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1. Introduction

Due to applications of warped product manifolds in Physics and theory of relativity [10], the study
of warped product manifolds has been a fascinating topic of research. The warped products provide
many basic solutions to the Einstein field equations [10]. One of the most important example of warped
product manifolds is the modeling of space time near black holes in the universe. The Robertson-
Walker model is a warped product which represents a cosmological model to the model of universe as
a space time [27].

Bishop and Neill [11] explored the geometry of Riemannian manifolds of negative curvature and
introduced the notion of warped product for these manifolds (see the definition in section 2). The
warped product manifolds are the natural generalization of Riemannian product manifolds. Some
natural properties of warped product were investigated in [11].
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In 1981, Chen first used the idea of warped products for CR-submanifolds of Kaehler manifolds
( [13, 15]). Basically, Chen proved the existence of CR-warped product submanifolds of the type
NT × f N⊥ in the setting of Kaehler manifold, where NT and N⊥ are the holomorphic and totally real
submanifolds. Further, Hasegawa and Mihai [19] extended the study of Chen for the contact CR-
warped product submanifolds of the Sasakian manifolds. Mihai [22] obtained an estimate for the
squared norm of the second fundamental form in terms of the warping function for the contact CR-
warped product submanifolds in the frame of Sasakian space form. Since then, many authors have
studied warped product submanifolds in the different settings of Riemannian manifolds and numerous
existence results have been explored (see the survey article [17]).

In 1999, Chen [14] discovered a relationship between Ricci curvature and squared mean curvature
vector for an arbitrary Riemannian manifold. On the line of Chen a series of articles have been appeared
to formulate the relationship between Ricci curvature and squared mean curvature in the setting of
some important structures on Riemannian manifolds (see [6, 12, 21–23, 29]). Recently Ali et al. [2]
established a relationship between Ricci curvature and squared mean curvature for warped product
submanifolds of a sphere and provide many physical applications.

In this paper our aim is to obtain a relationship between Ricci curvature and squared mean
curvature for contact CR-warped product submanifolds in the setting of generalized Sasakian space
form admitting a nearly Sasakian structure. Further, we provide some applications in terms of
Hamiltonians and Euler-Lagrange equation. In the last we also worked out some applications of
Obata’s differential equation.

2. Some basic results

A (2n + 1)−dimensional C∞−manifold M̄ is said to have an almost contact structure if there exist on
M̄ a tensor field φ of the type (1, 1), a vector field ξ and a 1-form η satisfying

φ2 = −I + η ⊕ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1.

There always exists a Riemannian metric g on an almost contact metric manifold M̄ satisfying the
following conditions

η(X) = g(X, ξ), g(φX, φY) = g(X,Y) − η(X)η(Y),

for all X,Y ∈ T M̄.

An almost contact metric manifold is said to be nearly Sasakian manifold, if

(∇̄Xφ)Y + (∇̄Yφ)X = −2g(X,Y)ξ + η(Y)X + η(X)Y, (2.1)

for all X,Y ∈ T M̄.

Moreover, the structure vector field ξ is Killing vector field on a Riemannian manifold if it satisfies
the following equation

∇̄Xξ = 0.

In [1] Alegre et al. introduced the notion of generalized Sasakian space form as that an almost
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contact metric manifold (M̄, φ, ξ, η, g) whose curvature tensor R̄ satisfies

R̄(X,Y,Z,W) = f1[g(Y,Z)g(X,W) − g(X,Z)g(Y,W)]
− f2[g(φX,Z)g(φY,W) − g(φX,W)g(φY,Z)
+ 2g(φX,Y)g(φZ,W)] − f3[η(Z){η(Y)g(X,W)
− η(X)g(Y,W)} + η(W){η(X)g(Y,Z) − η(Y)g(X,Z)}]

(2.2)

for all vector fields X,Y,Z,W and certain differentiable functions f1, f2, f3 on M̄. A generalized
Sasakian space form with functions f1, f2, f3 is denoted by M̄( f1, f2, f3). If f1 = c+3

4 , f2 = f3 = c−1
4 ,

then M̄( f1, f2, f3) is a Sasakian space form M̄(c) [1]. If f1 = c−3
4 , f2 = f3 = c+1

4 , then M̄( f1, f2, f3) is a
Kenmotsu space form M̄(c) [1] and if f1 = f2 = f3 = c

4 , then M̄( f1, f2, f3) is a cosymplectic space form
M̄(c) [1].

Now, we discuss some examples of space forms. Let M(c) be a complex space form with the complex
structure (J, gM), consider the product manifold N2n+1 = M(c) × R and define the following tensors on
N2n+1

φ = J ◦ dπ, ξ =
∂

∂t
, η = dt, and gN = gM + d(t) ⊗ dt,

where π : M(c) × R→ M(c) is the projection map and t is the standard coordinate function on the real
axis. Then (N2n+1, φ, ξ, η, gN) is a cosymplectic space form with constant φ−sectional curvature equal
to c ( [1, 7]).

The Hyperbolic space H(−1) of constant sectional curvature -1 is an example of Kenmotsu space
form.

Nearly Sasakian structure was introduced on the 5-dimensional sphere S 5(2) of constant sectional
curvature 2 as totally umbilical hypersurface of nearly Kaehler 6-sphere S 6, which is not a Sasakian
structure [8].

One of the present author Ibrahim Al-Dayel [18] proved that there exists two other structures which
are Sasakian as well as nearly cosymplectic structure. More precisely,

Theorem 2.1. [18] There are two structures (φi, ξ, η, g), i = 1, 2 related to the nearly Sasakian
structure (φ, ξ, η, g) on the 5-sphere S 5(2) such that S 5(2)(φ1, ξ, η, g) is homothetic to Sasakian
manifold and S 5(2)(φ2, ξ, η, g) is a nearly cosymplectic manifold.

Another example of generalized Sasakian space form admitting the nearly cosymplectic structure
is totally geodesic hypersurface S 5(ψ1, ξ, η, g) of the nearly Kaehler 6-sphere (S 6, J, g) [9]. Further
extending this study one of the present author Ibrahim Al-Dayel in [18] obtained two more structures
ψ2 and ψ3 such that S 5(ψ2, ξ, η, g) and S 5(ψ3, ξ, η, g) are Sasakian and nearly cosymplectic manifolds
respectively.

Let (Mn, g) be an n−dimensional Riemannian manifold isometrically immersed in a m−dimensional
Riemannian manifold M̄. Then the Gauss and Weingarten formulas are ∇̄XY = ∇XY + h(X,Y) and
∇̄XN = −AN X+∇⊥X N respectively, for all X,Y ∈ T M and N ∈ T⊥M.Where ∇ is the induced Levi-Civita
connection on M, N is a vector field normal to M, h is the second fundamental form of M, ∇⊥ is the
normal connection in the normal bundle T⊥M and AN is the shape operator of the second fundamental
form. The second fundamental form h and the shape operator are associated by the following formula

g(h(X,Y),N) = g(AN X,Y). (2.3)
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The equation of Gauss is given by

R(X,Y,Z,W) = R̄(X,Y,Z,W) + g(h(X,W), h(Y,Z)) − g(h(X,Z), h(Y,W)), (2.4)

for all X,Y,Z,W ∈ T M. Where, R̄ and R are the curvature tensors of M̄ and M respectively.
For any X ∈ T M and N ∈ T⊥M, φX and φN can be decomposed as follows

φX = PX + FX

and
φN = tN + f N,

where PX (resp. tN) is the tangential and FX (resp. f N) is the normal component of φX ( resp. φN).
For any orthonormal basis {e1, e2, . . . , en} of the tangent space TxM, the mean curvature vector H(x)

and its squared norm are defined as follows

H(x) =
1
n

n∑
i=1

h(ei, ei), ‖H‖2 =
1
n2

n∑
i, j=1

g(h(ei, ei), h(e j, e j)),

where n is the dimension of M. If h = 0 then the submanifold is said to be totally geodesic and minimal
if H = 0. If h(X,Y) = g(X,Y)H for all X,Y ∈ T M, then M is called totally umbilical.

The scalar curvature of m− dimensional Riemannian manifold M̄ is denoted by π̄(M̄) and is defined
as

π̄(M̄) =
∑

1≤p<q≤m

κ̄pq,

where κ̄pq = κ̄(ep∧eq). Throughout this study, we shall use the equivalent version of the above equation,
which is given by

2π̄(M̄) =
∑

1≤p<q≤m

κ̄pq.

In a similar way, the scalar curvature π̄(Lx) of a L−plane is expressed as

π̄(Lx) =
∑

1≤p<q≤m

κ̄pq. (2.5)

Let {e1, . . . , en} be an orthonormal basis of the tangent space TxM and if er belongs to the orthonormal
basis {en+1, . . . em} of the normal space T⊥M, then we have

hr
pq = g(h(ep, eq), er) (2.6)

and

‖h‖2 =

n∑
p,q=1

g(h(ep, eq), h(ep, eq)).

Let κpq and κ̄pq be the sectional curvatures of the plane sections generated by ep and eq at the point
x ∈ Mn and in the Riemannian space form M̄m(c), respectively. Thus by Gauss equation, we have

κpq = κ̄pq +

m∑
r=n+1

(hr
pphr

qq − (hr
pq)2). (2.7)
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The global tensor field for orthonormal frame of vector field {e1, . . . , en} on Mn is defined as

S̄ (X,Y) =

n∑
i=1

{g(R̄(ei, X)Y, ei)},

for all X,Y ∈ TxMn. The above tensor is named Ricci tensor. When we fix a specific vector eu from
{e1, . . . , en} on Mn, which is designated by χ. Therefore the Ricci curvature is defined by

Ric(χ) =

n∑
p=1
p,u

κ(ep ∧ eu) (2.8)

Let (N1, g1) and (N2, g2) be two Riemannian manifolds with Riemannian metrics g1 and g2

respectively and let ψ be a positive differentiable function on N1. If π : N1 × N2 → N1 and
η : N1 × N2 → N2 are the projection maps given by π(p, q) = p and η(p, q) = q for every
(p, q) ∈ N1 × N2, then the warped product manifold is the product manifold N1 × N2 equipped with the
Riemannian structure such that

g(X,Y) = g1(π∗X, π∗Y) + (ψ ◦ π)2g2(η∗X, η∗Y),

for all X,Y ∈ T M. The function ψ is called the warping function of the warped product manifold [11].
If the warping function is constant, then the warped product is trivial i.e., simply Riemannian product.
Then from Lemma 7.3 of [11], we have

∇XZ = ∇ZX =
(Xψ
ψ

)
Z

where ∇ is the Levi-Civita connection on M. For a warped product M = N1 ×ψ N2 it is easy to observe
that

∇XZ = ∇ZX = (Xlnψ)Z

for X ∈ T M1 and Z ∈ T M2.

We denote ∇ψ the gradient of ψ and it is defined as

g(∇ψ, X) = Xψ, (2.9)

for all X ∈ T M.
Let {e1, e2, . . . , en} be an orthogonal basis of the tangent space T M of a n−dimensional Riemannian

manifold M. Then (2.9) provides the following,

‖∇ψ‖2 =

n∑
i=1

(ei(ψ))2.

The Laplacian of ψ is defined by

∆ψ =

n∑
i=1

{(∇eiei)ψ − eieiψ}.
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The Hessian tensor for a differentiable function ψ is a symmetric covariant tensor of rank 2 and is
defined as

∆ψ = −traceHψ,

where Hψ is the Hessian of ψ.
For the warped product submanifolds, we observed the well known result, which is described as

follows [16]
n1∑

p=1

n2∑
q=1

κ(ep ∧ eq) =
n2∆ψ

ψ
= n2(∆lnψ − ‖∇lnψ‖2). (2.10)

For a compact orientable Riemannian manifold M with or without boundary and as a consequences
of the integration theory of manifolds, we have∫

M
∆ψdV = 0,

where ψ is a function on M and dV is the volume element of M.

3. Contact CR-warped product submanifolds

Suppose M be a n−dimensional submanifold isometrically immersed in an almost contact metric
manifold M̄(g, φ, ξ, η) such that the structure vector field ξ is tangent to M. The submanifold M is
called contact CR-submanifold if it admits an invariant distribution D whose orthogonal
complementary distribution D⊥ is anti-invariant such that T M = D ⊕ D⊥ ⊕ 〈ξ〉, where φD ⊆ D,
φD⊥ ⊆ T⊥M and 〈ξ〉 is the 1-dimensional distribution spanned by ξ [24]. If µ is the invariant subspace
of the normal bundle T⊥M, then in the case of contact CR- submanifold, the normal bundle T⊥M can
be decomposed as T⊥M = µ ⊕ φD⊥. A contact CR-submanifold is called contact CR-product
submanifold if the distributions D and D⊥ are parallel on M. Moreover, a contact CR-submanifold is
said to be mixed totally geodesic if h(D,D⊥) = 0. As a generalization of the product manifold
submanifolds one can consider warped product submanifolds. In [19] Hasegawa and Mihai studied
contact CR-warped product submanifolds in Sasakian manifolds basically, they proved the existence
of the contact CR-warped product submanifolds of the type NT × f N⊥ such that the structure vector
field ξ is tangent to NT . After that Mihai [22] and Munteanu [26] investigated contact CR-warped
product in Sasakian space forms and obtained an inequality for squared norm of second fundamental
form and warping function. Moreover, Atceken [5] explored the existence of contact CR-warped
product submanifolds in the expressions of some inequalities this study was extended to the setting of
trans-Sasakian generalized Sasakian spaceforms by Sular and Ozgur [28]. More recently, Ishan and
Khan [20] generalized contact CR-warped product submanifolds in the setting of generalized
Sasakian manifolds admitting nearly Sasakian structure. Throughout, this study we consider
n−dimensional contact CR-warped product submanifold Mn = Nn1

T ×ψ Nn2
⊥ , such that the structure

vector field ξ is tangential to NT , where n1 and n1 are the dimensions of the invariant and
anti-invariant submanifold respectively.

Now, we start with some initial results.

Lemma 3.1. Let M = Nn1
T ×ψNn2

⊥ be a contact CR-warped product submanifold isometrically immersed
in a nearly Sasakian manifold M̄. Then
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(i) g(h(X,Y), φZ) = 0,
(ii) g(h(φX, φX),N) = −g(h(X, X),N),

for any X,Y ∈ T NT , Z ∈ T N⊥ and N ∈ µ.

Proof. By using Gauss and Weingarten formulae in Eq (2.1), we have

−AφZX − ∇⊥XφZ−φ∇XZ − φh(X,Z) + ∇ZφX + h(φX,Z)
− φ∇ZX − φh(X,Z) = −η(X)φZ,

taking inner product with Y and using (2.3), we get the result that needed.
To show (ii), for any X ∈ T NT we have

∇̄XφX = (∇̄Xφ)X + φ∇̄XX,

using Gauss formula and (2.1), we get

∇XφX + h(φX, X) = −η(X)φX + φ∇XX + φh(X, X),

taking inner product with φN, above equation yields

g(h(φX, X), φN) = g(h(X, X),N), (3.1)

replacing X by φX and using the fact that ξ is Killing vector field [9], the last equation gives

g(h(φX, X), JN) = −g(h(φX, φX),N). (3.2)

From (3.1) and (3.2), we get the required result. �

By the Lemma 3.1 it is evident that the isometric immersion Nn1
T ×ψ Nn2

⊥ into a nearly Sasakian
manifold is D− minimal. The D− minimal property provides us a useful relationship between the
contact CR-warped product submanifold NT ×ψ N⊥ and the equation of Gauss.
Definition 3.1 The warped product N1 ×ψ N2 isometrically immersed in a Riemannian manifold M̄ is
called Ni totally geodesic if the partial second fundamental form hi vanishes identically. It is called
Ni-minimal if the partial mean curvature vector Hi becomes zero for i = 1, 2.

Let {e1, . . . , eβ, eβ+1 = φe1 . . . , . . . en1−1 = φeβ, en1 = ξ, en1+1, . . . , en} be a local orthonormal frame of
vector fields on the contact CR-warped product submanifold Mn = Nn1

T ×ψ Nn2
⊥ such that {ξ, e1, . . . , en1}

are tangent to NT and {en1+1, . . . en} are tangent to N⊥. Moreover,
{e∗1 = φen1+1, . . . , e∗n = φen, e∗n+1, . . . , e

∗
m} is a local orthonormal frame of the normal space T⊥M.

From Lemma 3.1, one can observe

m∑
r=n+1

n1∑
i, j=1

g(h(ei, e j), er) = 0.

Therefore, it knows that the trace of h due to NT becomes zero. Hence in view of the Definition 3.1,
we have the following important result.
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Theorem 3.2. Let Mn = Nn1
T ×ψ Nn2

⊥ be a contact CR-warped product submanifold isometrically
immersed in a nearly Sasakian manifold. Then Mn is D− minimal.

So, it is easy to conclude the following

‖H‖2 =
1
n2

m∑
r=n+1

(hr
n1+1n1+1 + · · · + hr

nn),

where ‖H‖2 is the squared mean curvature.

4. Ricci curvature for contact CR-warped product submanifold

The present section deals to formulate the Ricci curvature in the expressions of mean curvature
vector and warping function ψ.

Theorem 4.1. Let M = Nn1
T ×ψ Nn2

⊥ be a contact CR-warped product submanifold isometrically
immersed in a generalized Sasakian space form M̄( f1, f2, f3) admitting nearly Sasakian structure. If
for each orthogonal unit vector field χ ∈ TxM orthogonal to ξ, either tangent to NT or N⊥. Then we
have

(1) The Ricci curvature satisfy the following inequality

(i) If χ is tangent to Nn1
T , then

Ric(χ) ≤
1
4

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1 +

3 f2

2
− (n2 + 1) f3.

(4.1)

(ii) χ is tangent to Nn2
⊥ , then

Ric(χ) ≤
1
4

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1

− (n2 + 1) f3.

(4.2)

(2) If H(x) = 0 for each point x ∈ Mn. Then there is a unit vector field X which satisfies the equality
case of (1) if and only if Mn is mixed totally geodesic and χ lies in the relative null space Nx at x.

(3) For the equality case we have

(a) The equality case of (4.1) holds identically for all unit vector fields tangent to NT at each
x ∈ Mn if and only if Mn is mixed totally geodesic and D−totally geodesic contact CR-
warped product submanifold in M̄m( f1, f2, f3).

(b) The equality case of (4.2) holds identically for all unit vector fields tangent to N⊥ at each
x ∈ Mn if and only if M is mixed totally geodesic and either Mn is D⊥- totally geodesic
contact CR-warped product or Mn is a D⊥ totally umbilical in M̄m( f1, f2, f3) with dim D⊥ = 2.

(c) The equality case of (1) holds identically for all unit tangent vectors to Mn at each x ∈ Mn if
and only if either Mn is totally geodesic submanifold or Mn is a mixed totally geodesic totally
umbilical and D− totally geodesic submanifold with dim N⊥ = 2,
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where n1 and n2 are the dimensions of NT and N⊥ respectively.

Proof. Suppose that M = Nn1
T ×ψ Nn2

⊥ be a contact CR-warped product submanifold of a generalized
Sasakian space form. From Gauss equation, we have

n2‖H‖2 = 2π(Mn) + ‖h‖2 − 2π̄(Mn). (4.3)

Let {e1, . . . , en1 , en1+1, . . . , en} be a set of orthonormal vector fields on Mn such that the frame
{e1, . . . , en1} is tangent to NT and {en1+1, . . . , en} is tangent to N⊥. So, the unit tangent vector
χ = eA ∈ {e1, . . . , en} can be expanded (4.3) as follows

n2‖H‖2 = 2π(Mn) +
1
2

m∑
r=n+1

{(hr
11 + · · · + hr

nn − hr
AA)2 + (hr

AA)2}

−

m∑
r=n+1

∑
1≤p,q≤n

hr
pphr

qq − 2π̄(Mn).

�

The above expression can be expanded as

n2‖H‖2 = 2π(Mn) +
1
2

m∑
r=n+1

{(hr
11 + · · · + hr

nn)2

+ (2hr
AA − (hr

11 + · · · + hr
nn))2} + 2

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2

− 2
m∑

r=n+1

∑
1≤p<q≤n

hr
pphr

qq − 2π̄(Mn).

In view of the Lemma 3.1, the preceding expression takes the form

n2‖H‖2 =

m∑
r=n+1

{(hr
n1+1n1+1 + · · · + hr

nn)2 + +(2hr
AA − (hr

n1+1n1+1 + · · · + hr
nn))2}

+ 2π(Mn) +

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2 −

m∑
r=n+1

∑
1≤p<q≤n

hr
pphr

qq +

m∑
r=n+1

∑
a=1
a,A

(hr
aA)2

+

m∑
r=n+1

∑
1≤p<q≤n

p,q,A

(hr
pq)2 −

m∑
r=n+1

∑
1≤p<q≤n

p,q,A

hr
pphr

qq − 2π̄(Mn).

(4.4)

By Eq (2.7), we have
m∑

r=n+1

∑
1≤p<q≤n

p,q,A

(hr
pq)2 −

m∑
r=n+1

∑
1≤p<q≤n

p,q,A

hr
pphr

qq

=
∑

1≤p<q≤n
p,q,A

κ̄p,q −
∑

1≤p<q≤n
p,q,A

κp,q

(4.5)
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Substituting the values of Eq (4.5) in (4.4), we discover

n2‖H‖2 =2π(Mn) +
1
2

m∑
r=n+1

(2hr
AA − (hr

n1+1n1+1 + · · · + hr
nn))2

+

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2 −

m∑
r=n+1

∑
1≤p<q≤n

hr
pphr

qq − 2π̄(Mn)

+

m∑
r=n+1

∑
a=1
a,A

(hr
aA)2 +

∑
1≤p<q≤n

p,q,A

κ̄p,q −
∑

1≤p<q≤n
p,q,A

κp,q.

(4.6)

Since, Mn = Nn1
T ×ψ Nn2

⊥ , then from (2.5), the scalar curvature of Mn can be defined as follows

π(Mn) =
∑

1≤p<q≤n

κ(ep ∧ eq)

=

n1∑
i=1

n∑
j=n1+1

κ(ei ∧ e j) +
∑

1≤i<k≤n1

κ(ei ∧ ek) +
∑

n1+1≤l<o≤n

κ(el ∧ eo)
(4.7)

Using (2.5) and (2.10), we derive

π(Mn) =
n2∆ψ

ψ
+ π(Nn1

T ) + π(Nn2
⊥ ) (4.8)

Utilizing (4.8) together with (2.2) in (4.6), we have

1
2

n2‖H‖2 =
n2∆ψ

ψ
+

∑
1≤p<q≤n

p,q,A

κ̄p,q + π̄(Nn1
T ) + π̄(Nn2

⊥ )

+

m∑
r=n+1

{ ∑
1≤p<q≤n

(hr
pq)2 −

∑
1≤p<q≤n

p,q,A

hr
pphr

qq
}

+

m∑
r=n+1

∑
a=1
a,A

(hr
aA)2 +

m∑
r=n+1

∑
1≤i, j≤n1

(hr
iih

r
j j − (hr

i j)
2)

+

m∑
r=n+1

∑
n1+1≤s,t≤n

(hr
ssh

r
tt − (hr

st)
2)

+
1
2

m∑
r=n+1

(2hr
AA − (hr

n1+1n1+1 + · · · + hr
nn))2

− { f1(n(n − 1)) + f2(3(n1 − 1)) − f3(2(n − 1))}.

(4.9)

Considering χ = ea, we got two options: χ may be tangent to the submanifold Nn1
T or to the fibre

Nn2
⊥ .
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Option 1: If ea is tangent to Nn1
T , then fix a unit tangent vector from {e1, . . . , en1} suppose χ = ea = e1,

then from (4.9) and (2.8), we find

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
−

1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + . . . hr
nn))2

−

m∑
r=n+1

∑
1≤p<q≤n1

(hr
pq)2 +

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2 −
∑

1≤i< j≤n1

hr
iih

r
j j]

+

m∑
r=n+1

∑
n1+1≤s<t≤n

(hr
st)

2 +

m∑
r=n+1

[
∑

n1+1≤s<t≤n

(hr
i j)

2 −
∑

n1+1≤s<t≤n

hr
ssh

r
tt]

+

m∑
r=n+1

∑
2≤p<q≤n

hr
pphr

qq + f1(n(n − 1)) + f2(3(n1 − 1)) − f3(2(n − 1))

−
∑

2≤p<q≤n

κ̄p,q − π̄(Nn1
T ) − π̄(Nn2

⊥ ).

(4.10)

From (2.2), (2.5) and (2.6), we have∑
2≤p<q≤n

κ̄p,q =
f1

2
((n − 1)(n − 2)) +

f2

2
(3(n1 − 2)) −

f3

2
(2(n − 2)), (4.11)

π̄(Nn1
T ) =

f1

2
((n1(n1 − 1)) +

f2

2
(3(n1 − 1)) −

f3

2
(2(n1 − 1)), (4.12)

π̄(Nn1
T ) =

f1

2
((n2(n2 − 1)) (4.13)

Using in (4.10), we have

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1 +

3 f2

2
− (n2 + 1) f3

−
1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + · · · + hr
nn))2

−

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2 +

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2 +

m∑
r=n+1

∑
n1+1≤s<t≤n

(hr
st)

2]

−

m∑
r=n+1

[
∑

1≤i< j≤n1

hr
iih

r
j j +

∑
n1+1≤s<t≤n

hr
ssh

r
tt]

+

m∑
r=n+1

∑
2≤p<q≤n

hr
pphr

qq.

(4.14)

Further, the seventh and eighth terms on right hand side of (4.14) can be written as
m∑

r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2 +
∑

n1+1≤s<t≤n

(hr
st)

2] −
m∑

r=n+1

∑
1≤p<q≤n

(hr
pq)2

= −

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2.
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Likewise, we get

m∑
r=n+1

[
∑

1≤i< j≤n1

hr
iih

r
j j +

∑
n1+1≤s,t≤n

hr
ssh

r
tt −

∑
2≤p<q≤n

hr
pphr

qq]

=

m∑
r=n+1

[
n1∑

p=2

n∑
q=n1+1

hr
pphr

qq −

n1∑
j=2

hr
11hr

j j].

Utilizing above two values in (4.14), we get

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1 +

3 f2

2
− (n2 + 1) f3

−
1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + . . . hr
nn))2

−

m∑
r=n+1

[
n1∑

p=1

n∑
q=n1+1

(hr
pq)2 +

n1∑
b=2

hr
11hr

bb −

n1∑
p=2

n∑
q=n1+1

hr
pphr

qq].

(4.15)

Since Mn = Nn1
T ×ψ Nn2

⊥ is Nn1
T -minimal then we can observe the following

m∑
r=n+1

n1∑
p=2

n∑
q=n1+1

hr
pphr

qq = −

m∑
r=n+1

n∑
q=n1+1

hr
11hr

qq (4.16)

and
m∑

r=n+1

n1∑
b=2

hr
11hr

bb = −

m∑
r=n+1

(hr
11)2. (4.17)

Simultaneously, we can conclude

1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + · · · + hr
nn))2 +

m∑
r=n+1

n∑
q=n1+1

hr
11hr

qq

= 2
m∑

r=n+1

(hr
11)2 +

1
2

n2‖H‖2.

(4.18)

Using (4.16) and (4.17) in (4.15), after the assessment of (4.18), we finally get

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1 +

3 f2

2
− (n2 + 1) f3

−
1
4

m∑
r=n+1

n∑
q=n1+1

(hr
qq)2 −

m∑
r=n+1

{(hr
11)2 −

n∑
q=n1+1

hr
11hr

qq

+
1
4

(hr
n1+1n1+1 + · · · + hr

nn)2}.
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Further, using the fact that
∑m

r=n+1(hr
n1+1n1+1 + · · · + hr

nn) = n2‖H‖2, we get

Ric(χ) ≤
1
4

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1 +

3 f2

2
− (n2 + 1) f3

−
1
4

m∑
r=n+1

(2hr
11 −

n∑
q=n1+1

hr
qq)2.

From the above inequality, we can conclude the inequality (4.1).
Option 2: If ea is tangent to Nn2

⊥ , then we select the unit vector from {en1+1, . . . , en}, suppose that the
unit vector is en i.e., χ = en. Then from (2.2), (2.5) and (2.6), we have∑

1≤p<q≤n−1

κ̄p,q =
f1

2
((n − 1)(n − 2)) +

f2

2
(3(n1 − 1)) −

f3

2
(2(n − 2)). (4.19)

π̄(Nn1
T ) =

f1

2
(n1(n1 − 1)) +

f2

2
(3(n1 − 1)) −

f3

2
(2(n − 1)).

π̄(Nn2
⊥ ) =

f1

2
(n2(n2 − 1)).

Now, in a similar way as in option 1 using (4.19), we have

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
−

1
2

m∑
r=n+1

((hr
n1+1n1+1 + . . . hr

nn) − 2hr
nn)2

−

m∑
r=n+1

∑
1≤p<q≤n1

(hr
pq)2 +

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2 −
∑

1≤i< j≤n1

hr
iih

r
j j]

+

m∑
r=n+1

∑
n1+1≤s<t≤n

(hr
st)

2 +

m∑
r=n+1

[
∑

n1+1≤s<t≤n

(hr
i j)

2 −
∑

n1+1≤s<t≤n

hr
ssh

r
tt]

+

m∑
r=n+1

∑
1≤p<q≤n−1

hr
pphr

qq + (n + n1n2 − 1) f1 − (n2 + 1) f3.

(4.20)

Using similar steps of option i, the above inequality takes the form

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1 − (n2 + 1) f3

−
1
2

m∑
r=n+1

((hr
n1+1n1+1 + . . . hr

nn) − 2hr
nn)2

−

m∑
r=n+1

[
n1∑

p=1

n∑
q=n1+1

(hr
pq)2 +

n−1∑
b=n1+1

hr
nnhr

bb −

n1∑
p=1

n−1∑
q=n1+1

hr
pphr

qq].

(4.21)

By the Lemma 3.1, one can observe that

m∑
r=n+1

n1∑
p=1

n−1∑
q=n1+1

hr
pphr

qq = 0. (4.22)
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Utilizing this in (4.21), we get

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1 − (n2 + 1) f3

−
1
2

m∑
r=n+1

((hr
n1+1n1+1 + . . . hr

nn) − 2hr
nn)2

−

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2 −

m∑
r=n+1

n−1∑
b=n1+1

hr
nnhr

bb.

(4.23)

The last term of the above inequality can be written as

−

m∑
r=n+1

n−1∑
b=n1+1

hr
nnhr

bb = −

m∑
r=n+1

n∑
b=n1+1

hr
nnhr

bb +

m∑
r=n+1

(hr
nn)2

Moreover, the fifth term on right hand side of (4.23) can be expanded as

−
1
2

m∑
r=n+1

((hr
n1+1n1+1 + · · · + hr

nn) − 2hr
nn)2 =

−
1
2

m∑
r=n+1

(hr
n1+1n1+1 + · · · + hr

nn)2

− 2
m∑

r=n+1

(hr
nn)2 +

m∑
r=n+1

n∑
j=n1+1

hr
nnhr

j j.

Using last two values in (4.23), we have

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1 − (n2 + 1) f3

−
1
2

m∑
r=n+1

(hr
n1+1n1+1 + . . . hr

nn)2 − 2
m∑

r=n+1

(hr
nn)2

+ 2
m∑

r=n+1

n∑
j=n1+1

hr
nnhr

j j −

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2

−

m∑
r=n+1

n∑
b=n1+1

hr
nnhr

bb +

m∑
r=n+1

(hr
nn)2,

or equivalently

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1 − (n2 + 1) f3

−
1
2

m∑
r=n+1

(hr
n1+1n1+1 + . . . hr

nn)2 −

m∑
r=n+1

(hr
nn)2

+

m∑
r=n+1

n∑
j=n1+1

hr
nnhr

j j −

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2
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On applying similar techniques as in the proof of option 1, we arrive at

Ric(χ) ≤
1
4

n2‖H‖2 −
n2∆ψ

ψ
+ (n + n1n2 − 1) f1 − (n2 + 1) f3

−
1
4

m∑
r=n+1

(hr
nn − (hr

n1+1n1+1 + · · · + hr
nn))2,

which gives the inequality (4.2).
Next, we explore the equality cases of the inequality (4.1). First, we redefine the notion of the

relative null space Nx of the submanifold Mn in the generalized Sasakian space form M̄m( f1, f2, f3) at
any point x ∈ Mn, the relative null space was defined by B. Y. Chen [14], as follows

Nx = {X ∈ TxMn : h(X,Y) = 0,∀Y ∈ TxMn}.

For A ∈ {1, . . . , n} a unit vector field eA tangent to Mn at x the equality sign of (4.1) holds identically
iff

(i)
n1∑

p=1

n∑
q=n1+1

hr
pq = 0 (ii)

n∑
b=1

n∑
A=1
b,A

hr
bA = 0 (iii) 2hr

AA =

n∑
q=n1+1

hr
qq,

such that r ∈ {n + 1, . . .m} the condition (i) indicates that Mn is mixed totally geodesic contact
CR-warped product submanifold. Combining statements (ii) and (iii) with the fact that Mn is contact
CR-warped product submanifold, we get that the unit vector field χ = eA belongs to the relative null
space Nx. The converse is straightforward and statement (2) is proved.

For a contact CR-warped product submanifold, the equality satisfies in (4.1)if for all unit tangent
vector belong to NT at x iff

(i)
n1∑

p=1

n∑
q=n1+1

hr
pq = 0 (ii)

n∑
b=1

n1∑
A=1
b,A

hr
bA = 0 (iii) 2hr

pp =

n∑
q=n1+1

hr
qq, (4.24)

where p ∈ {1, . . . , n1} and r ∈ {n + 1, . . . ,m}. Since Mn is contact CR-warped product submanifold, the
third condition says that hr

pp = 0, p ∈ {1, . . . , n1}. Using this in the condition (ii), we shall say that
Mn is D−totally geodesic contact CR-warped product submanifold in M̄m( f1, f2, f3) and mixed totally
geodesicness inheres from the condition (i). Which demonstrates (a) in (3).

For a contact CR-warped product submanifold, the equality sign of (4.1) holds identically for all unit
tangent vector fields tangent to N⊥ at x if and only if

(i)
n1∑

p=1

n∑
q=n1+1

hr
pq = 0 (ii)

n∑
b=1

n∑
A=n1+1

b,A

hr
bA = 0 (iii) 2hr

KK =

n∑
q=n1+1

hr
qq, (4.25)

such that K ∈ {n1 + 1, . . . , n} and r ∈ {n + 1, . . . ,m}. From the condition (iii) two cases emerge, that
is

hr
KK = 0, ∀K ∈ {n1 + 1, . . . , n} and r ∈ {n + 1, . . . ,m} or dim N⊥ = 2.

If the first case of (4.25) is satisfied, then by virtue of condition (ii), it is easy to conclude that Mn is a
D⊥− totally geodesic contact CR-warped product submanifold in M̄m(c). This is the first case of part
(b) of statement (3).
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On the other hand, let Mn is not D⊥−totally geodesic contact CR-warped product submanifold and
dim N⊥ = 2. Then condition (ii) of (4.25) implies that Mn is D⊥− totally umbilical contact CR-warped
product submanifold in M̄m( f1, f2, f3), it is case second of the present part. Thus part (b) of (3) is
verified.

To prove (c) using parts (a) and (b) of (3), we combine (4.24) and (4.25). For the first case of this
part, assume that dimN⊥ , 2. Since from parts (a) and (b) of (3) we conclude that Mn is D−totally
geodesic and D⊥− totally geodesic submanifold in M̄m( f1, f2, f3). Therefore, Mn is a totally geodesic
submanifold in M̄m(c).

Another case, suppose that first case does not satisfies. Then parts (a) and (b) provide that Mn is
mixed totally geodesic and D− totally geodesic submanifold of M̄m( f1, f2, f3) with dimN⊥ = 2. From
the condition (b) it is clear that Mn is D⊥−totally umbilical contact CR-warped product submanifold
and from (a) it is D−totally geodesic, which is part (c). This proves the theorem.

In view of (2.10), we have another version of the theorem 4.1 as follows.

Theorem 4.2. Let Mn = Nn1
T ×ψ Nn2

⊥ be a contact CR-warped product submanifold isometrically
immersed in a generalized Sasakian space form M̄m( f1, f2, f3) admitting nearly Sasakian structure.
Then for each orthogonal unit vector field χ ∈ TxM orthogonal to ξ, either tangent to NT or N⊥ the
Ricci curvature satisfies the following inequalities:

(i) If χ is tangent to NT , then

Ric(χ) ≤
1
4

n2‖H‖2 − n2∆lnψ + n2‖∇lnψ‖2 + (n + n1n2 − 1) f1 +
3 f2

2
− (n2 + 1) f3.

(4.26)

(ii) If χ is tangent to N⊥, then

Ric(χ) ≤
1
4

n2‖H‖2 − n2∆lnψ + n2‖∇lnψ‖2 + (n + n1n2 − 1) f1

− (n2 + 1) f3.
(4.27)

The equality cases are similar as in the theorem 4.1.

Remark 4.3. In particular, it is straightforward to see that the example given in Proposition 3.3 of [26]
satisfies the inequalities of Theorem 4.2.

5. Application of Obata’s differential equation

This section is based on the study of Obata [26]. Basically, Obata characterized a Riemannian
manifolds by a specific ordinary differential equation and derived that an n−dimensional complete and
connected Riemannian manifold (Mn, g) to be isometric to the n-dimensional sphere if and only if
there exists a non-constant smooth function τ on Mn that is the solution of the differential equation
Hτ = −cτg, where Hτ is the Hessian of τ. Moreover, for the warped product submanifolds the Obata’s
differential equation is used in ( [3,25]). Recently, Alodan et al. [4] applied Obata’s work in the study of
hypersurface of Sasakian manifold. Inspired by these studies, we obtain the following characterization.
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Theorem 5.1. Let Mn = Nn1
T ×ψ Nn2

⊥ be a compact orientable contact CR-warped product submanifold
isometrically immersed in a generalized Sasakian space form Mm( f1, f2, f3) admitting nearly Sasakian
structure with positive Ricci curvature and satisfying one of the following relation:

(i) χ ∈ T NT orthogonal to ξ and

‖Hessτ‖2 = −
3λ1n2

4n1n2
‖H‖2 −

3λ1

n1n2

[
(n + n1n2 − 1) f1 +

3 f2

2
− (n2 + 1) f3

]
(5.1)

(ii) χ ∈ T N⊥ and

‖Hessτ‖2 = −
3λ1n2

4n1n2
‖H‖2 −

3λ1

n1n2

[
(n + n1n2 − 1) f1 − (n2 + 1) f3

]
, (5.2)

where λ1 > 0 is an eigenvalue of the warping function τ = lnψ. Then the base manifold Nn1
T is isometric

to the sphere S n1(λ1
n1

) with constant sectional curvature λ1
n1

.

Proof. Let χ ∈ T NT . Consider that τ = lnψ and define the following relation as

‖Hessτ − tτI‖2 = ‖Hessτ‖2 + t2τ2‖I‖2 − 2tτg(Hessτ, I). (5.3)

But we know that ‖I‖2 = trace(II∗) = p, where p is a real number and

g(Hess(τ), I∗) = trace(Hessτ, I∗) = traceHess(τ).

Then Eq (5.3) transform to

‖Hessτ − tτI‖2 = ‖Hessτ‖2 + pt2τ2 − 2tτ∆τ.

Assuming λ1 is an eigenvalue of the eigen function τ then ∆τ = λ1τ. Thus we get

‖Hessτ − tτI‖2 = ‖Hessτ‖2 + (pt2 − 2tλ)τ2. (5.4)

On the other hand, we obtain ∆τ2 = 2τ∆τ + ‖∇τ‖2 or λ1τ
2 = 2λ1τ

2 + ‖∇τ‖2 which implies that
τ2 = − 1

λ1
‖∇τ‖2, using this in Eq (5.4), we have

‖Hessτ − tτI‖2 = ‖Hessτ‖2 + (2t −
pt2

λ1
)‖∇τ‖2. (5.5)

In particular t = −λ1
n1

on (5.5) and integrating with respect to dV∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV =

∫
Mn
‖Hessτ‖2dV −

3λ1

n1

∫
Mn
‖∇τ‖2dV. (5.6)

Integrating the inequality (4.26 ) and using the fact
∫

Mn ∆φdV = 0, we have∫
Mn

Ric(χ)dV ≤
n2

4

∫
Mn
‖H‖2dV + n2

∫
Mn
‖∇τ‖2dV+

+ [(n + n1n2 − 1) f1 −
3 f2

2
− (n2 + 1) f3]Vol(Mn).

(5.7)
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From (5.6) and (5.7) we derive

1
n2

∫
Mn

Ric(χ)dV ≤
n2

4n2

∫
Mn
‖H‖2dV −

n1

3λ1

∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV

+
n1

3λ1

∫
Mn
‖Hessτ‖2dV +

1
n2

[(n + n1n2 − 1) f1

+
3 f2

2
− (n2 + 1) f3]Vol(Mn).

According to assumption Ric(χ) ≥ 0, the above inequality gives∫
Mn
‖Hessτ +

λ1

n1
φI‖2dV ≤

3n2λ1

4n1n2

∫
Mn
‖H‖2dV +

∫
Mn
‖Hessτ‖2dV

−
3λ1

n1n2
[(n + n1n2 − 1) f1 +

3 f2

2
− (n2 + 1) f3]Vol(Mn).

From (5.1), we get ∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV ≤ 0.

But we know that ∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV ≥ 0.

Combining last two statements, we get∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV = 0⇒ Hessτ = −

λ1

n1
τI. (5.8)

Since the warping function τ = lnψ is not constant function on Mn so equation (5.8) is Obata’s
differential equation [26] with constant c = λ1

n1
> 0. As λ1 > 0 and therefore the base submanifold Nn1

T

is isometric to the sphere S n1(λ1
n1

) with constant sectional curvature λ1
n1

. This proves the theorem. �

Acknowledgments

The authors are highly thankful to anonymous referees for theirs valuable suggestions and comments
which have improved the contents of the paper.

Conflict of interest

The authors declare that they have no Competing interests.

References

1. P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian space forms, Isr. J. Math., 141 (2004),
157–183.

AIMS Mathematics Volume 6, Issue 3, 2132–2151.



2150

2. A. Ali, L. I. Piscoran, A. H. Alkhalidi, Ricci curvature on warped product submanifolds in spheres
with geometric applications, J. Geom. Phys., 146 (2019), 1–17.

3. R. Ali, F. Mofarreh, N. Alluhaibi, A. Ali, I. Ahmad, On differential equations characterizing
Legendrian submanifolds of Sasakian space forms, Mathematics, 8 (2020), 150.

4. H. Alodan, S. Deshmukh, N. B. Turki, G. E. Vilcu, Hypersurfaces of a Sasakian space forms,
Mathematics, 8 (2020), 877.

5. M. Atceken, Contact CR-warped product submanifolds in Sasakian space forms, Hacet. J. Math.
Stat., 44 (2015), 23–32.

6. M. Aquib, J. W. Lee, G. E. Vilcu, W. Yoon, Classification of Casorati ideal Lagrangian
submanifolds in complex space forms, Differ. Geom. Appl., 63 (2019), 30–49.

7. D. E. Blair, S. I. Goldberg, Topology of almost contact manifolds, J. Differ. Geom., 1 (1967),
347–354.

8. D. E. Blair, Contact manifolds in Riemannian geometry, Berlin-New York: Springer-Verlag, 1976.

9. D. E. Blair, D. K. Showers, K. Yano, Nearly Sasakian structures, Kodai Mathematical Seminar
Report, 27 (1976), 175–180.

10. J. K. Beem, P. Ehrlich, T. G. Powell, Warped product manifolds in relativity Selected studies,
Amsterdam-New York: North-Holland, 1982.

11. R. L. Bishop, B. O. Neill, Manifolds of negative curvature, T. Am. Math. Soc., 145 (1969), 1–9.

12. D. Cioroboiu, B.-Y. Chen inequalities for semislant submanifolds in Sasakian space forms, Int. J.
Math. Math. Sci., 27 (2003), 1731–1738.

13. B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, Monatsh
Mathematics, 133 (2001), 177–195.

14. B. Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary
codimension, Glasgow Math. J., 41 (1999), 33–41.

15. B. Y. Chen, Differential geometry of warped product manifolds and submanifolds, Singapore:
World Scientific Publishing Company, 2017.

16. B. Y. Chen, F. Dillen, L. Verstraelen, L. OzgurVrancken, Characterization of Riemannian space
forms, Einstein spaces and conformally flate spaces, P. Am. Math. Soc., 128 (2000), 589–598.

17. B. Y. Chen, Geometry of warped product submanifolds a survey, Journal of Advanced
Mathematical Studies, 6 (2013), 143.

18. S. Deshmukh, I. Aldayel, A note on nearly Sasakian and nearly cosymplectic structures of 5-
dimensional spheres, Int. Electron. J. Geom., 11 (2018), 90–95.

19. I. Hasegawa, I. Mihai, Contact CR-warped product submanifolds in Sasakian manifolds,
Geometriae Dedicata, 102 (2003), 143–150.

20. A. A. Ishan, M. A. Khan, Contact CR-warped product submanifolds of a generalized Sasakian
space form admitting a nearly Sasakian structure, J. Nonlinear Sci. Appl., 12 (2009), 440–449.

21. A. Mihai, C. Ozgur, Chen inequalities for submanifolds of real space forms with a semi-symmetric
metric connection, Taiwan. J. Math., 14 (2010), 1465–1477.

AIMS Mathematics Volume 6, Issue 3, 2132–2151.



2151

22. I. Mihai, Contact CR-warped product submanifolds in Sasakian space forms, Geometriae
Dedicata, 109 (2004), 165–173.

23. I. Mihai, Ricci curvature of submanifolds in Sasakian space forms, J. Aust. Math. Soc., 72 (2002),
247–256.

24. K. Matsumoto, On contact CR-submanifolds of Sasakian manifolds, Int. J. Math. Math. Sci., 6
(1993), 313–326.

25. N. Ginoux, G. Habib, M. Pilca, U. Semmelmann, An Obata-type characterization of doubly warped
product Kaehler manifolds, arXiv:2002.08808.

26. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math.
Soc. JPN, 14 (1962), 333–340.

27. B. O’Neill, Semi-Riemannian geometry with application to relativity, Academic Press, 1983.

28. S. Sular, C. Ozgur, Contact CR-warped product submanifolds in generalized Sasakian space forms,
Turk. J. Math., 36 (2012), 485–497.

29. D. W. Yoon, Inequality for Ricci curvature of slant submanifolds in cosymplectic space forms,
Turk. J. Math., 30 (2006), 43–56.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 3, 2132–2151.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Some basic results
	Contact CR-warped product submanifolds
	Ricci curvature for contact CR-warped product submanifold
	Application of Obata's differential equation

