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Abstract: Dynamic cumulative residual entropy is a recent measure of uncertainty which plays a 

substantial role in reliability and survival studies. This article comes up with Bayesian estimation of 

the dynamic cumulative residual entropy of Pareto II distribution in case of non-informative and 

informative priors. The Bayesian estimator and the corresponding credible interval are obtained 

under squared error, linear exponential (LINEX) and precautionary loss functions. The 

Metropolis-Hastings algorithm is employed to generate Markov chain Monte Carlo samples from the 

posterior distribution. A simulation study is done to implement and compare the accuracy of 

considered estimates in terms of their relative absolute bias, estimated risk and the width of credible 

intervals. Regarding the outputs of simulation study, Bayesian estimate of dynamic cumulative 

residual entropy under LINEX loss function is preferable than the other estimates in most of 

situations. Further, the estimated risks of dynamic cumulative residual entropy decrease as the value 

of estimated entropy decreases. Eventually, inferential procedure developed in this paper is 

illustrated via a real data. 
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1. Introduction 

The primary measure of the uncertainty contained in random variable X is the Shannon 

entropy [1]. It plays an undeniable essential role in the field of probability and statistics, financial 

analysis, engineering, and information theory. Now, there are considerable literatures assigned to the 

applications, generalizations and properties of Shannon’s measure of entropy. Özçam [2] studied an 

econometric procedure which revises and updates the technical production coefficients of latest 

Turkish input/output table, as new information about sectorial productions become available. Gençay 

and Gradojevic [3] provided a comparative analysis of stock market dynamics of the 1987 and 2008 

financial crises and discussed the extent to which risk management measures based on entropy which 

can be successful in predicting aggregate market expectations. Rashidi et al. [4] discussed and 

simulated the heat transfer flow (using entropy generation) in solar still. Zhang et al. [5] discussed a 

network entropy method to measure connectivity uncertainty of functional connectivity graphs of the 

brain sequences. The predictability of Brazilian agricultural commodity prices during the period after 

food crisis using information theory has been studied by De Araujo et al. [6]. Different types of 

entropy measures have been discussed by many researchers (see for examples Shakhatreh et al. [7] 

and Klein and Doll [8]). 

Let X be a non-negative random variable, the Shannon entropy, say H(X), of the probability 

density function density (PDF) is defined by 

( ) ( ) log ( ) .H X f x f x dx





     

In recent times, inference problems associated with entropy measures are of interest to several 

researches. An estimator of the entropy from the generalized half-logistic distribution using upper 

record value was obtained by Seo et al. [9]. The Bayesian estimators of entropy from Weibull 

distribution based on generalized progressive hybrid censoring scheme were studied by Cho et al. [10]. 

Estimation of entropy from generalized exponential distribution via record values was discussed by 

Chacko and Asha [11]. The maximum likelihood (ML) estimator of Shannon entropy from inverse 

Weibull distribution was obtained by Hassan and Zaky [12] using multiple censored data. Bayesian 

estimator of entropy for Lomax distribution was provided by Hassan and Zaky [13] via upper record 

values. In recent years, measurement of uncertainty for probability distributions became more 

interested. The entropy for residual lifetime Xt = (X −t | X>t) was defined by Ebrahimi [14] as a 

dynamic form of uncertainty called the residual entropy at time t and defined as 

( ) ( )
( ; ) log ,

( ) ( )
t

f x f x
H X t dx

F t F t



   

where,  ( ) 1 FF t t  is the survival function. More recently, Rao et al. [15] proposed an alternative 

measure of uncertainty known as the cumulative residual entropy (CRE), denoted by ( ).X  The CRE 

of a random variable X is defined by  

( ) ( ) log ( ) .X F x F x dx
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The CRE has the benefits: (i) it possess consistent definitions for the continuous and discrete 

domains, (ii) it forever non-negative and (iii) it is straightforwardly determined from sample data and 

these computations asymptotically converge to the true values. 

Another measure of uncertainty deals with residual lifetime function is dynamic cumulative 

residual entropy (DCRE) which can be attractive in many fields like reliability and survival analysis. 

The entropy for residual lifetime Xt as a dynamic form of uncertainty was defined by Asadi and Zohrev 

and [16] as follows 

( ) ( )
( ; ) log .

( ) ( )
t

F x F x
X t dx

F t F t




   (1) 

It can be noted that, at t = 0, the DCRE tends to CRE. The Bayesian estimators of DCRE for 

the Pareto distribution were studied by Renjini et al. [17] using type II right censored data. Renjini 

et al. [18] considered the DCRE Bayesian estimators for Pareto distribution via upper record values. 

The ML and Bayesian estimate of the entropy of inverse Weibull distribution based on generalized 

progressive hybrid censoring scheme were discussed by Lee [19]. Renjini et al. [20] provided 

Bayesian estimator of DCRE for Pareto distribution from complete data. 

Pareto II (Lomax) distribution was originally developed by Lomax [21] to model business 

failure data. This distribution has extensive applications in many fields such as income and wealth 

inequality, firm size and queuing problems, computer science, risk analysis and economics, actuarial 

science and reliability, the reader can refer to [22–30]. The cumulative distribution function (CDF) 

and the PDF of Pareto II distribution with shape parameter   and scale parameter   are defined by 

( 1)( ; , ) ( ) , , , 0.f x x x           (2) 

and, 

( ; , ) 1 ( ) , , , 0.F x x x           (3) 

The DCRE for Pareto II distribution can be obtained by substituting (3) in (1) as follows: 

( )
( ; ) ( ) ( ) log .

( )
t

x
X t t x dx

t


 




  



 




 
     

 
  (4) 

Using integration by parts, the DCRE of Pareto II distribution will be as follows: 

 
2

( ; ) 1 ( ).X t t   


    (5) 

This is the required expression of the DCRE for Pareto II distribution which it is a function of 

  and .  

From the previous literatures, it can see that the Pareto II distribution take attention from 

theoretical and statisticians basically due to its use in multiple areas. In addition to, the DCRE has 

found nice interpretations and applications in the fields of reliability and survival analysis. Recently, 

statistical inference for the DCRE for lifetime distributions attracted appreciable attention. This 

motivates us to propose the estimation of the DCRE for Pareto II distribution in view of Bayesian 

procedure. The Bayesian estimator is obtained using non-informative prior (NIP) and informative 
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prior (IP). The considered loss functions are squared error (SE), LINEX and precautionary (PRE). 

Markov Chain Monte Carlo (MCMC) technique is utilized due to the complicated forms of DCRE 

Bayesian estimator. Application to COVID 19 data in Egypt appeared that these data contain more 

information which is useful in mathematical and statistical purposes.  

The form of the article is as follows. The next section presents Bayesian estimator of DCRE for 

Pareto II distribution under NIP for the considered loss functions. Section 3 gives Bayesian 

estimators of DCRE for Pareto II distribution using proposed loss functions under IP. Section 4 

provides simulation issue and application to real data. The paper ends with summary of this work. 

2. Bayesian estimation of DCRE under NIP 

The Bayesian estimator of ( ; )X t  under SEL, LINEX and PRE loss functions in case of NIP is 

obtained. To compute the Bayesian estimator of ( ; ),X t we firstly obtain the Bayesian estimators of 

  and  . Assuming the prior of parameters   and   has a uniform distribution, then the 

Bayesian estimator of DCRE is obtained under symmetric and asymmetric loss functions. 

Additionally, the Bayesian credible interval (BCI) estimators are constructed. Consider a random 

sample of size n from PDF (2) and CDF (3), where  and   are unknown. Then, given the sample 

1 2
( , ,..., ),

n
x x x x the likelihood function of Pareto II distribution is 

( 1)

1

( , | ) ( ) , 1,2,...,
n

n n
i

i

L x x i n       



    

Considering that the prior of parameters   and ,  denoted by 1( )   and 2 ( ),   has the 

following uniform distribution 

   1
1( ) , 1

2 ( ) .     

So, the joint posterior for parameters, denoted by *
1 ( , ),    is 

* 1 1 1 ( 1)
1

1

( , | ) ( ) ,

n
n n

i

i

x K x          



   

where,

 

1 1 ( 1)

10 0

( ) ,

n
n n

i

i

K x d d     

 

   



   

So, the marginal posterior PDF of parameters   and   are given, respectively, as follows  
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** 1 1 1 ( 1)
1

0
1

( | ) ( ) ,

n
n n

i

i

x K x d     


    



    

and (6) 

** 1 1 1 ( 1)
2

0
1

( | ) ( ) .

n
n n

i

i

x K x d     


    



 
 

 

Based on SE loss function, the Bayesian estimators of   and   denoted by 
1( )̂ SE , and 

1( )̂ SE

are obtained as posterior mean as follows: 

1

** 1 1 ( 1)
( ) 1

0 0
1

ˆ ( | ) ( ) .

n
n n

SE i

i

x d K x d d         
 

   



     
 

(7) 

 

Also, 

1

** 1 1 ( 1)
( ) 2

0 0 0
1

ˆ ( | ) ( ) .

n
n n

SE i

i

x d K x d d         
  

   



      
 

(8) 

 

Under LINEX loss function, the Bayesian estimators of   and ,  say
1( )̂ LINEX , and 

1( )̂ LINEX

are given, respectively, as follows 

1

1 1 1 ( 1)
( )

10 0

,
1

log
1ˆ log ( ) ( ) 0

n
n n

LINEX i

i

e d dE e K x
  

     


 

     



  
    

 
 

  

 

(9) 

 

and,

 
1

1 1 1 ( 1)
( )

0 0
1

1 1ˆ log ( ) log ( ) ,
n

n n
LINEX i

i

E e K e x d d        
 

 
      



  
   

 
   

 

(10) 

 

where,   is a real number. Furthermore, the Bayesian estimators of parameters  and , under 

PRE loss function, denoted by 
1( )̂ PRE , and 

1( )̂ PRE  are given as follows 

1

1

2
2 1 1 1 ( 1)

( )
0 0

1

ˆ ( | ) ( ) ,
n

n n
PRE i

i

E x K x d d       
 

    



 
   

 
   

 

(11) 

 

and,
 

1

1

2
2 1 1 1 ( 1)

( )
0 0

1

ˆ ( | ) ( ) .

n
n n

PRE i

i

E x K x d d       
 

    



 
   

 
 

   

 

(12) 

 

Integrals (7)–(12) do not have a closed form, therefore Metropolis-Hastings (M-H) and 

random-walk Metropolis algorithms are employed to generate MCMC samples from posterior 

density functions (6). After getting MCMC samples from the posterior distribution, we can find the 

Bayes estimate for the parameters. The M-H algorithm is described as follows: 
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Step 1: Let g(.) be the density of Pareto II distribution. 

Step 2: Initialize a starting value x0 and determine the number of samples N. 

Step 3: For i = 2 to N set x = xi-1. 

Step 4: Generate u from uniform (0, 1) and generate y from g(.). 

Step 5: If 
**

**

( ) ( )

(x) (y)

y g x
u

g








 [where, ** is posterior distribution provided in Equation (6)], then 

set xi = y else set xi = x. 

Step 6: Set i = i + 1 and return to step 2 and repeat the previous steps N times. 

Hence, the Bayes estimates (BEs) of   and   under SE, LINEX and PRE loss functions can 

be obtained as the mean of the simulated samples from their posteriors. Further, once the BEs of 

and   are obtained, the BE of DCRE of Pareto II distribution is yielded. Therefore, the BEs of the 

DCRE under SE, LINEX, PRE loss functions, denoted by
1( ) ,ˆ( ; ) SEX t

1( ) ,ˆ( ; ) LINEXX t and 
1( ) ,ˆ( ; ) PREX t  

are obtained, by using Equation (5). Furthermore, BCI is a useful summary of the posterior 

distribution which reflects its variation that is used to quantify the statistical uncertainty. The 

Bayesian analogy of a confidence interval is called a credible interval. A credible interval of entropy 

is the probability that a real value of entropy will fall between an upper and lower bounds of a 

probability distribution. Therefore, using the same algorithm introduced by Chen and Shao [31], we 

obtain an approximate highest posterior density interval for ( ; ).X t  

3. Bayesian estimation of DCRE under IP 

In this section, we obtain the Bayesian estimator of DCRE under SE, LINEX and PRE loss 

functions by considering the prior of parameters and   has a gamma distribution. Additionally, 

the BCI estimators are constructed. Following [32], assuming that the prior of   and   denoted 

by 3( )   and 4 ( ),   has a gamma distribution with parameters (a1, b1) and (a2, b2) respectively. 

1

1 111
3

1

( )
( )

b
b aa

e
b

    



,
2

2 212
4

2

( ) ,
( )

b
b aa

e
b

    



  

where aj and bj, j = 1,2 are known and non-negative, so, the joint posterior for parameters, denoted 

by *
3 ( , | ),x    is 
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1 2 1 21 1 ( )* 1 ( 1)
3

1

( , | ) ( ) ,

n
n b n b a a

i

i

x C e x
               



    

where, 1 2 1 21 1 ( ) ( 1)

0 0
1

( ) .
       

 
       



  
n

n b n b a a
i

i

C e x d d  

So, the marginal posterior PDF of   and  are given respectively by: 

1 2 1 21 1 ( )** 1 ( 1)
3

0
1

( | ) ( ) ,
n

n b n b a a
i

i

x C e x d        


       



    

and, 1 2 1 21 1 ( )** 1 ( 1)
4

0
1

( | ) ( ) .
n

n b n b a a
i

i

x C e x d        


       



    

Therefore, the Bayesian estimators of   under SE, LINEX and PRE loss function, say 
2( )̂ SE , 

2( )̂ LINEX and 
2( )̂ PRE are obtained as follows: 

1 2 1 2

2

1 2 1 2

2

1 ( )1 ( 1)
( )

0 0
1

1 1 ( )1 ( 1)
( )

0 0
1

ˆ ( ) ,

1ˆ log ( ) 0,

n
n b n b a a

SE i

i

n
n b n b a a

LINEX i

i

C e x d d

C e x d d

   

    

     

      


 
      



 
        



 

 
   

 

 

 

 
 

 

and (13) 

1 2 1 2

2

1

2
1 1 ( )1 ( 1)

( )
0 0

1

ˆ ( ) ,
n

n b n b a a
PRE i

i

C e x d d        
 

       



 
  
 

 
 

 

Similarly, the Bayesian estimators of  under, SE, LINEX and PRE loss functions are 

obtained. As mentioned in previous section, MCMC technique is used to approximate the integral 

Equations (13). The M-H algorithm will be implemented to compute the BE as well as BCI width 

under proposed loss functions. Hence, the BE of ( ; )X t   under different loss functions is obtained 

based on Equation (5).  

4. Simulation and application 

Here, performance of the different estimates is examined and a real data set is provided to 

illustrate the theoretical results. 

4.1.Simulation illustration 
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A numerical study is performed in order to study the behavior of the BE for DCRE of the Pareto II 

distribution. MCMC simulations are performed for different sample sizes (n) under proposed loss 

functions. The true values of DCRE measure are selected as ( ; )X t  1.1111, 2 and 6 at t = 0.5 and

( ; )X t   2.2222, 4, and 8 at t = 1.5 [the parameter values are selected as ( , )  = (2.5, 0.5), (0.5, 0.5) 

and (0.5, 2.5)]. The hyper-parameters for gamma prior are selected as a1=a2=1 and b1=b2=4. Take 

( , )  = (−2, 2) for LINEX loss function. 5000 random samples of sizes, n = 10, 30, 50, 70 and 100 are 

generated from Pareto II distribution. The relative absolute biases (RABs), estimated risks (ERs) and 

the width of BCI are computed to evaluate the behavior of the BEs. 

4.2.Numerical results in Case of NIP 

Tables 1–6 give simulation results of the DCRE in case of the NIP. Also, numerical outcomes are 

represented in Figures 1–4. So, we conclude the following about the behavior of the DCRE estimates. 

 The estimated value of DCRE decreases as the value of   decreases for same value of .  The 

estimated value of DCRE decreases as the value of   increases for same value of .  ERs for 

DCRE estimates get the smallest value at ( ; ) 1.1111X t   and ( ; ) 2.2222.X t   

 As the true value of ( ; )X t decreases, the ER of ( ; )X t decreases under different loss functions. 

The ER of DCRE under LINEX at  = −2 takes the smallest values at n = 10, 30 and 100, while 

the ER of DCRE under LINEX at  = 2 takes the smallest values at n = 50 and 70 (see Table 1). 

 The ERs for DCRE estimates get the smallest values at ( ; ) 1.1111X t   for all n (see for 

example Figures 1 and 2).  

 

Figure 1. ERs of ˆ( ; )X t  under different loss 

functions for NIP at n = 10 and t = 0.5. 

Figure 2. ERs of ˆ( ; )X t  under different loss 

functions for NIP at n = 100 and t = 0.5. 
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 As the value of t increases the ER of ( ; )X t  increases under all loss functions. The ER of DCRE 

under LINEX at  = 2 takes the smallest values at n = 30 and 100, while the ER of DCRE under 

SE takes the smallest values at n = 50 and 70. The width of BCI for DCRE under LINEX at  = 2 

is the shortest compared to the width of BCI in case of PRE and SE loss functions for most values 

of n (see Table 2). 

 The ER of DCRE under LINEX at  = 2 gets the smallest values at n = 10, 30 and 70. For n = 50, 

70 and 100, the width of BCI for DCRE under SE is the shortest compared to the width of BCI in 

case of PRE and LINEX loss functions (see Table 3). The ERs for DCRE estimates get the 

smallest values at ( ; ) 2.2222.X t  for all n (see for example Figures 3 and 4). 

 The ER of 
1( )

ˆ( ; ) LINEXX t at  = 2 takes the smallest values at n = 10, 30 and 100, while the ER of 

1( )
ˆ( ; ) LINEXX t  at  = −2 takes the smallest values at n = 50 and 70. At n = 70 and 100, the width 

of BCI for 
1( )

ˆ( ; ) LINEXX t at  = 2 is the shortest compared to the width of BCI in case of PRE and 

SE loss functions (see Table 4). 

 The ER of DCRE under SE takes the smallest values for all n. The width of BCI of DCRE under 

LINEX at  = 2 is the shortest compared to the width of BCI in case of PRE and SE loss 

functions for all n except at n = 100 (see Table 5).  

 The ER of DCRE under PRE takes the smallest values for all n except at n = 100. The width of 

BCI for DCRE under LINEX at  = −2 is the shortest compared to the width of BCI in case of 

PRE and SE loss functions for all n except at n = 10 (see Table 6). 

  

  

Figure 3. ERs of ˆ( ; )X t  under different loss 

functions for NIP at n = 10 and t = 1.5. 

Figure 4. ERs of ˆ( ; )X t under different loss 

functions for NIP at n = 100 and t = 1.5. 
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Table 1. BE, RAB, ER and width of DCRE at ( , )   = (2.5, 0.5) and t = 0.5 under NIP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  1.1111 

SE 

BE 1.1129 1.1119 1.1118 1.1110 1.1113 

RAB 0.0016 0.0007 0.0006 0.0001 0.0002 

ER 6.07E-10 1.18E-10 9.23E-11 7.01E-11 5.78E-12 

width 0.0031 0.0020 0.0020 0.0019 0.0019 

LINEX (v = 2) 

BE 1.1127 1.1096 1.1117 1.1104 1.1099 

RAB 0.0014 0.0014 0.0005 0.0006 0.0011 

ER 5.06E-10 4.86E-10 6.35E-11 4.02E-11 2.90E-11 

width 0.0033 0.0031 0.0022 0.0022 0.0021 

LINEX (v = −2) 

BE 1.1114 1.1105 1.1120 1.1118 1.1112 

RAB 0.0002 0.0006 0.0008 0.0006 0.0001 

ER 9.27E-11 7.93E-11 6.73E-11 5.35E-11 3.58E-12 

width 0.0030 0.0026 0.0022 0.0019 0.0015 

PRE 

BE 1.1131 1.1105 1.1109 1.1113 1.1104 

RAB 0.0018 0.0005 0.0002 0.0002 0.0007 

ER 7.58E-10 6.70E-10 5.58E-11 4.53E-11 1.08E-11 

width 0.0026 0.0025 0.0025 0.0024 0.0020 

Note: E-a: stands for 10^-a. 

Table 2. BE, RAB, ER and width of DCRE at ( , )  = (0.5, 0.5) and t = 0.5 under NIP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  2.0 

SE 

BE 1.99532 2.02025 2.00360 1.99691 1.99045 

RAB 0.00234 0.01013 0.00180 0.00155 0.00478 

ER 9.379E-08 8.202E-08 2.588E-09 1.913E-09 1.825E-09 

width 0.03882 0.02937 0.01338 0.02417 0.01952 

LINEX (v = 2) 

BE 1.99799 1.99765 2.00641 1.99598 2.00905 

RAB 0.00101 0.00117 0.00320 0.00201 0.00453 

ER 8.095E-08 9.102E-09 8.206E-09 3.240E-09 1.639E-09 

width 0.03135 0.02967 0.01261 0.01187 0.01003 

LINEX (v = −2) 

BE 2.01375 2.01198 1.98447 1.99197 2.01654 

RAB 0.00687 0.00599 0.00776 0.00402 0.00827 

ER 3.780E-08 2.872E-08 2.823E-08 1.291E-08 5.471E-09 

width 0.02987 0.02717 0.02698 0.02463 0.02178 

PRE 

BE 2.00760 1.98742 2.00603 2.00281 1.99487 

RAB 0.00380 0.00629 0.00302 0.00141 0.00256 

ER 5.155E-08 3.168E-08 7.276E-09 5.581E-09 5.259E-09 

width 0.02891 0.02675 0.02363 0.02181 0.01953 

Note: E-a: stands for 10^-a. 
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Table 3. BE, RAB, ER and width of DCRE at ( , )   = (0.5, 2.5) and t = 0.5 under NIP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  6.0 

SE 

BE 6.02546 6.068974 6.009779 6.01213 5.974681 

RAB 0.004243 0.011496 0.00163 0.002022 0.00422 

ER 9.30E-07 6.51E-07 4.91E-08 2.94E-08 1.28E-08 

width 0.149819 0.097667 0.044076 0.043662 0.034056 

LINEX (v = 2) 

BE 5.970834 6.024524 6.01785 5.996316 6.012336 

RAB 0.004861 0.004087 0.002975 0.000614 0.002056 

ER 1.70E-07 1.20E-07 6.37E-08 2.71E-08 3.04E-09 

width 0.072616 0.068967 0.052788 0.047875 0.04169 

LINEX (v = −2) 

BE 6.029378 6.029448 6.01762 6.047852 5.998299 

RAB 0.004896 0.004908 0.002937 0.007975 0.000283 

ER 1.74E-07 1.73E-07 6.21E-08 4.58E-08 5.79E-10 

width 0.058549 0.056825 0.053469 0.047115 0.046906 

PRE 

BE 6.011797 5.964629 6.018637 5.989266 6.002373 

RAB 0.001966 0.005895 0.003106 0.001789 0.000396 

ER 2.78E-07 2.50E-07 6.95E-08 2.80E-08 1.13E-09 

width 0.068916 0.066612 0.062829 0.054263 0.053632 

Note: E-a: stands for 10^-a. 

Table 4. BE, RAB, ER and width of DCRE at ( , )   = (2.5, 0.5) and t = 1.5 under NIP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  2.2222 

SE 

BE 2.226397 2.225899 2.218533 2.218556 2.220049 

RAB 0.001879 0.001654 0.00166 0.00165 0.000978 

ER 3.49E-09 2.74E-09 2.72E-09 2.69E-09 9.44E-10 

width 0.007484 0.006809 0.006664 0.005188 0.005093 

LINEX (v = 2) 

BE 2.220678 2.221263 2.223683 2.22065 2.222941 

RAB 0.000695 0.000432 0.000657 0.000707 0.000323 

ER 4.87E-10 4.84E-10 4.27E-10 4.14E-10 1.03E-10 

width 0.00569 0.005229 0.00466 0.002028 0.00195 

LINEX (v = −2) 

BE 2.220546 2.219501 2.222949 2.219954 2.225297 

RAB 0.000754 0.001225 0.000327 0.001021 0.001383 

ER 5.62E-09 1.48E-09 1.36E-10 1.23E-10 1.19E-10 

width 0.005723 0.00508 0.004397 0.003961 0.003478 

PRE 

BE 2.220297 2.221733 2.222725 2.221037 2.221118 

RAB 0.000866 0.00022 0.000226 0.000533 0.000497 

ER 7.41E-10 5.78E-10 5.06E-10 2.81E-10 2.44E-10 

width 0.004525 0.003979 0.00375 0.003014 0.002158 

Note: E-a: stands for 10^-a. 
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Table 5. BE, RAB, ER and width of DCRE at ( , )  = (0.5, 0.5) and t = 1.5 under NIP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  4.0 

SE 

BE 4.027065 3.975195 3.968497 3.999098 4.004808 

RAB 0.006766 0.006201 0.007876 0.000226 0.001202 

ER 1.46E-07 1.23E-07 1.98E-08 1.63E-08 1.62E-09 

width 0.063364 0.053895 0.052946 0.039839 0.024612 

LINEX (v = 2) 

BE 4.012894 4.039052 3.985898 4.014544 3.978055 

RAB 0.003223 0.009763 0.003525 0.003636 0.005486 

ER 3.32E-07 3.05E-07 6.98E-08 4.23E-08 3.63E-08 

width 0.049488 0.044984 0.042183 0.030235 0.028456 

LINEX (v = −2) 

BE 3.968082 4.01742 4.024985 4.011722 4.009305 

RAB 0.00798 0.004355 0.006246 0.002931 0.002326 

ER 7.04E-07 6.07E-07 6.25E-08 2.75E-08 1.73E-08 

width 0.066015 0.054591 0.052009 0.034509 0.031416 

PRE 

BE 4.0053 4.044663 3.992488 3.992203 4.021002 

RAB 0.001325 0.011166 0.001878 0.001949 0.00525 

ER 5.62E-07 3.99E-07 5.13E-08 3.22E-08 2.82E-08 

width 0.083891 0.060246 0.059701 0.043115 0.036387 

Note: E-a: stands for 10^-a. 

Table 6. BE, RAB, ER and width of DCRE at ( , )  = (0.5, 2.5) and t = 1.5 under NIP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  8.0 

SE 

BE 7.956073 8.05718 8.042204 7.958777 8.01393 

RAB 0.005491 0.007148 0.005276 0.005153 0.001741 

ER 7.86E-07 6.54E-07 3.56E-07 3.40E-07 3.88E-08 

width 0.198678 0.163581 0.097325 0.093346 0.072912 

LINEX (v = 2) 

BE 7.939398 8.001991 7.978639 7.993182 7.96846 

RAB 0.007575 0.000249 0.00267 0.000852 0.003942 

ER 7.95E-07 7.93E-07 9.43E-08 9.30E-08 1.99E-08 

width 0.171195 0.165343 0.12249 0.099383 0.091496 

LINEX (v = −2) 

BE 7.991566 7.984006 7.953482 8.08102 8.039532 

RAB 0.001054 0.001999 0.005815 0.010128 0.004942 

ER 6.42E-07 5.12E-07 4.33E-07 7.31E-08 3.13E-08 

width 0.168866 0.075301 0.064749 0.061597 0.012624 

PRE 

BE 8.024379 7.991098 7.962983 8.014555 7.945081 

RAB 0.003047 0.001113 0.004627 0.001819 0.006865 

ER 5.19E-07 3.58E-07 2.74E-07 4.24E-08 3.03E-08 

width 0.089696 0.088987 0.084625 0.083814 0.045059 

Note: E-a: stands for 10^-a. 
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4.3.Numerical results in case of IP 

Tables 7–12 give simulation results of DCRE under IP. Also, numerical outcomes are illustrated 

through Figures 5–8. So, we conclude the following observations about the behavior of the entropy 

estimates. 

 The ERs for DCRE estimates get the largest value at ( ; ) 6,X t   where, t = 0.5 and ( ; ) 8,X t   

where, t = 1.5. The ERs for DCRE estimates get the largest values at ( ; ) 6,X t   for all n (see for 

example Figures 5 and 6). 

Figure 5. ERs of ˆ( ; )X t  under different loss 

functions for IP at n = 10 and t = 0.5. 

Figure 6. ERs of ˆ( ; )X t  under different loss 

functions for IP at n = 100 and t = 0.5. 

 The ER of DCRE under LINEX at   = 2 takes the smallest values for all n. The width of BCI 

for DCRE under LINEX at   = 2 is the shortest compared to the width of BCI in case of PRE 

and SE loss functions for all n (see Table 7). The ER of DCRE under SE gets the smallest values 

for most n. The width of BCI for DCRE under PRE is the shortest compared to the width of BCI 

in case of LINEX and SE loss functions for all n (see Table 8). 

 Under IP, the ER of DCRE under SE takes the smallest values for n greater than 30. The width of 

BCI for DCRE under LINEX at   = −2 is the shortest compared to the width of BCI in case of 

PRE and SE loss functions for all n except n = 50 (see Table 9). The ERs for DCRE estimates get 

the largest values at ( ; ) 8,X t  for all n (see for example Figures 7 and 8).  
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Figure 7.ERs of ˆ( ; )X t  under different loss 

functions for IP at n = 10 and t = 1.5. 

Figure 8. ERs of ˆ( ; )X t  under different loss 

functions for IP at n = 100 and t = 1.5. 

 The ER of DCRE under LINEX at   = 2 takes the smallest values at n = 10 and 30, while the 

ER of DCRE under SE takes the smallest values at n = 50 and 70. The width of BCI for DCRE 

under LINEX at   = −2 is the shortest compared to the width of BCI in case of PRE and SE loss 

functions at n = 10, 30 and 100 (see Table 10). 

 Under IP, the ER of DCRE under LINEX at   = −2 takes the smallest values at n = 10 and 30, 

while the ER of DCRE under SE takes the smallest values at n = 100. The width of BCI of DCRE 

under SE is the shortest compared to the width of BCI in case of PRE and LINEX loss functions 

for all values of n (see Table 11). From Table 12, the ER of DCRE under LINEX at   = 2 takes 

the smallest values for all n. The width of BCI for DCRE under SE is the shortest compared to the 

width of BCI in case of PRE and LINEX loss functions for most values of n. 

Table 7. BE, RAB, ER and width of DCRE for ( , )  = (2.5, 0.5) and t = 0.5 under IP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  1.111 

SE 

BE 1.110118 1.113165 1.111933 1.11279 1.110128 

RAB 0.000894 0.001848 0.00074 0.001511 0.000885 

ER 8.97E-10 8.43E-10 6.35E-10 5.64E-10 1.93E-10 

width 0.003617 0.003566 0.002962 0.002683 0.002562 

LINEX (  = 2) 

BE 1.109951 1.110168 1.110209 1.109762 1.112137 

RAB 0.001044 0.000849 0.000812 0.001214 0.000923 

ER 2.69E-10 1.78E-10 1.63E-10 1.62E-10 1.10E-10 

width 0.003432 0.00309 0.002341 0.002149 0.001411 

LINEX (  = −2) 

BE 1.109703 1.108662 1.110331 1.110916 1.110214 

RAB 0.001267 0.002204 0.000702 0.000175 0.000808 

ER 7.96E-10 6.20E-09 4.22E-10 2.58E-10 1.61E-10 

width 0.004626 0.004364 0.003503 0.002992 0.002773 

PRE 

BE 1.110771 1.112018 1.11276 1.112896 1.110762 

RAB 0.000306 0.000816 0.001484 0.001606 0.000314 

ER 6.31E-10 4.64E-10 4.44E-10 3.37E-10 2.44E-10 

width 0.004068 0.003849 0.003775 0.003336 0.002173 
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Table 8. BE, RAB, ER and width of DCRE for ( , )  = (0.5, 0.5) and t = 0.5 under IP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  2.0 

SE 

BE 2.0042 1.9939 1.9938 1.9966 2.0014 

RAB 0.0021 0.0031 0.0031 0.0017 0.0007 

ER 8.45E-09 7.48E-09 5.61E-09 2.31E-09 3.65E-10 

width 0.04314 0.03013 0.02 0.0181 0.01612 

LINEX (  = 2) 

BE 1.99639 1.99716 1.99464 1.98086 1.99948 

RAB 0.0018 0.00142 0.00268 0.00957 0.00026 

ER 8.60E-09 6.61E-09 5.76E-09 4.32E-09 5.37E-10 

width 0.0278 0.0277 0.0252 0.0222 0.0197 

LINEX (  = −2) 

BE 1.9947 2.0059 2.0023 1.9811 1.9979 

RAB 0.0027 0.003 0.0012 0.0094 0.001 

ER 8.69E-09 6.97E-09 5.08E-09 3.12E-09 8.80E-10 

width 0.0294 0.0221 0.0161 0.0157 0.0125 

PRE 

BE 1.9902 2.004 2.0045 2.0013 1.9794 

RAB 0.0049 0.002 0.0023 0.0006 0.0103 

ER 1.94E-08 7.20E-09 4.10E-09 3.22E-09 8.50E-10 

width 0.0269 0.019 0.0115 0.0107 0.0103 

Table 9. BE, RAB, ER and width of DCRE for ( , )  = (0.5, 2.5) and t = 0.5 under IP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  6.0 

SE 

BE 6.044 6.0299 5.9889 6.0252 5.9867 

RAB 0.0073 0.005 0.0018 0.0042 0.0022 

ER 3.88E-07 1.78E-07 2.45E-08 1.87E-08 1.55E-08 

width 0.0966 0.0884 0.0499 0.0452 0.0346 

LINEX (  = 2) 

BE 6.0503 5.9613 6.0062 6.0254 6.0175 

RAB 0.0084 0.0065 0.001 0.0042 0.0029 

ER 5.06E-07 3.00E-07 1.59E-07 1.29E-07 6.15E-08 

width 0.1342 0.0866 0.0803 0.0737 0.05 

LINEX ( = −2) 

BE 6.0446 5.9986 5.9668 5.9914 5.9821 

RAB 0.0074 0.0002 0.0055 0.0014 0.003 

ER 3.98E-07 3.07E-07 2.21E-07 6.49E-08 6.42E-08 

width 0.0616 0.0548 0.041 0.0368 0.0317 

PRE 

BE 6.0399 6.0271 5.9943 6.0191 5.9792 

RAB 0.0067 0.0045 0.0009 0.0032 0.0035 

ER 3.19E-07 1.47E-07 9.44E-08 7.33E-08 6.65E-08 

width 0.0941 0.0447 0.0429 0.0416 0.0384 
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Table 10. BE, RAB, ER and width for DCRE for ( , )  = (2.5, 0.5) and t = 1.5 under IP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  2.222 

SE 

BE 2.2186 2.223 2.2235 2.2225 2.2237 

RAB 0.0016 0.0004 0.0006 0.0001 0.0006 

ER 2.57E-09 1.35E-09 8.27E-10 5.03E-10 4.17E-10 

width 0.00588 0.00358 0.0033 0.00327 0.00306 

LINEX ( = 2) 

BE 2.21906 2.22057 2.22103 2.22061 2.22176 

RAB 0.00142 0.00074 0.00054 0.00073 0.00021 

ER 2.00E-09 6.46E-10 5.86E-10 5.20E-10 4.33E-10 

width 0.00719 0.00538 0.0051 0.00371 0.00327 

LINEX (  = −2) 

BE 2.21868 2.21936 2.21977 2.2239 2.22345 

RAB 0.0016 0.00129 0.0011 0.00076 0.00055 

ER 2.52E-09 1.63E-09 1.20E-09 5.65E-10 3.03E-10 

width 0.00478 0.00424 0.00418 0.00322 0.00289 

PRE 

BE 2.22079 2.22435 2.21944 2.22345 2.22056 

RAB 0.00065 0.00096 0.00125 0.00055 0.00075 

ER 4.13E-09 2.08E-09 1.55E-09 5.99E-10 5.50E-10 

width 0.00494 0.00485 0.00385 0.00356 0.00318 

Table 11. BE, RAB, ER and width of DCRE for ( , )  = (0.5, 0.5) and t = 1.5 under IP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  4.0 

SE 

BE 4.0109 4.0034 4.0181 3.9937 3.9989 

RAB 0.0027 0.0009 0.0045 0.0016 0.0003 

ER 2.39E-07 2.38E-07 6.55E-08 8.01E-09 2.34E-10 

width 0.028868 0.024903 0.023434 0.019349 0.010273 

LINEX (  = 2) 

BE 4.003966 4.003171 4.011339 4.013368 4.005361 

RAB 0.000992 0.000793 0.002835 0.003342 0.00134 

ER 3.15E-07 2.01E-07 4.57E-08 3.57E-08 5.75E-09 

width 0.065721 0.058115 0.050726 0.048513 0.032623 

LINEX ( = −2) 

BE 3.990231 3.973805 3.983057 3.993077 4.031082 

RAB 0.002442 0.006549 0.004236 0.001731 0.00777 

ER 1.91E-07 1.37E-07 5.74E-08 9.59E-09 1.93E-09 

width 0.059764 0.040588 0.034511 0.031052 0.01101 

PRE 

BE 3.98003 3.945267 3.993328 3.994272 3.971136 

RAB 0.004993 0.013683 0.001668 0.001432 0.007216 

ER 7.98E-07 5.99E-07 8.90E-08 6.56E-09 1.67E-09 

width 0.074305 0.071163 0.02797 0.019786 0.01527 
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Table 12. BE, RAB, ER and width of DCRE for ( , )  = (0.5, 2.5) and t = 1.5 under IP. 

n 10 30 50 70 100 

Exact value of ( ; )X t  8.0 

SE 

BE 7.964 7.9542 7.9628 7.982 8.0459 

RAB 0.0045 0.0057 0.0047 0.0023 0.0057 

ER 5.59E-07 4.20E-07 2.77E-07 6.50E-08 4.22E-08 

width 0.13698 0.10276 0.08731 0.04921 0.01093 

LINEX (  = 2) 

BE 8.01363 7.98158 8.03575 8.00609 8.03478 

RAB 0.0017 0.0023 0.00447 0.00076 0.00435 

ER 3.72E-07 6.79E-08 2.56E-08 7.42E-09 2.42E-09 

width 0.17329 0.12095 0.07442 0.07294 0.01217 

LINEX ( = −2) 

BE 8.00357 8.05921 7.96138 7.93724 7.99813 

RAB 0.00045 0.0074 0.00483 0.00784 0.00023 

ER 7.54E-07 7.01E-07 2.98E-07 7.88E-08 7.00E-08 

width 0.13923 0.11615 0.06969 0.06458 0.06313 

PRE 

BE 7.95482 7.95937 7.95312 8.00328 8.02652 

RAB 0.00565 0.00508 0.00586 0.00041 0.00331 

ER 4.08E-07 3.30E-07 2.40E-07 2.15E-08 1.41E-08 

width 0.1405 0.07411 0.07259 0.07079 0.0667 

Note: E-a: stands for 10^-a. 

4.4.Application to real data 

Here, the real data sets can be used to illustrate the method proposed in previous sections. 

Data 1: The corona virus, COVID-19, is affecting for most countries all over the world. Confirmed 

total deaths data of the COVID-19 in Egypt since its start till May, 27, 2020, based on the National 

Vital Statistics System are recorded as follows. 

1 2 2 2 2 2 4 6 6 7 8 10 14 19 

21 21 24 30 36 40 41 46 52 52 66 71 78 85 

103 118 135 146 159 164 178 183 196 205 224 239 250 264 

264 276 294 307 307 337 359 380 392 406 415 429 436 452 

469 482 503 514 525 533 544 556 571 592 612 630 645 659 

680 696 707 735 764 783 797 

       The validity of the fitted model has been checked by Abd-El-Monsef et al. [33]. Regarding this 

data, the Bayesian estimates of DCRE under SE, LINEX and PRE loss functions are obtained and 

listed in Table 13. 
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Table 13. Bayes Estimates of DCRE and their ERs (in brackets) under different loss 

functions at t = 0.5 and 1.5 for COVID-19 Data. 

t Prior SE LINEX (v = 2) LINEX (v = −2) PRE 

0.5 

Uniform 

1.155031 

(1.012238 E-10) 

1.155022 

(4.292564 E-11) 

1.155002 

(1.058868 E-11) 

1.155042 

(5.926787 E-11) 

1.5 1.166518 

(3.782837 E-10) 

1.166519 

(2.791847 E-11) 

1.166517 

(1.136111 E-11) 

1.16652 

(4.628114 E-11) 

t Prior SE LINEX (  = 2) LINEX (  = −2) PRE 

0.5 

Gamma 

1.155021 

(7.389608 E-11) 

1.155022 

(6.941756 E-11) 

1.155027 

(1.40135 E-11) 

1.155005 

(1.761893 E-11) 

1.5 1.166545 

(3.154903 E-11) 

1.166516 

(1.909039 E-11) 

1.1665 

(3.952208 E-12) 

1.166534 

(1.8328 E-11) 

From Table 13, it can be seen that Bayes estimates of DCRE are slightly increasing as time t 

increases. Based on ER, the Bayesian estimate under LINEX loss function is the most appropriate for 

DCRE. 

The estimated entropy of total deaths is very low;this indicates that these data containing more 

information that can be useful in mathematical and statistical purposes. So,it’s better to study the 

entropy forthe detailed information about the daily death in Egypt for COVID-19 in future researches. 

Data 2: The real data set was obtained from a meteorological study by Simpson [34] which represent 

the radar-evaluated rainfalls from single Florida cumulus clouds (from 1968 to 1970) from 52 south 

Florida cumulus clouds, 26 seeded clouds, and 26 control clouds. The validity of the fitted model has 

been checked by [32]. The Kolmogorov-Smirnov goodness of fit test is employed for real data and its 

p value indicates that the Pareto II distribution fits the data. The data are recorded as follows 

129.6 31.4 2.745.6 489.1 430 302.8 119 4.1 92.4 17.5 

200.7 274.7 274.7 7.7 1 656 978 198.6 703.4 1697.8 

334.1 118.3 255 115.3 242.5 32.7 40.6 26.1 26.3 87 

95 372.4 17.3 24.4 11.5 321.2 68.5 81.2 47.3 28.6 

830.1 345.5 1202.6 36.6 4.9 4.9 41.1 29 163 244.3 

147.8 21.7 
 

Regarding this data, the Bayes estimate of DCRE under SE, LINEX and PRE loss functions are 

obtained and listed in Table 14. 
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Table 14. Bayes Estimate of DCRE and their ERs (in brackets) under different loss 

functions at t = 0.5 and 1.5 for radar-evaluated rainfalls data. 

t Prior SE LINEX (v = 2) LINEX (v = −2) PRE 

0.5 

Uniform 

5.972426 

(5.412273 E-08) 

5.998918 

(3.155479 E-08) 

5.987861 

(5.129795 E-08) 

5.971833 

(4.423818 E-07) 

1.5 7.963097 

(3.105256 E-07) 

7.982504 

(1.524957 E-08) 

7.947595 

(1.019482 E-07) 

8.020214 

(2.820544 E-08) 

t Prior SE LINEX (  = 2) LINEX (  = −2) PRE 

0.5 

Gamma 

6.022452 

(2.469948 E-08) 

6.013078 

(1.275901 E-08) 

5.977622 

(9.075968 E-08) 

5.981887 

(8.142539 E-08) 

1.5 7.991222 

(8.207474 E-07) 

8.005705 

(1.13322 E-07) 

8.09864 

(1.779665 E-07) 

7.958168 

(4.023482 E-07) 

As anticipated, from this example that the estimates of DCRE are increasing function on time as 

the time t increases under gamma and uniform priors for the proposed loss functions. Based on ER, the 

Bayes estimate of DCRE, under LINEX loss function is suitable than the other estimates. 

5. Summary and conclusion 

The Bayesian estimation of dynamic cumulative residual entropy is considered for Pareto II 

distribution. The Bayesian estimators of DCRE for Pareto II model are obtained in case of 

non-informative and informative priorsfor symmetric and asymmetric loss functions. The MCMC 

procedure is employed to compute the Bayes estimates and the BCIs. The behavior of DCRE estimates 

for Pareto II distribution is evaluated through their relative absolute bias, estimated risk and the width 

of credible intervals. Application to real data and simulation issues are provided. 

According to outcomes of study we conclude that, under NIP, for small true values of DCRE the 

width of BCIs for estimated values of DCRE under LINEX loss function is smaller than the 

corresponding based on SE and PRE loss functions for large n at t = 0.5 and 1.5. For large true values 

of DCRE, at t = 0.5, the width of BCIs for estimated values of DCRE under SE loss function is 

smaller than the corresponding other loss functions for large n, but the width of BCIs for estimated 

values of DCRE under LINEX loss function is smaller than the corresponding based on the other loss 

functions for large sample size at t = 1.5. 

Under IP, for small true values of DCRE, the width of BCIs of DCRE under LINEX loss 

function is smaller than the corresponding based on SE and PRE loss functions for large sample size 

at t = 0.5 and 1.5. For large true values of DCRE, at t = 0.5, the width of BCIs for estimated values of 

entropy under LINEX loss function is smaller than the corresponding estimated values based on SE 

and PRE loss functions for selected large n, but the width of BCIs for estimated values of DCRE 

under SE loss function is smaller than the corresponding estimated values based on SE and PRE loss 

functions for large n at t = 1.5. 

Generally, the Bayesian estimate of DCRE approaches the true value as n increases. The DCRE 

values and ERs are directly proportional, that is; if the real value of DCRE decreases, the ERs decrease. 

As the time increases, the Bayesian estimate of DCRE increases. As n increases, the ER and the width 

of BCIs decrease. Bayesian estimates under LINEX loss function are more suitable than other loss 

functions for different types of prior functions in most of situations. 
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