \\
& \leq \sup _{t \in \mathbb{R}}\left[\kappa-b_{i}(t)+\frac{b_{i}(t) m_{i}(t)}{1-m_{i}^{+} e^{\kappa \ln \frac{1}{k_{i}}}} e^{\kappa \ln \frac{1}{k_{i}}}+\sum_{j=1}^{n} \frac{L_{j}^{J} \mu_{i j}(t)}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}}\right. \\
& +\sum_{j=1}^{n} \frac{L_{j}^{F} v_{i j}(t)}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}} e^{\kappa \ln \frac{1}{d_{i j}}}+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t)
\end{aligned}
$$

Set

$$
\begin{equation*}
\gamma_{i}(t)=\varphi_{i}^{\gamma}(t)=\varphi_{i}^{\gamma}\left(e_{i} t_{0}\right), \quad \zeta_{i}(t)=\varphi_{i}^{\zeta}(t)=\varphi_{i}^{\zeta}\left(e_{i} t_{0}\right), \text { for all } t \in\left[k_{i} e_{i} t_{0}, e_{i} t_{0}\right], \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varrho_{i}(t)=\gamma_{i}(t)-\zeta_{i}(t), \quad X_{i}(t)=\varrho_{i}(t)-m_{i}(t) \varrho_{i}\left(k_{i} t\right), i \in Z, \tag{2.8}
\end{equation*}
$$

it follows from (1.1) that

$$
\begin{align*}
X_{i}^{\prime}(t)= & -b_{i}(t) X_{i}(t)-b_{i}(t) m_{i}(t) \varrho_{i}\left(k_{i} t\right)+\sum_{j=1}^{n} \mu_{i j}(t)\left(J_{j}\left(\gamma_{j}(t)\right)-J_{j}\left(\zeta_{j}(t)\right)\right) \\
& +\sum_{j=1}^{n} v_{i j}(t)\left(F_{j}\left(\gamma_{j}\left(d_{i j} t\right)\right)-F_{j}\left(\zeta_{j}\left(d_{i j} t\right)\right)\right)+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t) \tag{2.9}\\
& \times\left[R_{j}\left(\gamma_{j}\left(h_{i j l} t\right)\right) R_{l}\left(\gamma_{l}\left(r_{i j l} t\right)\right)-R_{j}\left(\zeta_{j}\left(h_{i j l} t\right)\right) R_{l}\left(\zeta_{l}\left(r_{i j l} t\right)\right)\right], \quad i \in Z .
\end{align*}
$$

Label

$$
\begin{equation*}
\|\varphi\|_{0}=\max _{i \in \mathcal{Z}} \sup _{t \in\left[e_{i} t_{0}, t_{0}\right]}\left|\left(\varphi_{i}^{\gamma}(t)-m_{i}(t) \varphi_{i}^{\gamma}\left(k_{i} t\right)\right)-\left(\varphi_{i}^{\zeta}(t)-m_{i}(t) \varphi_{i}^{\zeta}\left(k_{i} t\right)\right)\right|, \tag{2.10}
\end{equation*}
$$

and suppose $\|\varphi\|_{0}>0$, then, for any $\varepsilon>0$, one can choose a constant $M>n+1$ such that

$$
\begin{equation*}
\|X(t)\|<\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\kappa \ln \frac{1+t}{1+t_{0}}}<M\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\kappa \ln \frac{1+t}{1+t_{0}}}, \text { for all } t \in\left[e_{i} t_{0}, t_{0}\right], i \in Z . \tag{2.11}
\end{equation*}
$$

Now, we will reveal that

$$
\begin{equation*}
\|X(t)\|<M\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\kappa \ln \frac{1+t}{1+t_{0}}}, \text { for all } t>t_{0} . \tag{2.12}
\end{equation*}
$$

Otherwise, there must exist $i \in Z$ and $\theta>t_{0}$ satisfying that

$$
\left\{\begin{array}{l}
\left|X_{i}(\theta)\right|=M\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\kappa \ln \operatorname{ln+}} \frac{1++}{1+t_{0}} \tag{2.13}\\
\|X(t)\|<M\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\kappa \ln \frac{1++}{1+t_{0}}}, \text { for all } t \in\left[e_{i} t_{0}, \theta\right),
\end{array}\right.
$$

which, together with (2.7), implies that

$$
\begin{align*}
& e^{\kappa \ln \frac{1+v}{1+\gamma_{0}}}\left|\varrho_{j}(v)\right| \leq e^{\kappa \ln \frac{1+v}{1+t_{0}}}\left|\varrho_{j}(v)-m_{j}(v) \varrho_{j}\left(k_{j} v\right)\right|+e^{\kappa \ln \frac{1+v}{1+t_{0}}}\left|m_{j}(v) \varrho_{j}\left(k_{j} v\right)\right| \\
& \left.\leq e^{\kappa \ln \frac{1+v}{1+t_{0}}}\left|X_{j}(\nu)\right|+m_{j}^{+} e^{\kappa \ln \frac{1+v}{1+k_{j}}{ }^{\kappa \ln \ln \frac{1+k_{j} v}{1+t_{0}}}} \varrho_{j}\left(k_{j} v\right) \right\rvert\, \\
& \leq M\left(\|\varphi\|_{0}+\varepsilon\right)+m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}} \sup _{s \in\left[k_{j} e_{j} t_{0}, k_{j} t\right]} e^{\kappa \ln \frac{1+s}{1+t_{0}}}\left|\varrho_{j}(s)\right| \\
& \leq M\left(\|\varphi\|_{0}+\varepsilon\right)+m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}} \sup _{s \in\left[e_{j} t_{0}, t\right]} e^{\kappa \ln \frac{1+s}{1+t_{0}}}\left|\varrho_{j}(s)\right|, \tag{2.14}
\end{align*}
$$

for all $v \in\left[e_{j} t_{0}, t\right], t \in\left[t_{0}, \theta\right), j \in Z$, and then

$$
\begin{equation*}
\left.e^{\kappa \ln \frac{1+t}{1+t_{0}}}\left|\varrho_{j}(t)\right| \leq \sup _{s \in\left[e_{j} t_{0}, t\right]} e^{\kappa \ln \frac{1+s}{1+t_{0}}} \varrho_{j}(s) \right\rvert\, \leq \frac{M\left(\|\varphi\|_{0}+\varepsilon\right)}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}} \tag{2.15}
\end{equation*}
$$

for all $t \in\left[e_{j} t_{0}, \theta\right), j \in Z$.
In views of (2.9), we get

$$
\begin{aligned}
X_{i}(t)= & X_{i}\left(t_{0}\right) e^{-\int_{t_{0}}^{t} b_{i}(u) \mathrm{d} u}+\int_{t_{0}}^{t} e^{-\int_{s}^{t} b_{i}(u) \mathrm{d} u}\left(-b_{i}(s) m_{i}(s) \varrho_{i}\left(k_{i} s\right)\right. \\
& +\sum_{j=1}^{n} \mu_{i j}(s)\left(J_{j}\left(\gamma_{j}(s)\right)-J_{j}\left(\zeta_{j}(s)\right)\right)+\sum_{j=1}^{n} v_{i j}(s)\left(F_{j}\left(\gamma_{j}\left(d_{i j} s\right)\right)-F_{j}\left(\zeta_{j}\left(d_{i j} s\right)\right)\right) \\
& +\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(s)\left[R_{j}\left(\gamma_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\gamma_{l}\left(r_{i j l} s\right)\right)-R_{j}\left(\zeta_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\gamma_{l}\left(r_{i j l} s\right)\right)\right. \\
& \left.\left.+R_{j}\left(\zeta_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\gamma_{l}\left(r_{i j l} s\right)\right)-R_{j}\left(\zeta_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\zeta_{l}\left(r_{i j l} s\right)\right)\right]\right) \mathrm{d} s, t \in\left[t_{0}, \theta\right],
\end{aligned}
$$

which follows from (2.6), (2.13) and (2.15) that

$$
\begin{aligned}
& \left|X_{i}(\theta)\right|=\mid X_{i}\left(t_{0}\right) e^{-\int_{t_{0}}^{\theta} b_{i}(u) \mathrm{d} u}+\int_{t_{0}}^{\theta} e^{-\int_{s}^{\theta} b_{i}(u) \mathrm{d} u}\left(-b_{i}(s) m_{i}(s) \varrho_{i}\left(k_{i} s\right)\right. \\
& +\sum_{j=1}^{n} \mu_{i j}(s)\left(J_{j}\left(\gamma_{j}(s)\right)-J_{j}\left(\zeta_{j}(s)\right)\right)+\sum_{j=1}^{n} v_{i j}(s)\left(F_{j}\left(\gamma_{j}\left(d_{i j} s\right)\right)-F_{j}\left(\zeta_{j}\left(d_{i j} s\right)\right)\right) \\
& +\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(s)\left[R_{j}\left(\gamma_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\gamma_{l}\left(r_{i j l} s\right)\right)-R_{j}\left(\zeta_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\gamma_{l}\left(r_{i j l} s\right)\right)\right. \\
& \left.\left.+R_{j}\left(\zeta_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\gamma_{l}\left(r_{i j l} s\right)\right)-R_{j}\left(\zeta_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\zeta_{l}\left(r_{i j l} s\right)\right)\right]\right) \mathrm{d} s \mid \\
& \leq\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\int_{t_{0}}^{\theta} b_{i}(u) \mathrm{d} u}+\int_{t_{0}}^{\theta} e^{-\int_{s}^{\theta} b_{i}(u) \mathrm{d} u}\left[1-b_{i}(s) m_{i}(s) \varrho_{i}\left(k_{i} s\right) \mid\right. \\
& +\sum_{j=1}^{n} L_{j}^{J} \mu_{i j}(s) \varrho_{j}(s)\left|+\sum_{j=1}^{n} L_{j}^{F} v_{i j}(s)\right| \varrho_{j}\left(d_{i j} s\right) \mid \\
& \left.+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(s)\left(Q_{l}^{R} L_{j}^{R}\left|\varrho_{j}\left(h_{i j l} s\right)\right|+Q_{j}^{R} L_{l}^{R}\left|\varrho_{l}\left(r_{i j l} s\right)\right|\right)\right] \mathrm{d} s \\
& \leq\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\kappa \ln \frac{1+\theta}{1+t_{0}}} e^{-\int_{t_{0}}^{\theta}\left(b_{i}(u)-\frac{\kappa}{1+u}\right) \mathrm{d} u}+M\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\kappa \ln \frac{1+\theta}{1+t_{0}}}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j=1}^{n} \frac{L_{j}^{J} \mu_{i j}(s)}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}}+\sum_{j=1}^{n} \frac{L_{j}^{F} v_{i j}(s)}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}} e^{\kappa \ln \frac{1+s}{1+d_{i j} s}}+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(s) \\
& \left.\times\left(\frac{Q_{l}^{R} L_{j}^{R}}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}} e^{\kappa \ln \frac{1+s}{1+h_{i j j^{s}}}}+\frac{Q_{j}^{R} L_{l}^{R}}{1-m_{l}^{+} e^{\kappa \ln \frac{1}{k_{l}}}} e^{\kappa \ln \frac{1+s}{1+t_{i j j^{s}}^{s}}}\right)\right] \mathrm{d} s \\
& <M\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\kappa \ln \frac{1+\theta}{1+t_{0}}}\left[1-\left(1-\frac{1}{M}\right) e^{-\int_{t_{0}}^{9}\left(b_{i}(u)-\frac{\kappa}{1++}\right) \mathrm{d} u}\right] \\
& <M\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\kappa \ln \frac{1+\theta}{1+\tau_{0}}} .
\end{aligned}
$$

This contradicts with the fact of $\left|X_{i}(\theta)\right|=M\left(\|\varphi\|_{0}+\varepsilon\right) e^{-\kappa \ln \frac{1+\theta}{1+t_{0}}}$. Hence, (2.12) holds. Applying a similar proof to (2.15), from (2.12), we gain

$$
\begin{equation*}
\left|\varrho_{j}(t)\right| \leq \sup _{s \in\left[e_{j} t_{0}, t\right]}\left|\varrho_{j}(s)\right| \leq \frac{M\left(\|\varphi\|_{0}+\varepsilon\right)}{1-m_{j}^{+} e^{\kappa \ln \frac{1}{k_{j}}}} e^{-\kappa \ln \frac{1+t}{1+t_{0}}}, \text { for all } t>t_{0}, j \in Z \text {. } \tag{2.16}
\end{equation*}
$$

Let $\varepsilon \rightarrow 0^{+}$, then

$$
\left|\varrho_{i}(t)\right|=\left|\gamma_{i}(t)-\zeta_{i}(t)\right| \leq P\left(\frac{1+t_{0}}{1+t}\right)^{\kappa}, \text { for all } t \geq t_{0}, i \in Z
$$

where $P=\frac{M\|\varphi\|_{0}}{1-m_{i}^{+} e^{k \ln k_{i}}}$. The proof is completed.
Remark 2.2. According to Lemma 2.3, if $\omega(t)$ is an equilibrium point or a periodic solution for HPDCNNs (1.1), all solutions of HPDCNNs (1.1) will exponentially converge to $\omega(t)$, which indicates that $\omega(t)$ is globally generalized exponentially stable.

3. The existence and stability on the nonnegative periodic solution

Based on the above preparations, we now reveal the existence and global exponential stability of the nonnegative periodic solutions for HPDCNNs (1.1).

Theorem 3.1. If the assumptions in Section 2 hold, then HPDCNNs (1.1) has a globally exponentially stable nonnegative periodic solution.

Proof. Set $\vartheta_{i}(t)=x_{i}(t)-m_{i}(t) x_{i}\left(k_{i} t\right), i \in Z$, it follows from (1.1) that

$$
\begin{align*}
\vartheta_{i}^{\prime}(t)= & {\left[x_{i}(t)-m_{i}(t) x_{i}\left(k_{i} t\right)\right]^{\prime} } \\
= & -b_{i}(t) \vartheta_{i}(t)-b_{i}(t) m_{i}(t) x_{i}\left(k_{i} t\right)+\sum_{j=1}^{n} \mu_{i j}(t) J_{j}\left(x_{j}(t)\right)+\sum_{j=1}^{n} v_{i j}(t) \tag{3.1}\\
& \times F_{j}\left(x_{j}\left(d_{i j} t\right)\right)+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t) R_{j}\left(x_{j}\left(h_{i j l} t\right)\right) R_{l}\left(x_{l}\left(r_{i j} t\right)\right)+I_{i}(t), i \in Z .
\end{align*}
$$

We define

$$
\begin{align*}
\vartheta_{i}^{\varphi}(t)= & \int_{-\infty}^{t} e^{-\int_{s}^{t} b_{i}(u) \mathrm{d} u}\left[-b_{i}(s) m_{i}(s) \varphi_{i}\left(k_{i} s\right)+\sum_{j=1}^{n} \mu_{i j}(s) J_{j}\left(\varphi_{j}(s)\right)\right. \\
& +\sum_{j=1}^{n} v_{i j}(s) F_{j}\left(\varphi_{j}\left(d_{i j} s\right)\right)+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(s) \tag{3.2}\\
& \left.\times R_{j}\left(\varphi_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\varphi_{l}\left(r_{i j l} s\right)\right)+I_{i}(s)\right] \mathrm{d} s,
\end{align*}
$$

and the nonlinear operator \mathcal{P} by setting

$$
(\mathcal{P} \varphi)_{i}(t)=m_{i}(t) \varphi_{i}\left(k_{i} t\right)+\vartheta_{i}^{\varphi}(t), \quad t \in R .
$$

Take a large enough number $\rho>0$ such that $\beta>\frac{1}{\rho} \xi$, one has

$$
\mathscr{X}=\left(E_{n}-V\right)^{-1} \beta>\frac{1}{\rho}\left(E_{n}-V\right)^{-1} \xi>\mathbf{0} .
$$

Let $B^{*}=\left\{\varphi(t)=\left(\varphi_{1}(t), \varphi_{2}(t), \cdots, \varphi_{n}(t)\right)^{T} \in C\left(\mathbb{R}, \mathbb{R}^{n}\right): 0 \leq \varphi_{i}(t) \leq \chi_{i}, \forall t \in \mathbb{R}, i \in Z\right\}$, then $\left(B^{*},\|\cdot\|_{\infty}\right)$ is a Banach space, where $\|\varphi\|_{\infty}=\max _{i \in Z} \sup _{t \in \mathbb{R}}\left|\varphi_{i}(t)\right|$. From $\left(S_{1}\right)$ and $\left(S_{2}\right)$, we gain

$$
\begin{align*}
(\mathcal{P} \varphi)_{i}(t)= & m_{i}(t) \varphi_{i}\left(k_{i} t\right)+\vartheta_{i}^{\varphi}(t) \\
= & m_{i}(t) \varphi_{i}\left(k_{i} t\right)+\int_{-\infty}^{t} e^{-\int_{s}^{t} b_{i}(u) \mathrm{d} u}\left[-b_{i}(s) m_{i}(s) \varphi_{i}\left(k_{i} s\right)\right. \\
& +\sum_{j=1}^{n} \mu_{i j}(s) J_{j}\left(\varphi_{j}(s)\right)+\sum_{j=1}^{n} v_{i j}(s) F_{j}\left(\varphi_{j}\left(d_{i j} s\right)\right) \\
& \left.+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(s) R_{j}\left(\varphi_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\varphi_{l}\left(r_{i j} s\right)\right)+I_{i}(s)\right] \mathrm{d} s \\
\leq & m_{i}^{+} \chi_{i}+\int_{-\infty}^{t} e^{-\int_{s}^{t} b_{i}^{-} \mathrm{d} u}\left[\sum_{j=1}^{n} \mu_{i j}^{+} L_{j}^{J} \chi_{j}+\sum_{j=1}^{n} v_{i j}^{+} L_{j}^{F} \chi_{j}\right. \\
& \left.+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}^{+} L_{j}^{R} Q_{l}^{R} \chi_{j}+I_{i}^{+}\right] \mathrm{d} s \\
\leq & m_{i}^{+} \chi_{i}+\left(1-m_{i}^{+}\right) \sum_{j=1}^{n} v_{i j} \chi_{j}+\left(1-m_{i}^{+}\right) \beta_{i} \\
= & \chi_{i}, \quad \text { for all } t \in \mathbb{R}, i \in Z, \tag{3.3}
\end{align*}
$$

and

$$
\begin{aligned}
(\mathcal{P} \varphi)_{i}(t)= & m_{i}(t) \varphi_{i}\left(k_{i} t\right)+\vartheta_{i}^{\varphi}(t) \\
= & m_{i}(t) \varphi_{i}\left(k_{i} t\right)+\int_{-\infty}^{t} e^{-\int_{s}^{t} b_{i}(u) \mathrm{d} u}\left[-b_{i}(s) m_{i}(s) \varphi_{i}\left(k_{i} s\right)\right. \\
& +\sum_{j=1}^{n} \mu_{i j}(s) J_{j}\left(\varphi_{j}(s)\right)+\sum_{j=1}^{n} v_{i j}(s) F_{j}\left(\varphi_{j}\left(d_{i j} s\right)\right) \\
& \left.+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(s) R_{j}\left(\varphi_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\varphi_{l}\left(r_{i j l} s\right)\right)+I_{i}(s)\right] \mathrm{d} s \\
\geq & m_{i}^{-} \varphi_{i}\left(k_{i} t\right)+\int_{-\infty}^{t} e^{-\int_{s}^{t} b_{i}(u) \mathrm{d} u\left[-b_{i}(s) m_{i}(s) \varphi_{i}\left(k_{i} s\right)\right.} \\
& +\sum_{j=1}^{n} \mu_{i j}^{-} J_{j}\left(\varphi_{j}(s)\right)+\sum_{j=1}^{n} v_{i j}^{-} F_{j}\left(\varphi_{j}\left(d_{i j} s\right)\right) \\
& \left.+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}^{-} R_{j}\left(\varphi_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\varphi_{l}\left(r_{i j l} s\right)\right)+I_{i}^{-}\right] \mathrm{d} s \\
\geq & \int_{-\infty}^{t} e^{-\int_{s}^{t} b_{i}(u) \mathrm{d} u}\left[-b_{i}(s) m_{i}(s) \varphi_{i}\left(k_{i} s\right)+I_{i}^{-}\right] \mathrm{d} s \\
\geq & \int_{-\infty}^{t} e^{-\int_{s}^{t} b_{i}(u) \mathrm{d} u}\left[-m_{i}^{+} \chi_{i} b_{i}(s)\right] \mathrm{d} s+\int_{-\infty}^{t}\left[e^{\left.-\int_{s}^{t} b_{i}^{+} \mathrm{d} u I_{i}^{-}\right] \mathrm{d} s}\right.
\end{aligned}
$$

$$
\begin{align*}
& \geq-m_{i}^{+} \chi_{i}+\frac{I_{i}^{-}}{b_{i}^{+}} \\
& \geq \quad 0, \quad \text { for all } t \in \mathbb{R}, i \in Z, \tag{3.4}
\end{align*}
$$

which entail that \mathcal{P} is a continuous mapping from B^{*} to B^{*}. Now, we prove \mathcal{P} is a contraction mapping of B^{*}. With the help of $\left(S_{1}\right)$ and $\left(S_{2}\right)$, we obtain

$$
\begin{aligned}
& \left|(\mathcal{P} \varphi)_{i}(t)-(\mathcal{P} \psi)_{i}(t)\right| \\
& =\left|m_{i}(t) \varphi_{i}\left(k_{i} t\right)+\vartheta_{i}^{\varphi}(t)-\left(m_{i}(t) \psi_{i}\left(k_{i} t\right)+\vartheta_{i}^{\psi}(t)\right)\right| \\
& \leq\left|m_{i}(t)\left(\varphi_{i}\left(k_{i} t\right)-\psi_{i}\left(k_{i} t\right)\right)\right|+\left|\vartheta_{i}^{\varphi}(t)-\vartheta_{i}^{\psi}(t)\right| \\
& \leq\left|m_{i}^{+}\left(\varphi_{i}\left(k_{i} t\right)-\psi_{i}\left(k_{i} t\right)\right)\right|+\int_{-\infty}^{t} e^{-\int_{s}^{t} b_{i}(u) \mathrm{d} u\left[\left|-b_{i}(s) m_{i}(s)\left(\varphi_{i}\left(k_{i} s\right)-\psi_{i}\left(k_{i} s\right)\right)\right|, ~ \mid, ~\right.} \\
& +\sum_{j=1}^{n} \mu_{i j}(s)\left|J_{j}\left(\varphi_{j}(s)\right)-J_{j}\left(\psi_{j}(s)\right)\right|+\sum_{j=1}^{n} v_{i j}(s) \mid F_{j}\left(\varphi_{j}\left(d_{i j} s\right)\right) \\
& -F_{j}\left(\psi_{j}\left(d_{i j} s\right)\right)\left|+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(s)\right| R_{j}\left(\varphi_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\varphi_{l}\left(r_{i j l} s\right)\right) \\
& -R_{j}\left(\psi_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\varphi_{l}\left(r_{i j l} s\right)\right)+R_{j}\left(\psi_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\varphi_{l}\left(r_{i j l} s\right)\right) \\
& \left.-R_{j}\left(\psi_{j}\left(h_{i j l} s\right)\right) R_{l}\left(\psi_{l}\left(r_{i j l} s\right)\right) \mid\right] \mathrm{d} s \\
& \leq\left(m_{i}^{+}+\int_{-\infty}^{t} e^{-\int_{s}^{t} b_{i}(u) \mathrm{d} u}\left[b_{i}(s) m_{i}(s)+\sum_{j=1}^{n} L_{j}^{J} \mu_{i j}(s)\right.\right. \\
& \left.\left.+\sum_{j=1}^{n} L_{j}^{F} v_{i j}(s)+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(s)\left(Q_{l}^{R} L_{j}^{R}+Q_{j}^{R} L_{l}^{R}\right)\right] \mathrm{d} s\right)\|\varphi-\psi\|_{\infty} \\
& \leq\left(m_{i}^{+}+N_{i}\right)\|\varphi-\psi\|_{\infty}, \quad \text { for all } t \in \mathbb{R}, \varphi, \psi \in B^{*}, i \in Z,
\end{aligned}
$$

and then

$$
\begin{equation*}
\|(\mathcal{P} \varphi)-(\mathcal{P} \psi)\|_{\infty} \leq\left(m_{i}^{+}+N_{i}\right)\|\varphi-\psi\|_{\infty}, m_{i}^{+}+N_{i}<1, \tag{3.5}
\end{equation*}
$$

which follows from (3.3) and (3.4) that \mathcal{P} is a contraction mapping from B^{*} to B^{*}. Consequently, the mapping \mathcal{P} exists unique fixed point $x^{*}(t)=\left(\mathcal{P} x^{*}\right)(t) \in B^{*}$ satisfying that

$$
\begin{align*}
x_{i}^{*}(t) & =m_{i}(t) x_{i}^{*}\left(k_{i} t\right)+\vartheta_{i}^{x^{*}}(t) \\
& =m_{i}(t) x_{i}^{*}\left(k_{i} t\right)+\int_{-\infty}^{t} e^{-\int_{s}^{t} b_{i}(u) \mathrm{d} u}\left[-b_{i}(s) m_{i}(s) x_{i}^{*}\left(k_{i} s\right)\right. \\
& +\sum_{j=1}^{n} \mu_{i j}(s) J_{j}\left(x_{j}^{*}(s)\right)+\sum_{j=1}^{n} v_{i j}(s) F_{j}\left(x_{j}^{*}\left(d_{i j} s\right)\right) \tag{3.6}\\
& \left.+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(s) R_{j}\left(x_{j}^{*}\left(h_{i j l} s\right)\right) R_{l}\left(x_{l}^{*}\left(r_{i j l} s\right)\right)+I_{i}(s)\right] \mathrm{d} s
\end{align*}
$$

and

$$
\left[x_{i}^{*}(t)-m_{i}(t) x_{i}^{*}\left(k_{i} t\right)\right]^{\prime}
$$

$$
\begin{align*}
= & -b_{i}(t) \vartheta_{i}^{x^{*}}(t)-b_{i}(t) m_{i}(t) x_{i}^{*}\left(k_{i} t\right)+\sum_{j=1}^{n} \mu_{i j}(t) J_{j}\left(x_{j}^{*}(t)\right) \\
& +\sum_{j=1}^{n} v_{i j}(t) F_{j}\left(x_{j}^{*}\left(d_{i j} t\right)\right)+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t) R_{j}\left(x_{j}^{*}\left(h_{i j l} t\right)\right) R_{l}\left(x_{l}^{*}\left(r_{i j l} t\right)\right)+I_{i}(t) \\
= & -b_{i}(t) x_{i}^{*}(t)+\sum_{j=1}^{n} \mu_{i j}(t) J_{j}\left(x_{j}^{*}(t)\right)+\sum_{j=1}^{n} v_{i j}(t) F_{j}\left(x_{j}^{*}\left(d_{i j} t\right)\right)+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t) \\
& \times R_{j}\left(x_{j}^{*}\left(h_{i j l t} t\right)\right) R_{l}\left(x_{l}^{*}\left(r_{i j l} t\right)\right)+I_{i}(t), \quad t \geq t_{0}>0, i \in Z, \tag{3.7}
\end{align*}
$$

which entails that $x^{*}(t)$ is a nonnegative solution of HPDCNNs (1.1). For any natural number m, we get

$$
\begin{align*}
& {\left[x_{i}^{*}(t+m T)-m_{i}(t) x_{i}^{*}\left(k_{i} \times(t+m T)\right)\right]^{\prime} } \\
= & -b_{i}(t) x_{i}^{*}(t+m T)+\sum_{j=1}^{n} \mu_{i j}(t) J_{j}\left(x_{j}^{*}(t+m T)\right) \\
& +\sum_{j=1}^{n} v_{i j}(t) F_{j}\left(x_{j}^{*}\left(d_{i j} \times(t+m T)\right)\right)+\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t) \tag{3.8}\\
& \times R_{j}\left(x_{j}^{*}\left(h_{i j l} \times(t+m T)\right)\right) R_{l}\left(x_{l}^{*}\left(r_{i j l} \times(t+m T)\right)\right)+I_{i}(t)
\end{align*}
$$

thus, $x^{*}(t+m T) \in B^{*}$ is a solution of HPDCNNs (1.1). Particularly, $v(t)=x^{*}(t+T)$ is a solution of HPDCNNs (1.1) obeying the initial condition

$$
\begin{equation*}
v_{i}(t)=\varphi_{i}^{v}(t), t \in\left[e_{i} t_{0}, t_{0}\right], \varphi_{i}^{v} \in C\left(\left[e_{i} t_{0}, t_{0}\right], \mathbb{R}\right), i \in Z \tag{3.9}
\end{equation*}
$$

According to Lemma 2.3, there is a positive constant $P=P\left(\varphi^{x^{*}}, \varphi^{v}\right)$ satisfying that

$$
\left|x_{i}^{*}(t)-v_{i}(t)\right| \leq P\left(\frac{1+t_{0}}{1+t}\right)^{\kappa}, \text { for all } t \geq t_{0}, i \in Z
$$

Then, for all $i \in Z$ and any $t+l T \geq 0$,

$$
\left|x_{i}^{*}(t+l T)-x_{i}^{*}(t+(l+1) T)\right|=\left|x_{i}^{*}(t+l T)-v_{i}(t+l T)\right| \leq P\left(\frac{1+t_{0}}{1+t+l T}\right)^{\kappa}
$$

which follows from

$$
x_{i}^{*}(t+m T)=x_{i}^{*}(t)+\sum_{l=0}^{m-1}\left[x_{i}^{*}(t+(l+1) T)-x_{i}^{*}(t+l T)\right], \quad i \in Z,
$$

and $\kappa>1$ that $\left\{x^{*}(t+m T) \in B^{*}\right\}_{m \geq 1}$ uniformly converges to a continuous function $\omega(t) \in B^{*}$ on any compact set of \mathbb{R}. Furthermore, it is easy to obtain

$$
\omega(t+T)=\lim _{m \rightarrow+\infty} x^{*}(t+T+m T)=\lim _{(m+1) \rightarrow+\infty} x^{*}(t+(m+1) T)=\omega(t),
$$

which suggests that $\omega(t)$ is T-periodic. Letting $m \rightarrow+\infty$ in (3.8) yields

$$
\begin{align*}
& {\left[\omega_{i}(t)-m_{i}(t) \omega_{i}\left(k_{i} t\right)\right]^{\prime} } \\
= & -b_{i}(t) \omega_{i}(t)+\sum_{j=1}^{n} \mu_{i j}(t) J_{j}\left(\omega_{j}(t)\right)+\sum_{j=1}^{n} v_{i j}(t) F_{j}\left(\omega_{j}\left(d_{i j} t\right)\right) \tag{3.10}\\
& +\sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{i j l}(t) R_{j}\left(\omega_{j}\left(h_{i j l} t\right)\right) R_{l}\left(\omega_{l}\left(r_{i j l} t\right)\right)+I_{i}(t), \quad t \geq t_{0}>0 .
\end{align*}
$$

Therefore, $\omega(t)$ is a nonnegative T-periodic solution of HPDCNNs (1.1). Again from Remark 2.2, we gain $\omega(t)$ is globally generalized exponentially stable. This ends the proof.

4. Numerical simulations

We propose the following HPDCNNs:

$$
\left\{\begin{align*}
{\left[x_{1}(t)-\frac{\sin ^{2} 2 t}{100} x_{1}\left(\frac{t}{5}\right)\right]^{\prime}=} & -\left(2+\frac{3}{10}|\sin 2 t|\right) x_{1}(t)+\left(\frac{1}{10}|\sin 2 t|\right) x_{1}(t) \tag{4.1}\\
& +\left(\frac{1}{100}|\sin 2 t|\right) x_{2}(t)+\left(\frac{1}{100}|\sin 2 t|\right) x_{1}\left(\frac{t}{2}\right)+\left(\frac{1}{100}|\sin \sqrt{2} t|\right) \\
& \times x_{2}\left(\frac{t}{3}\right)+\frac{1}{100}|\sin 2 t|\left[\arctan ^{2} x_{1}\left(\frac{t}{5}\right)+\arctan ^{2} x_{2}\left(\frac{t}{6}\right)\right. \\
& \left.+2 \arctan x_{1}\left(\frac{t}{5}\right) \arctan x_{2}\left(\frac{t}{6}\right)\right]+20|\sin 2 t|+3, \\
{\left[x_{2}(t)-\frac{\cos ^{2} 2 t}{100} x_{2}\left(\frac{t}{6}\right)\right]^{\prime}=} & -\left(2+\frac{3}{10}|\cos 2 t|\right) x_{2}(t)+\left(\frac{1}{100}|\sin 2 t|\right) x_{1}(t) \\
& +\left(\frac{1}{100}|\sin 2 t|\right) x_{2}(t)+\left(\frac{1}{100}|\sin 2 t|\right) x_{1}\left(\frac{t}{7}\right)+\left(\frac{1}{100}|\sin 2 t|\right) \\
& \times x_{2}\left(\frac{t}{9}\right)+\frac{1}{100}|\sin 2 t|\left[\arctan ^{2} x_{1}\left(\frac{t}{8}\right)+\arctan ^{2} x_{2}\left(\frac{t}{12}\right)\right. \\
& \left.+2 \arctan x_{1}\left(\frac{t}{8}\right) \arctan x_{2}\left(\frac{t}{12}\right)\right]+30|\cos 2 t|+5,
\end{align*}\right.
$$

to verify the correctness of the obtained results. Clearly,

$$
b_{i}, m_{i}, \mu_{i j}, v_{i j}, \theta_{i j l}, I_{i}: \in C\left(\mathbb{R} \rightarrow \mathbb{R}^{+}\right) \text {are } T \text {-periodic functions }\left(T=\frac{\pi}{2}\right)
$$

and

$$
J_{j}(x)=F_{j}(x)=x, R_{j}(x)=\arctan x, \quad i, j \in Z=\{1,2\},
$$

which indicates that

$$
m_{i}^{+}=\frac{1}{100}<1, b_{i}^{-}=2>0, i=1,2 .
$$

Take

$$
L_{j}^{J}=L_{j}^{F}=L_{j}^{R}=1, Q_{j}^{R}=\frac{\pi}{2}, j=1,2,
$$

then

$$
V=\left[\begin{array}{ll}
a & a \\
a & a
\end{array}\right], \beta=\left[\begin{array}{c}
\frac{1150}{99} \\
\frac{1750}{99}
\end{array}\right], \mathscr{X}=\frac{1}{1-2 a}\left[\begin{array}{c}
\frac{1150}{99}+\frac{600}{99} a \\
\frac{1750}{99}-\frac{60}{99} a
\end{array}\right] \text { and }\left[\begin{array}{c}
I_{1}^{-} \\
I_{2}^{-}
\end{array}\right]=\left[\begin{array}{c}
3 \\
5
\end{array}\right],
$$

where $a=\frac{\pi+2}{198}$. Using some direct calculations, we gain

$$
\Lambda_{i}<0, m_{i}^{+} e^{\ln \frac{1}{k_{i}}}<1, \rho(V)<1, I_{i}^{-}>m_{i}^{+} b_{i}^{+} \chi_{i}, N_{i}+m_{i}^{+}<1, \text { for all } i \in Z=\{1,2\}
$$

Therefore, the HPDCNNs (4.1) satisfies all the assumptions proposed in Section 2. Applying Theorem 3.1, we know that the HPDCNNs (4.1) has a unique nonnegative periodic solution, which is globally exponentially stable. This can be seen in Figure 1.

Figure 1. Numerical solutions $x(t)$ to system (4.1) with initial values $\left(\varphi_{1}(s), \varphi_{2}(s)\right)=$ $(10 \cos (2 s), 10+10 \sin (2 s)),(12 \cos (2 s), 11+12 \sin (2 s)),(5+13 \sin (2 s), 15 \cos (2 s))$.

Remark 4.1. It should be noted that the existence and global exponential stability of the nonnegative periodic solution for high-order proportional delayed cellular neural networks involving D operator have not been studied in the previous references, and all results proposed in [16-18,22-61] are invalid for HPDCNNs (4.1).

5. Conclusions

Our main aim in this paper is to study the existence and global exponential stability of nonnegative periodic solutions for high-order proportional delayed cellular neural networks involving D operator. The main contributions of this paper are listed as follows.
(1) To the best of our knowledge, this is the first time to study the existence and stability of nonnegative periodic solutions for high-order proportional delayed cellular neural networks involving D operator.
(2) To establish the existence on nonnegative periodic solutions for the addressed neural networks models, the principle of contractive mapping, Lyapunov functional method and new analysis techniques are used in this paper to avoid the difficulties caused by unbounded delays.
(3) A very interesting fact shows that under certain conditions, the HPDCNNs will produce a globally exponentially stable nonnegative periodic solution. And these conditions are easy to check through some basic computations in practice.

Moreover, the method of this paper can also be used to study the periodicity for the other proportional delayed neural networks involving D operator. It is our future work to study the positive
periodicity for neutral neural networks involving proportional delays and D operator.

Acknowledgments

The authors would like to express the sincere appreciation to the editor and reviewers for their helpful comments in improving the presentation and quality of the paper.

Conflict of interests

We confirm that we have no conflict of interest.

References

1. C. Huang, X. Yang, J. Cao, Stability analysis of Nicholson's blowflies equation with two different delays, Math. Comput. Simulation, 171 (2020), 201-206. doi: 10.1016/j.matcom.2019.09.023.
2. C. Huang, X. Long, L. Huang, S. Fu, Stability of almost periodic Nicholson's blowflies model involving patch structure and mortality terms, Canad. Math. Bull., 63 (2020), 405-422. doi: 10.4153/S0008439519000511.
3. G. Yang, Exponential stability of positive recurrent neural networks with multi-proportional delays, Neural Process. Lett., 49 (2019), 67-78. doi: 10.1007/s11063-018-9802-z.
4. J. Cao, F. Wen, The impact of the cross-shareholding network on extreme price movements: Evidence from China, J. Risk, 22 (2019), 79-102.
5. C. Huang, Y. Tan, Global behavior of a reaction-diffusion model with time delay and Dirichlet condition, J. Differ. Equ., 271 (2021), 186-215. doi: 10.1016/j.jde.2020.08.008.
6. C. Huang, H. Zhang, J. Cao, H. Hu, Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950091.
7. C. Huang, H. Zhang, L. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term, Commun. Pure Appl. Anal., 18 (2019), 3337-3349.
8. C. Huang, L. Yang, J. Cao, Asymptotic behavior for a class of population dynamics, AIMS Math., 5 (2020), 3378-3390. doi: 10.3934/math. 2020218.
9. X. Long, Novel stability criteria on a patch structure Nicholson's blowflies model with multiple pairs of time-varying delays, AIMS Math., 5 (2020), 7387-7401. doi: 10.3934/math. 2020473.
10. C. Huang, X. Long, J. Cao, Stability of anti-periodic recurrent neural networks with multiproportional delays, Math. Methods Appl. Sci., 43 (2020), 6093-6102. doi: 10.1002/mma.6350.
11. Z. Ye, C. Hu, L. He, G. Ouyang, F. Wen, The dynamic time-frequency relationship between international oil prices and investor sentiment in China: A wavelet coherence analysis, Energy $J, 41$ (2020). doi: 10.5547/01956574.41.5.fwen.
12. C. Huang, S. Wen, L. Huang, Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays, Neurocomputing, 357 (2019), 47-52.
13. H. Yang, Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator, AIMS Math., 6 (2021), 1865-1879. doi: 10.3934/math. 2021113.
14. Y. Xu, Exponential stability of pseudo almost periodic solutions for neutral type cellular neural networks with D operator, Neural Process. Lett., 46 (2017), 329-342.
15. W. Wang, Finite-time synchronization for a class of fuzzy cellular neural networks with timevarying coefficients and proportional delays, Fuzzy Sets and Systems, 338 (2018), 40-49.
16. C. Huang, R. Su, J. Cao, S. Xiao, Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators, Math. Comput. Simulation, 171 (2020), 127-135. doi: 10.1016/j.matcom.2019.06.001.
17. S. Xiao, Global exponential convergence of HCNNs with neutral type proportional delays and D operator, Neural Process. Lett., 49 (2019), 347-356.
18. Y. Xu, J. Zhong, Convergence of neutral type proportional-delayed HCNNs with D operators, Int. J. Biomath., 11 (2019), 1-9.
19. J. Wang, X. Chen, L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405-427.
20. H. L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, Providence, Rhode Island: Amer. Math. Soc., 1995.
21. J. Wang, C. Huang, L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162-178.
22. X. Liu, W. Yu, L. Wang, Stability analysis for continuous time positive systems with time-varying delays, IEEE Trans. Automat. Control, 55 (2010), 1024-1028.
23. I. Zaidi, M. Chaabane, F. Tadeo, A. Benzaouia, Static state feedback controller and observer design for interval positive systems with time delay, IEEE Trans. Circuits Syst. II., 62 (2015), 506-510.
24. L. Hien, On global exponential stability of positive neural networks with time-varying delay, Neural Networks, 87 (2017), 22-26.
25. H. Zhang, Global Large Smooth Solutions for 3-D Hall-magnetohydrodynamics, Discrete Contin. Dyn. Syst., 39 (2019), 6669-6682.
26. M. Benhadri, T. Caraballo, H. Zeghdoudi, Existence of periodic positive solutions to nonlinear Lotka-Volterra competition systems, Opuscula Math., 40 (2020), 341-360. doi: 10.7494/OpMath.2020.40.3.341.
27. Z. Cai, J. Huang, L. Huang, Periodic orbit analysis for the delayed Filippov system, Proc. Amer. Math. Soc., 146 (2018), 4667-4682.
28. T. Chen, L. Huang, P. Yu, Bifurcation of limit cycles at infinity in piecewise polynomial systems, Nonlinear Anal. Real., 41 (2018), 82-106.
29. W. Wang, F. Liu, W. Chen, Exponential stability of pseudo almost periodic delayed Nicholson-type system with patch structure, Math. Methods Appl. Sci., 42 (2019), 592-604.
30. W. Wang, W. Chen, Mean-square exponential stability of stochastic inertial neural networks, Internat. J. Control, (2020). doi: 10.1080/00207179.2020.1834145.
31. C. Huang, L. Yang, B. Liu, New results on periodicity of non-autonomous inertial neural networks involving non-reduced order method, Neural Process. Lett., 50 (2019), 595-606.
32. Q. Cao, X. Guo, Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays, AIMS Math., 5 (2020), 5402-5421. doi: 10.3934/math. 2020347.
33. C. Huang, B. Liu, New studies on dynamic analysis of inertial neural networks involving nonreduced order method, Neurocomputing, 325 (2019), 283-287.
34. K. Zhu, Y. Xie, F. Zhou, Attractors for the nonclassical reaction-diffusion equations on timedependent spaces, Bound. Value Probl., 2020 (2020). doi: 10.1186/s13661-020-01392-7.
35. Y. Tan, C. Huang, B. Sun, T. Wang, Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, J. Math. Anal. Appl., 458 (2018), 1115-1130.
36. Y. Xu, Q. Cao, X. Guo, Stability on a patch structure Nicholsons blowflies system involving distinctive delays, Appl. Math. Lett., 105 (2020), 106340. doi: 10.1016/j.aml.2020.106340.
37. Y. Xie, Q. Li, K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal., Real World Appl., 31 (2016), 23-37.
38. C. Qian, Y. Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments, J. Inequal. Appl., 2020 (2020). doi: 10.1186/s13660-019-2275-4.
39. L. Li, W. Wang, L. Huang, J. Wu, Some weak flocking models and its application to target tracking, J. Math. Anal. Appl., 480 (2019), 123404. doi: 10.1016/j.jmaa.2019.123404.
40. J. Li, J. Ying, D. Xie, On the analysis and application of an ion size-modified Poisson-Boltzmann equation, Nonlinear Anal., Real World Appl., 47 (2019), 188-203.
41. Y. Jiang, X. Xu, A monotone finite volume method for time fractional Fokker-Planck equations, Sci. China Math., 62 (2019), 783-794.
42. B. Li, F. Wang, K. Zhao, Large time dynamics of 2 d semi-dissipative boussinesq equations, Nonlinearity, 33 (2020), 2481-2501. doi: 10.1088/1361-6544/ab74b1.
43. L. Li, Q. Jin, B. Yao, Regularity of fuzzy convergence spaces, Open Math., 16 (2018), 1455-1465.
44. Z. Gao, L. Fang, The invariance principle for random sums of a double random sequence, Bull. Korean Math. Soc., 50 (2013), 1539-1554.
45. M. Shi, J. Guo, X. Fang, C. Huang, Global exponential stability of delayed inertial competitive neural networks, Adv. Differ. Equ., 2020 (2020). doi: 10.1186/s13662-019-2476-7.
46. Y. Xie, Y. Li, Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Funct. Spaces, 2016 (2016), 1-12. doi: 10.1155/2016/5340489.
47. C. Huang, H. Yang, J. Cao, Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator, Discrete Contin. Dyn. Syst. Ser. S, 2020 (2020). doi: 10.3934/dcdss. 2020372.
48. C. Huang, X. Zhao, J. Cao, Fuad E. Alsaadi, Global dynamics of neoclassical growth model with multiple pairs of variable delays, Nonlinearity, 33 (2020), 6819-6834. doi: 10.1088/13616544/abab4e.
49. R. Wei, J. Cao, C. Huang, Lagrange exponential stability of quaternion-valued memristive neural networks with time delays, Math. Methods Appl. Sci., 43 (2020), 7269-7291. doi: 10.1002/mma. 6463.
50. Y. Liu, J. Wu, Multiple solutions of ordinary differential systems with min-max terms and applications to the fuzzy differential equations, Adv. Differ. Equ., 379 (2015). doi: 10.1186/s13662-015-0708-z.
51. C. Huang, J. Wang, L. Huang, Asymptotically almost periodicity of delayed Nicholson-type system involving patch structure, Electron. J. Differ. Equ., 2020 (2020), 1-17. Available from: https://ejde.math.txstate.edu/Volumes/2020/61/huang.pdf
52. J. Zhang, C. Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, Adv. Difference Equ., 120 (2020). doi: 10.1186/s13662-020-02566-4.
53. H. Hu, X. Yuan, L. Huang, C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., 16 (2019), 5729-5749.
54. W. Tang, J. Zhang, Symmetric integrators based on continuous-stage Runge-Kutta-Nystrom methods for reversible systems, Appl. Math. Comput., 361 (2019), 1-12.
55. M. Iswarya, R. Raja, G. Rajchakit, et al, Existence, Uniqueness and Exponential Stability of Periodic Solution for Discrete-Time Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method, Mathematics, 7 (2019), 1055.
56. X. Long, S. Gong, New results on stability of Nicholsons blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett. 2020 (2020), 106027. doi: /10.1016/j.aml.2019.106027.
57. Y. Zhang, Right triangle and parallelogram pairs with a common area and a common perimeter, J. Number Theory, 164 (2016), 179-190.
58. J. Cao, G. Stamov, I. Stamova, S. Simeonov, Almost Periodicity in Impulsive Fractional-Order Reaction-Diffusion Neural Networks With Time-Varying Delays, IEEE Trans. Cybernet., 2020 (2020), 1-11. doi: 10.1109/TCYB.2020.2967625.
59. J. Cao, R. Manivannan, K. T. Chong, X. Lv, Extended Dissipativity Performance of High-Speed Train Including Actuator Faults and Probabilistic Time-Delays Under Resilient Reliable Control, IEEE Trans. Syst., Man, Cybernet: Syst, 2019 (2019), 1-12. doi: 10.1109/TSMC.2019.2930997.
60. Y. Cao, R. Sriraman, N. Shyamsundarraj, R. Samidurai, Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays, Math. Comput. Simulation, 171 (2020). doi: 10.1016/j.matcom.2019.05.011.
61. Y. Cao, R. Samidurai, R. Sriraman, Stability and Dissipativity Analysis for Neutral Type Stochastic Markovian Jump Static Neural Networks with Time Delays, J. Artificial Intelligence. Soft Computing Res., 9 (2019), 189-204. doi: 10.2478/jaiscr-2019-0003.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
