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1. Introduction

Subdivision schemes (SSs) are systematic algorithms for producing smooth and pleasant curves
or surfaces from the set of initial control points or control array. They are easy to use, simple to
investigate, and highly flexible. With these and other attractive mathematical properties of SSs, their
popularity is increasing in applications, such as in computer graphics, signal and image processing,
computer animation and commercial industry. Generally, SSs can be categorized as approximating
and interpolating schemes. Approximating schemes generate more smooth curves and surfaces as
compared to interpolating ones.
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Lane and Riesenfeld [16] introduced an algorithm for creating uniform B-spline curve of order k
(k ∈ N). The algorithm executes on the set of initial control points in two steps. In the first step, initial
data is refined by simply doubling the initial control points. This step is followed by successive
smoothing stages by taking their mid-point averaging. Due to its simple and efficient execution, the
Lane-Riesenfeld algorithm (LRA) became a celebrated algorithm to generate smooth curves and
surfaces. Many researchers proposed diverse variants of LRA to satisfy different requirements. For
instance, Schaefer et al. [18] applied binary non-linear averaging operator instead of binary linear
smoothing operator to get SSs for exponential functions. Hormann and Sabin [9] constructed a family
of SSs with cubic precision having a construction similar to that of uniform B-spline schemes.

Cashman et al. [5] provided another generalization of LRA in which the same operator was used for
both the refinement and the smoothing stage. Ashraf et al. [1] offered a local quintic interpolant variant
of LRA to develop a family of SSs which reproduce quintic polynomials. Mustafa et al. [12] presented
their generalization of LRA by using an interpolating SS [6] as a refine operator and an approximating
SS [9] as smoothing operator. Romani [15] presented a variant of LRA in which a perturbed version of
Chaikin’s scheme was used in the refining stage and smoothing stages remained unchanged. Mustafa
and Rabia [10] used quartic B-spline based SS as a refining operator and mid-point averaging as a
smoothing operator. Shi et al. [17] presented a parameter-dependent variant of LRA.

Generally speaking, C2 continuity is enough in industrial design, but the design of precision
instruments in manufacturing industry requires higher continuous curves and surfaces, which
motivated us to present a shape-preserving variant of LRA. The new variant is used in the refining
stage and as well as in the smoothing stage and generates a family of shape-preserving SSs with high
continuity. Shape-preserving SSs have remarkable significance in geometric shape design. They are
widely used in the design of curves to predict and obtain their shape as per the shape of initial control
points. Although there are many shape-preserving properties, monotonicity and convexity
preservation are two foremost shape-preserving properties. For further insight into shape-preserving
SSs, one may refer to [2–4, 8].

The proposed family of SSs preserves both monotonicity and convexity, where different family
members are obtained by setting one parameter in the expression of the refinement rule. Every family
member has different properties compared to the others and so, by choosing the parameter, one can
pick the best-suited scheme according to the context of the application. This paper is organized as
follows: In Section 2, a new variant of LRA with the refine stage and the smoothing stage composed
of a shape-preserving scheme is proposed. In Section 3, the analysis of some basic properties of the
proposed schemes is presented. The shape-preserving properties of the variant are given in Section 4.
In Section 5, the limit stencil and the artifact analysis of the proposed schemes are presented. In
Section 6, we discuss some numerical examples. Conclusions are drawn in Section 7.

2. Construction of the new variant

LRA executes by first applying a refine stage RL on the set of initial control points Y={yi}i∈Z and
then by applying p smoothing stages QL. Thus a refinement stage T can be considered as T = QpR,
where in refining stage RL every control point is doubled such that

AIMS Mathematics Volume 6, Issue 3, 2152–2170.



2154

{
(RLY)2i = yi,

(RLY)2i+1 = 1
2 (yi + yi+1),

(2.1)

and smoothing stage QL is based on mid-point averaging rule, i.e.,

(QLY)i =
1
2

(yi + yi+1). (2.2)

Now we propose a new variant of LRA which is based on a shape-preserving SS. [14] suggested a
relaxed four-point SS preserving both monotonicity and convexity of initial data. This scheme offers a
refine operator Rs as

{
(RsY)2i = − 1

64 (yi−2 + yi+2) + 8
64 (yi−1 + yi+1) + 50

64yi,

(RsY)2i+1 = − 2
64 (yi−2 + yi+1) + 34

64 (yi−1 + yi),
(2.3)

and smoothing operator Qs as

(QsY)i = −
2

64
(yi−2 + yi+1) +

34
64

(yi−1 + yi). (2.4)

By applying a single time refine stage followed by p-time smoothing stages, we have a family of
shape-preserving SSs, named as S p-scheme. The symbol (Laurent polynomial) of the S p-scheme is

S p(z) = (Q(z))pR(z), (2.5)

where Q(z) is the symbol of smoothing stage Qs

Q(z) =

(
1 + z

2

) (
−z−1 + 18 − z

16

)
, (2.6)

and R(z) is the symbol of refine stage Rs

R(z) =

(
1 + z

2

)6

(−z−1 + 4 − z). (2.7)

The parameter p enumerates the number of applied smoothing stages. It also classifies family members.
The family member with smoothing stage p = 0 is the primary four-point scheme [14]. Table 1 presents
the mask (set of non-zero coefficients of the scheme) of first four family members by substituting
p = 0, 1, 2 and 3 in (2.5)–(2.7).

Table 1. Mask of the S p-scheme for different values of p, here S represents scheme and m
shows number of points of the scheme.

p S m Mask

0 S 0-scheme 5 1
64 [−1,−2, 8, 34, 50, 34, 8,−2,−1]

1 S 1-scheme 6 1
4096 [2,−30,−118, 138, 1332, 2772, 2772, 1332, 138,−118,−30, 2]

2 S 2-scheme 8 1
262144 [−4, 128,−716,−5312,−1924, 44672, 133716, 183168, 133716,

44672,−1924,−5312,−716, 128,−4]
3 S 3-scheme 9 1

16777216 [8,−392, 5648,−9360,−201360,−333936, 1196624, 5702704,
10417280, 10417280, 5702704, 1196624,−333936,−201360,
−9360, 5648,−392, 8]
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3. Basic properties of the S p-scheme

In this section, we present smoothness analysis, Hölder continuity analysis, and the support of the
basic limit function of the S p-scheme.

3.1. Smoothness analysis

Smoothness analysis is a fundamental question for subdivision schemes. Dyn and Levin [7]
presented an effective method to verify convergence by using the symbol S p(z). Later this method
became known as Laurent polynomial method. We adopt the main idea of this classical approach and
further analyze the smoothness of the S p-scheme.

Theorem 3.1. The S p-scheme has Cp+3 continuity for p = 0, 1, 2, . . ..

Proof. The symbol of the S p-scheme can be written as

S p(z) =
(1 + z)p+4

2p+3 ξp(z),

with

ξp(z) =

(
1 + z

2

)2 (
−z−1 + 18 − z

16

)p (
−z−1 + 4 − z

2

)
.

Let S ξp be the subdivision scheme corresponding to the symbol ξp(z), defining

∥∥∥∥S l
ξp

∥∥∥∥
∞

= max

∑
j∈Z

|ξ[l]
i−2l j
| : 0 ≤ i < 2l

 ,
where ξ[l]

i denote the coefficients of the symbol ξ[l]
p (z), and ξ[l]

p (z) = ξp(z)ξp(z2) . . . ξp(z2l−1
).

For p = 0, we have

S 0(z) =
(1 + z)4

8
ξ0(z),

where

ξ0(z) =

(
1 + z

2

)2 (
−z−1 + 4 − z

2

)
.

Let S ξ0 be the scheme corresponding to the symbol ξ0(z) and
∥∥∥S 2

ξ0

∥∥∥
∞

= 3
4 < 1. Since S ξ0 is contractive,

so by Dyn and Levin ( [7], Corollary 4.14), S 0-scheme has C3 continuity.
Similarly for other values of p, we can easily have if the subdivision scheme S ξp is contractive, i.e.∥∥∥∥S l

ξp

∥∥∥∥
∞

= max
{∑

j∈Z
|ξ[l]

i−2l j
| : 0 ≤ i < 2l

}
< 1, then S p-scheme has Cp+3 continuity. �

AIMS Mathematics Volume 6, Issue 3, 2152–2170.



2156

3.2. Hölder continuity analysis

Hölder continuity can be considered as extended continuity. There are upper and lower bounds on
it. First, we discuss the upper bound on the Hölder continuity of the S p-scheme which is based on the
idea presented in Rioul [13] and Dyn and Levin [7].

Theorem 3.2. The upper bound on Hölder continuity of the S p-scheme is

p + 6 − log2(ζp),

where p = 0, 1, 2, . . . , and ζp is the joint spectral radius of the matrices Q0 and Q1 where these matrices
can be obtained by using symbol of the S p-scheme.

Proof. By (2.4), symbol of the S p-scheme is given by

S p(z) =

(
1 + z

2

)p+6

Qp(z),

where Qp(z) =
(
−z−1+18−z

16

)p
(−z−1 + 4 − z) and p = 0, 1, 2, . . .. Let q0, q1, . . . , qd be the non-zero

coefficients of Qp(z). Also let Q0 and Q1 be the matrices of order d × d. The entries of these matrices
are given by

(Q0)i j = qd+i−2 j, and (Q1)i j = qd+i−2 j+1, where i, j = 1, 2, 3, . . . , d.

Let ζp be the joint spectral radius of the matrices Q0 and Q1, then by Rioul [13] and Dyn and Levin [7]
upper bound on Hölder continuity of the S p-scheme is p + 6 − log2(ζp). �

The following theorem estimates the lower bound on the Hölder continuity of the S p-scheme.

Theorem 3.3. The lower bound on the Hölder continuity of the S p-scheme is

p + 6 − log2

(
1 + 3

(
5
4

)p)
,

where p = 0, 1, 2, . . . .

Proof. The symbol of the S p-scheme is given by

S p(z) =

(
1 + z

2

)p+6

U(z), (3.1)

where U(z) = (g(z))ph(z), g(z) = −z−1+18−z
16 and h(z) = −z−1 + 4 − z. So Hölder continuity of S p-scheme

is bounded from below by
p + 6 − log2 ‖U‖.

Since g(z) and h(z) both are alternating symbols, so their product U(z) is also alternating and

‖U‖ = max(U�,U�),
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where U� and U� are sum of even and odd coefficients of U(z) respectively. In matrix-vector notation
they can be written as (

U�

U�

)
=

(
g� g�
g� g�

)p (
h�

h�

)
,

thus we have (
U�

U�

)
=

( 9
8 −1

8
−1

8
9
8

)p (
4
−2

)
.

By eigenvalue decomposition, we have(
U�

U�

)
=

1
2

(
−1 1

1 1

) ( 5
4 0
0 1

)p (
−1 1

1 1

) (
4
−2

)
,

which implies that (
U�

U�

)
=

 1 + 3
(

5
4

)p

1 − 3
(

5
4

)p

 ,
thus we have

‖U‖ = 1 + 3
(
5
4

)p

.

Therefore, lower bound on the Hölder continuity of the S p-scheme is

p + 6 − log2

(
1 + 3

(
5
4

)p)
,

where p = 0, 1, 2, . . . . �

Upper and lower bounds on the Hölder continuity of the S p-scheme for different values of p can
be easily calculated by using Theorem 3.2 and Theorem 3.3 respectively. Table 2 summarizes the
continuity analysis of the S p-scheme. It is clear from Table 2 that as we increase value of p, levels of
smoothness and Hölder continuity of the S p-scheme go up steadily with p.

Table 2. Support of the basic limit function, continuity and lower and upper bounds on the
Hölder continuity of the S p-scheme corresponding to different values of p.

p Support Continuity Lower bound on Upper bound on
Hölder Continuity Hölder Continuity

0 8 3 4 4
1 11 4 4.75 4.80
2 14 5 5.49 5.59
3 17 6 6.22 6.38
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3.3. Support of basic limit function

Proposition 3.4. Support width of basic limit function of the S p-scheme is 3p + 8.

Proof. The basic limit function of a convergent subdivision scheme S p is defined as the limit function
S∞p δ, where δ be the Kronecker delta sequence. Since the number of non-zero entries in the masks of
smoothing stage Qs and refine stage Rs are four and nine respectively, therefore by [11] support widths
of basic limit functions for Qs and Rs are three and eight respectively. Since the mask of S p-scheme is
obtained by applying refine stage Rs on the initial data followed by p-smoothing stages Qs. Hence the
support width of the basic limit function for the S p-scheme is 3p + 8. �

4. Shape-preserving properties of the S p-scheme

Schemes holding shape-preserving properties are very useful in curve designing. Monotonicity
and convexity preserving properties are two of the most important shape-preserving properties. The
shape-preserving variant of LRA generates a family of shape-preserving SSs. For this, we show that
S 1-scheme produces monotonic and convex curves under certain conditions imposed on the initial data.
Considering p = 1 in (2.5), the S 1-scheme is as follows:{

yk+1
2i = − 15

2048yk
i−3 + 69

2048yk
i−2 + 693

1024yk
i−1 + 333

1024yk
i −

59
2048yk

i+1 + 1
2048yk

i+2,

yk+1
2i+1 = 1

2048yk
i−3 −

59
2048yk

i−2 + 333
1024yk

i−1 + 693
1024yk

i + 69
2048yk

i+1 −
15

2048yk
i+2.

(4.1)

4.1. Monotonicity

Monotonicity preserving property of a SS means that if we choose initial data monotone then the
limit curve generated by using this data should also be monotone. To show that the S 1-scheme holds
monotonicity preserving property we consider its first-order divided difference (DD), i. e., nk

i = yk
i+1−yk

i .
So the first order DD of the S 1-scheme is given by:

nk+1
2i = yk+1

2i+1 − yk+1
2i

= −
1

128
(yk

i−2 − yk
i−3) +

7
128

(yk
i−1 − yk

i−2) +
13
32

(yk
i − yk

i−1)

+
7

128
(yk

i+1 − yk
i ) −

1
128

(yk
i+2 − yk

i+1)

= −
1

128
nk

i−3 +
7

128
nk

i−2 +
13
32

nk
i−1 +

7
128

nk
i −

1
128

nk
i+1,

and

nk+1
2i+1 = yk+1

2i+2 − yk+1
2i+1

=
1

2048
(yk

i−2 − yk
i−3) −

43
2048

(yk
i−1 − yk

i−2) +
277

1024
(yk

i − yk
i−1)

+
277

1024
(yk

i+1 − yk
i ) −

43
2048

(yk
i+2 − yk

i+1) +
1

2048
(yk

i+3 − yk
i+2)

=
1

2048
nk

i−3 −
43

2048
nk

i−2 +
277

1024
nk

i−1 +
277
1024

nk
i −

43
2048

nk
i+1 +

1
2048

nk
i+2.

In the following theorem, we discuss the monotonicity preserving property of the S 1-scheme.
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Theorem 4.1. Let the initial control points {y0
i }i∈Z be strictly monotone increasing such that

y0
−1 < y0

0 < y0
1 . . . y

0
i−1 < y0

i < y0
i+1 < . . . ,

and rk
i =

nk
i+1
nk

i
, Rk = max{rk

i ,
1
rk

i
}, ∀ k ∈ N0, i ∈ Z. Also, let λ be such that λ ∈ (−∞, 233−

√
127417

66 ) ∪

(1, 357+
√

146713
86 ). If 1

λ
≤ R0 ≤ λ, and {yk

i }i∈Z is defined by the scheme (4.1) then,

nk
i > 0,

1
λ
≤ Rk ≤ λ, ∀ k ∈ N0, i ∈ Z, (4.2)

i. e., the scheme (4.1) generates strictly monotone increasing limit curves.

Proof. We establish the result by using induction method. As we know that the initial control points
{y0

i }i∈Z are strictly monotone increasing so it is obvious that (4.2) is true for k = 0.
Now let us suppose that (4.2) is true for k ≥ 1 and show that it is also true for k + 1.
Consider

nk+1
2i = −

1
128

nk
i−3 +

7
128

nk
i−2 +

13
32

nk
i−1 +

7
128

nk
i −

1
128

nk
i+1

=
nk

i−1

128

(
−

1
rk

i−3

1
rk

i−2

+
7

rk
i−2

+ 52 + 7rk
i−1 − rk

i−1rk
i

)
≥

nk
i−1

128

(
(7 − λ)

1
rk

i−2

+ 52 + (7 − λ)rk
i−2

)
≥

nk
i−1

128

(
(7 − λ)

1
λ

+ 52 + (7 − λ)
1
λ

)
=

nk
i−1

128

(
14
λ

+ 50
)
> 0, (4.3)

and

nk+1
2i+1 =

1
2048

nk
i−3 −

43
2048

nk
i−2 +

277
1024

nk
i−1 +

277
1024

nk
i −

43
2048

nk
i+1 +

1
2048

nk
i+2

=
nk

i−1

2048

(
1

rk
i−3

1
rk

i−2

−
43
rk

i−2

+ 544 + 544rk
i−1 − 43rk

i−1rk
i + rk

i−1rk
i rk

i+1

)
≥

nk
i−1

2048

((
1
λ
− 43

)
1

rk
i−2

+ 544 + 544rk
i−1 +

(
1
λ
− 43

)
rk

i−1rk
i

)
≥

nk
i−1

2048

((
1
λ
− 43

)
1
λ

+ 544 +

(
544 +

(
1
λ
− 43

)
1
λ

)
rk

i−1

)
≥

nk
i−1

2048

((
1
λ
− 43

)
1
λ

+ 544 +

(
544 +

(
1
λ
− 43

)
1
λ

)
1
λ

)
=

nk
i−1

2048
1
λ3 (λ + 1)(544λ2 − 43λ + 1) > 0. (4.4)

So, we have nk+1
i > 0, ∀ i ∈ Z, which implies nk

i > 0, ∀ k ∈ N0, i ∈ Z. Now, we show that 1
λ
≤ Rk+1 ≤

λ ∀ k ∈ N0.
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Let

rk+1
2i+1 =

nk+1
2i+2

nk+1
2i+1

=

1
rk

i−2

1
rk

i−3
− 43 1

rk
i−2

+ 554 + 554rk
i−1 − 43rk

i−1rk
i + rk

i−1rk
i rk

i+1

−16 1
rk

i−2

1
rk

i−3
+ 112 1

rk
i−2

+ 832 + 112rk
i−1 − 16rk

i−1rk
i

,

we have

rk+1
2i − λ =

1
rk

i−2

1
rk

i−3
− 43 1

rk
i−2

+ 554 + 554rk
i−1 − 43rk

i−1rk
i + rk

i−1rk
i rk

i+1

−16 1
rk

i−2

1
rk

i−3
+ 112 1

rk
i−2

+ 832 + 112rk
i−1 − 16rk

i−1rk
i

− λ

=
C1

D1
,

where

C1 =
1

rk
i−3

1
rk

i−2

− 43
1

rk
i−2

+ 554 + 554rk
i−1 − 43rk

i−1rk
i + rk

i−1rk
i rk

i+1

+16λ
1

rk
i−3

1
rk

i−2

− 112λ
1

rk
i−2

− 832λ − 112λrk
i−1 + 16λrk

i−1rk
i ,

and

D1 = −16
1

rk
i−3

1
rk

i−2

+ 112
1

rk
i−2

+ 832 + 112rk
i−1 − 16rk

i−1rk
i .

It follows from (4.3), the denominator D1 is 2048nk+1
2i

nk
i−1

> 0, and the numerator C1 fulfils

C1 = 554 − 832λ + (1 + 16λ)
1

rk
i−3

1
rk

i−2

− (43 + 112λ)
1

rk
i−2

+ (554 − 112λ)rk
i−1

+(16λ − 43)rk
i−1rk

i + rk
i−1rk

i rk
i+1

≤ 554 − 832λ + (λ + 16λ2 − 43 − 112λ)
1

rk
i−2

+ (554 − 112λ)rk
i−1

+(16λ − 43 + λ)rk
i−1rk

i

≤ 554 − 832λ + (16λ2 − 111λ − 43)λ + (554 − 112λ + 17λ2 − 43λ)rk
i−1

≤ 554 − 832λ + (16λ2 − 111λ − 43)λ + (554 − 112λ + 17λ2 − 43λ)λ
= (λ − 1)(33λ2 − 233λ − 554) < 0,

which implies rk+1
2i ≤ λ, ∀ i ∈ Z.

Since

rk+1
2i+1 =

nk+1
2i+2

nk+1
2i+1

=
−16 1

rk
i−2

+ 112 + 832rk
i−1 + 112rk

i−1rk
i − 16rk

i−1rk
i rk

i+1

1
rk

i−3

1
rk

i−2
− 43 1

rk
i−2

+ 554 + 554rk
i−1 − 43rk

i−1rk
i + rk

i−1rk
i rk

i+1

,
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we have

rk+1
2i+1 − λ =

−16 1
rk

i−2
+ 112 + 832rk

i−1 + 112rk
i−1rk

i − 16rk
i−1rk

i rk
i+1

1
rk

i−3

1
rk

i−2
− 43 1

rk
i−2

+ 554 + 554rk
i−1 − 43rk

i−1rk
i + rk

i−1rk
i rk

i+1

− λ

=
C2

D2
,

where

C2 = −16
1

rk
i−2

+ 112 + 832rk
i−1 + 112rk

i−1rk
i − 16rk

i−1rk
i rk

i+1 − λ
1

rk
i−3

1
rk

i−2

+43λ
1

rk
i−2

− 554λ − 554λrk
i−1 + 43λrk

i−1rk
i − λrk

i−1rk
i rk

i+1,

and

D2 =
1

rk
i−3

1
rk

i−2

− 43
1

rk
i−2

+ 554 + 554rk
i−1 − 43rk

i−1rk
i + rk

i−1rk
i rk

i+1 − λ.

It follows from (4.4), the denominator D2 is 2048nk+1
2i+1

nk
i−1

> 0, and the numerator C2 fulfils

C2 = 112 − 554λ − λ
1

rk
i−3

1
rk

i−2

+ (43λ − 16)
1

rk
i−2

+ (832 − 554λ)rk
i−1 + (112

+43λ)rk
i−1rk

i − (16 + λ)rk
i−1rk

i rk
i+1

≤ 112 − 554λ + (43λ − 17)
1

rk
i−2

+ (832 − 554λ)rk
i−1 +

(
111 + 43λ −

16
λ

)
rk

i−1rk
i

≤ 112 − 554λ + (43λ − 17)λ + (43λ2 − 443λ + 816)rk
i−1

≤ 112 − 554λ + (43λ − 17)λ + 43λ3 − 443λ2 + 816λ
= (λ − 1)(43λ2 − 357λ − 112) < 0.

Therefore rk+1
2i+1 ≤ λ, ∀ i ∈ Z.

In the same way, we can have 1
rk+1

2i
≤ λ and 1

rk+1
2i+1
≤ λ. By induction, we have Rk ≤ λ, ∀ k ∈ N0.

Considering Rk = max{rk
i ,

1
rk

i
}, which leads to Rk ≥ 1

λ
, ∀ k ∈ N0. This completes the proof. �

4.2. Convexity

Convexity preserving property of a SS means that if we choose initial data convex then the limit
curve generated by using this data should also be convex. To show that the S 1-scheme holds convexity
preserving property we consider the second-order DD, i. e., hk+1

i = 22k+1(yk+1
i−1 − 2yk+1

i + yk+1
i+1 ). So the

second-order DD of the S 1-scheme is given by:

hk+1
2i = 22k+1(yk+1

2i−1 − 2yk+1
2i + yk+1

2i+1)

= −
17

512
hk

i−3 +
69

256
hk

i−2 +
13
16

hk
i−1 −

13
256

hk
i +

1
512

hk
i+1,
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and

hk+1
2i+1 = 22k+1(yk+1

2i − 2yk+1
2i+1 + yk+1

2i+2)

=
1

512
hk

i−3 −
13

256
hk

i−2 +
13
16

hk
i−1 +

69
256

hk
i −

17
512

hk
i+1.

In the following theorem, we discuss convexity preserving property of the S 1-scheme.

Theorem 4.2. Let the initial control points {y0
i }i∈Z be convex, i.e., h0

i > 0, and mk
i =

hk
i+1
hk

i
, Mk =

max{mk
i ,

1
mk

i
}, ∀ k ∈ N0, i ∈ Z. Also, let µ be such that µ ∈ (1, 23

3 ). If 1
µ
≤ M0 ≤ µ, and {yk

i }i∈Z is given by
the scheme (4.1) then,

hk
i > 0,

1
µ
≤ Mk ≤ µ, ∀ k ∈ N0, i ∈ Z, (4.5)

i. e., the scheme (4.1) generates convex limit curves.

Proof. We establish the result by using induction method. As we know that the initial control points
{y0

i }i∈Z are convex so it is obvious that (4.5) is true for k = 0.
Now let us suppose that (4.5) is true for k ≥ 1 and show that it is also true for k + 1.
Consider

hk+1
2i = −

17
512

hk
i−3 +

69
256

hk
i−2 +

13
16

hk
i−1 −

13
256

hk
i +

1
512

hk
i+1

=
hk

i−1

512

(
−17

1
mk

i−3

1
mk

i−2

+ 138
1

mk
i−2

+ 416 − 26mk
i−1 + mk

i−1mk
i

)
≥

hk
i−1

512

(
(138 − 17µ)

1
mk

i−2

+ 416 +

(
1
µ
− 26

)
mk

i−1

)
≥

hk
i−1

512

(
(138 − 17µ)

1
µ

+ 416 +

(
1
µ
− 26

)
1
µ

)
=

hk
i−1

512
1
µ2 (399µ2 + 112µ + 1) > 0, (4.6)

and

hk+1
2i+1 =

1
512

hk
i−3 −

131
256

hk
i−2 +

13
16

hk
i−1 +

69
256

hk
i −

17
512

hk
i+1

=
hk

i−1

512

(
1

mk
i−3

1
mk

i−2

− 26
1

mk
i−2

+ 416 + 138mk
i−1 − 17mk

i−1mk
i

)
≥

hk
i−1

512

((
1
µ
− 26

)
1

mk
i−2

+ 416 + (138 − 17µ)mk
i

)
≥

hk
i−1

512

((
1
µ
− 26

)
1
µ

+ 416 + (138 − 17µ)
1
µ

)
=

hk
i−1

512
1
µ2 (399µ2 + 112µ + 1) > 0. (4.7)
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So, we have hk+1
i > 0, ∀ i ∈ Z, which implies hk

i > 0, ∀ k ∈ N0, i ∈ Z. Now, we show that 1
µ
≤ Mk+1 ≤

µ ∀ k ∈ N0.
Let

mk+1
2i =

hk+1
2i+1

hk+1
2i

=

1
mk

i−3

1
mk

i−2
− 26 1

mk
i−2

+ 416 + 138mk
i−1 − 17mk

i−1mk
i

−17 1
mk

i−3

1
mk

i−2
+ 138 1

mk
i−2

+ 416 − 26mk
i−1 + mk

i−1mk
i

,

we have

mk+1
2i − µ =

1
mk

i−3

1
mk

i−2
− 26 1

mk
i−2

+ 416 + 138mk
i−1 − 17mk

i−1mk
i

−17 1
mk

i−3

1
mk

i−2
+ 138 1

mk
i−2

+ 416 − 26mk
i−1 + mk

i−1mk
i

− µ

=
C3

D3
,

where

C3 =
1

mk
i−3

1
mk

i−2

− 26
1

mk
i−2

+ 416 + 138mk
i−1 − 17mk

i−1mk
i + 17µ

1
mk

i−3

1
mk

i−2

−138µ
1

mk
i−2

− 416µ + 26µmk
i−1 − µmk

i−1mk
i ,

and

D3 = −17
1

mk
i−3

1
mk

i−2

+ 138
1

mk
i−2

+ 416 − 26mk
i−1 + mk

i−1mk
i .

It follows from (4.6), the denominator D3 is 512hk+1
2i

hk
i−1

> 0, and the numerator C3 satisfies,

C3 = 416 − 416µ + (1 + 17µ)
1

mk
i−3

1
mk

i−2

− (26 + 138µ)
1

mk
i−2

−(17 + µ)mk
i−1mk

i + (138 + 26µ)mk
i−1

≤ 416 − 416µ + (17µ2 − 137µ − 26)
1

mk
i−2

+
1
µ

(126µ2 + 137µ − 17)mk
i−1

≤ 416 − 416µ + (17µ2 − 137µ − 26)µ + 126µ2 + 137µ − 17
= (µ − 1)(17µ2 − 94µ − 399) < 0.

Thus mk+1
2i ≤ µ, ∀ i ∈ Z.
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Since

mk+1
2i+1 =

hk+1
2i+2

hk+1
2i+1

=
−17 1

mk
i−2

+ 138 + 416mk
i−1 − 26mk

i−1mk
i + mk

i−1mk
i m

k
i+1

1
mk

i−3

1
mk

i−2
− 26 1

mk
i−2

+ 416 + 138mk
i−1 − 17mk

i−1mk
i

,

we have

mk+1
2i+1 − µ =

−17 1
mk

i−2
+ 138 + 416mk

i−1 − 26mk
i−1mk

i + mk
i−1mk

i m
k
i+1

1
mk

i−3

1
mk

i−2
− 26 1

mk
i−2

+ 416 + 138mk
i−1 − 17mk

i−1mk
i

− µ

=
C4

D4
,

where

C4 = −17
1

mk
i−2

+ 138 + 416mk
i−1 − 26mk

i−1mk
i + mk

i−1mk
i m

k
i+1 − µ

1
mk

i−3

1
mk

i−2

+26µ
1

mk
i−2

− 416µ − 138µmk
i−1 + 17µmk

i−1mk
i ,

and

D4 = 1
mk

i−3

1
mk

i−2
− 26 1

mk
i−2

+ 416 + 138mk
i−1 − 17mk

i−1mk
i .

It follows from (4.7), the denominator D4 is 512hk+1
2i+1

hk
i−1

> 0, and the numerator C4 satisfies,

C4 = 138 − 416µ − µ
1

mk
i−3

1
mk

i−2

+ (26µ − 17)
1

mk
i−2

+ (416 + 138µ)mk
i−1

+(17µ − 26)mk
i−1mk

i + mk
i−1mk

i m
k
i+1

≤ 138 − 416µ + (26µ − 18)
1

mk
i−2

+ (416 + 138µ)mk
i−1 + (18µ − 26)mk

i−1mk
i

≤ 138 − 416µ + (26µ − 18)µ + (18µ2 + 112µ + 416)mk
i

≤ 138 − 416µ + (26µ − 18)µ + (18µ2 + 112µ + 416)µ
= 6(µ − 1)(3µ − 23)(µ + 1) < 0.

Therefore mk+1
2i+1 ≤ µ, ∀ i ∈ Z.

In the same way, we can have 1
mk+1

2i
≤ µ and 1

mk+1
2i+1
≤ µ. By induction, we have Mk ≤ µ, ∀ k ∈ N0.

Considering Mk = max{mk
i ,

1
mk

i
}, which leads to Mk ≥ 1

µ
, ∀ k ∈ N0. This completes the proof. �

In the same way, we can show that rest of the members of the family also hold monotonicity
preserving and convexity preserving properties.
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5. Limit stencil and artifact analysis of the S p-scheme

In this section limit stencil and artifact analysis of the S p-scheme are presented.

5.1. Limit stencil analysis

Limit stencil is used to achieve a control point on the limit curve in the form of initial control
points. By using limit stencil, it is very convenient to obtain point on limit curve with comparatively
less number of computation. We obtain limit stencil by using

B∞ = L(lim
j→∞

K j)L−1B0, (5.1)

and
lim
j→∞

K j = K∞, so B∞ = LK∞L−1B0,

where K is diagonal matrix of eigenvalues of subdivision matrix of the S p-scheme and eigenvectors
corresponding to the eigenvalues are given in the form of matrix L. By using (5.1), we calculate limit
stencil of the S p-scheme for different values of p, which are given in Table 3.

Table 3. Limit stencil for different values of p.

p Limit Stencil

0 n0 = {2.8 × 10−4,−0.018333, 0.1542, 0.728, 0.1542,−0.018333, 2.8 × 10−4}

1 n1 = {2.5 × 10−7,−3.5 × 10−5,−3.2 × 10−3, 4.4 × 10−3, 0.49886, 0.49886,
4.4 × 10−3,−3.2 × 10−3,−3.5 × 10−5, 2.5 × 10−7}

2 n2 = {1.21 × 10−13,−7.91 × 10−9,−1.1935 × 10−5, 1.3813 × 10−4,

−1.80 × 10−2, 0.1961, 0.64363, 0.1961,−1.804 × 10−2, 1.3813 × 10−4,

−1.1935 × 10−5,−7.91 × 10−9, 1.21 × 10−13}

3 n3 = {−1.176 × 10−12,−9.2751 × 10−9,−2.9198 × 10−6, 2.121 × 10−4,

−0.007006, 0.0302, 0.47661, 0.47661, 0.0302,−0.007006, 2.121 × 10−4,

−2.9198 × 10−6,−9.2751 × 10−9,−1.176 × 10−12}

5.2. Artifact analysis

We consider different data patterns to evaluate the diverse behavior of the subdivision schemes by
analyzing how do they respond to these data patterns. For example, we use monotone and convex
data for the analysis of shape-preserving properties. Polynomial data led us to determine the degree of
polynomial generation and reproduction. Cardinal data, where all the control points have zero value
except one control point which has unit value, is used to determine support and shape of basis function.
Similarly, when we extract data from a sinusoidal function, we observe how the curvature of the limit
curve changes along its arc length. The ripples in the curvature plot are called artifacts of the scheme.
Magnitude of artifact G can be calculated from the stencil of the scheme and is well explained in [19].
We can calculate G as follows: Let Np(z) be the Laurent polynomial of the limit stencil and S p(z)
be the Laurent polynomial of the mask of the S p-scheme. Considering g be the highest power of z
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in the product Np(z)S p(z) and let ˆNp(z) = Np(z)S p(z)z−g/2. We express ˆNp(z) as polynomial ˆQp(δ) in
δ = (1 + z)/2

√
z. Then the artifact magnitude can be obtained by considering sin(πκ/2) for δ in that

polynomial, where κ is the spatial frequency leading to

Gp(κ) =
1
2

Q̂p

(
sin

(
πκ

2

))
.

The artifact magnitude in the limit curve produced by the S p-scheme for different values of p is
shown in Figure 1. Here we observe that as we increase the value of parameter p the number of
artifacts decreases. It also decreases with the increase in the number of initial control points.

Figure 1. Artifact magnitude in the limit curves of the S p-scheme for p = 0, 1, 2, 3.

6. Numerical examples

In this section, we observe the performance of the proposed S p-scheme when we apply it on a
different set of control points. First of all, we discuss the performance of the S 0-scheme. In Figures 2
and 3, we consider two different initial control polygons. These control polygons are represented by
dotted lines. We have applied the S 0-scheme on these initial polygons up to three subdivision levels.
Both figures draw a comparison of the curves, which are obtained by the S 0-scheme, with the initial
polygon. Sub-figures 2(a) and 3(a) show the curves which are generated by applying the S 0-scheme
one time on these initial polygon. Sub-figures 2(b) and 3(b) show the curves which are generated by
applying the S 0-scheme two times on these initial polygons. Finally, we have the limit curves presented
in Sub-figures 2(c) and 3(c), which are obtained by applying the S 0-scheme three times on these initial
polygons.
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(a) First level (b) Second level (c) Third level

Figure 2. Comparison: Broken lines represent Initial control polygons and continuous
curves are obtained by the S 0-scheme at different subdivision levels.

(a) 1st-level (b) 2nd-level (c) 3rd-level

Figure 3. Comparison: Broken lines represent Initial control polygons and continuous
curves are obtained by the S 0-scheme at different subdivision levels.

Now we discuss the performance of the S 1-scheme. In Figures 4 and 5, we consider two different
initial control polygons. These control polygons are represented by dotted lines. We have applied the
S 1-scheme on these initial polygons up to three subdivision levels. Both figures draw a comparison of
the curves, which are obtained by the S 1-scheme, with the initial polygon. Sub-figures 4(a) and 5(a)
show the curves which are generated by applying the S 1-scheme one time on these initial polygon.
Sub-figures 4(b) and 5(b) show the curves which are generated by applying the S 1-scheme two times
on these initial polygons. Finally, we have the limit curves presented in Sub-figures 4(c) and 5(c),
which are obtained by applying the S 1-scheme three times on these initial polygons. Similarly, Figures
6 and 7 show performance of the S 2-scheme when applied on different polygons.
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(a) 1st-level (b) 2nd-level (c) 3rd-level

Figure 4. Comparison: Broken lines represent Initial control polygons and continuous
curves are obtained by the S 1-scheme at different subdivision levels.

(a) 1st-level (b) 2nd-level (c) 3rd-level

Figure 5. Comparison: Broken lines represent Initial control polygons and continuous
curves are obtained by the S 1-scheme at different subdivision levels.

(a) 1st-level (b) 2nd-level (c) 3rd-level

Figure 6. Comparison: Broken lines represent Initial control polygons and continuous
curves are obtained by the S 2-scheme at different subdivision levels.
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(a) 1st-level (b) 2nd-level (c) 3rd-level

Figure 7. Comparison: Broken lines represent Initial control polygons and continuous
curves are obtained by the S 2-scheme at different subdivision levels.

7. Conclusions

Subdivision is a primary tool to describe smooth curves and surfaces in the field of computer aided
geometric design. There are different variants of LRA in literature and we have presented a new variant
of LRA which is based on a shape-preserving SS. We have shown that this shape-preserving variant of
LRA generates a family of shape-preserving subdivision schemes. An integer parameter (p) is involved
in the symbol of the proposed family and by changing this parameter we can get different SSs as per
our requirement. We have also presented limit stencil and artifact analysis of the proposed schemes.
We have proved that by increasing the value of the parameter p, SSs with higher smoothness, higher
Hölder continuity, and less artifact magnitude can be obtained. We have also provided several examples
to illustrate that the proposed schemes give great flexibility to geometric designers for the generation
of smooth geometric models. In conclusion, we have a family of SSs generating high continuity limit
curves and satisfying shape-preserving properties as a remarkable addition to the zoo of existing SSs.
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