Mathematics

Research article

Multivalued weakly Picard operators via simulation functions with application to functional equations

Azhar Hussain ${ }^{1}$, Saman Yaqoob ${ }^{2}$, Thabet Abdeljawad ${ }^{3,4,5 *}$ and Habib Ur Rehman ${ }^{6}$
${ }^{1}$ Department of Mathematics, University of Sargodha, Sargodha-40100, Pakistan
${ }^{2}$ Department of Mathematics, University of Gujrat, Sub-Campus Mandi Bahauddin, Pakistan
${ }^{3}$ Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia
${ }^{4}$ Department of Medical Research, China Medical University Taiwan, Taichung, Taiwan
${ }^{5}$ Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
${ }^{6}$ Department of Mathematics, King Mongkut University of Technology Thonburi, Bangkok 10140, Thailand

* Correspondence: Email: tabdeljawad@psu.edu.sa.

Abstract

The aim of this paper is to introduce the notion of Suzuki type multivalued contraction with simulation functions and then to set up some new fixed point and data dependence results for these type of contraction mappings. We produce an example to support our results. Moreover, we present an application to functional equation arising in dynamical system.

Keywords: multivalued Picard operator; data dependence; Z-contraction; functional equation; dynamical system
Mathematics Subject Classification: 55M20, 47 H 10

1. Introduction and preliminaries

We pronounce (\mathcal{N}, \wp) a metric space, the classes $\mathcal{P}(\mathcal{N})$ and $C \mathcal{B}(\mathcal{N})$ of all nonempty, closed and bounded subsets of \mathcal{N}.

If $\mathcal{U}, \mathcal{V} \in C \mathcal{B}(\mathcal{N})$, review the functionals:
$\mathcal{D}: \mathcal{P}(\mathcal{N}) \times \mathcal{P}(\mathcal{N}) \rightarrow \mathbb{R}_{+}, \mathcal{D}(\mathcal{W}, \mathcal{V})=\inf \{\wp(\omega, \lambda): \omega \in \mathcal{W}, \lambda \in \mathcal{V}\}, \mathcal{W} \subset \mathcal{N} ;$
$\mathcal{H}: \mathcal{P}(\mathcal{N}) \times \mathcal{P}(\mathcal{N}) \rightarrow \mathbb{R}_{+}, \mathcal{H}(\mathcal{U}, \mathcal{V}):=\max \left\{\sup _{u \in \mathcal{U}} \inf _{v \in \mathcal{V}} \wp(u, v), \sup _{v \in \mathcal{V}} \inf _{u \in \mathcal{U}} \wp(u, v)\right\}$ - the Pompeiu- Hausdorff functional.

Lemma 1.1. [12] Suppose $\mathcal{U} \subseteq \mathcal{N}$ and $\xi>1$. Then for $\mu \in \mathcal{N}$ there is $v \in \mathcal{V}$ such that $\wp(\mu, v) \leq$ $\xi \mathcal{D}(\mu, \mathcal{V})$.

Definition 1.2. [16] A function $Q: \mathcal{N} \rightarrow C \mathcal{B}(\mathcal{N})$ is called multi-valued weakly Picard operator (MWP operator) if for all $\mu \in \mathcal{N}$ and $\mu \in Q \mu$, there is a sequence (μ_{m}) in \mathcal{N} such that (i) $\mu_{0}=\mu, \mu_{1}=\lambda$, (ii) $\mu_{n+1} \in Q \mu_{m} \forall m \geq 0$, and (iii) $\left(\mu_{m}\right)$ tends to the fixed point of Q.

Utilizing the approach of Rus [16], Popescu [13] defined a multivalued operator and named it as (s, r)-contractive multivalued and siglevalued operators and showed that the underlying mapping is an MWP operator. Following Popescu [13], Kamran [9] extended (s, r)-contractive operators to weakly (s, r)-contractive operators and proved that the underlying mappings are still MWP operators.

A new generalization of Banach's theorem was given by Khojasteh et al. [11] by considering a function $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$, which follows the assertions given below:
$\left(\zeta_{a}\right) \zeta(0,0)=0$,
($\left.\zeta_{b}\right) \zeta(\alpha, \beta)<\beta-\alpha$ for all $\alpha, \beta>0$,
$\left(\zeta_{c}\right)$ The sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ in $(0, \infty)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}>0$, then

$$
\lim _{n \rightarrow \infty} \sup \zeta\left(\alpha_{n}, \beta_{n}\right)<0
$$

They named such functions as simulation function and the contractive map is named as \mathcal{Z}-contraction. Later on, Roldán-López-de-Hierro et al. [15] replaced $\left(\zeta_{c}\right)$ with $\left(\zeta_{c}^{\prime}\right)$, $\left(\zeta_{c}^{\prime}\right):$ the sequences $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ in $(0, \infty)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}>0$ and $\alpha_{n}<\beta_{n}$, then

$$
\lim _{n \rightarrow \infty} \sup \zeta\left(\alpha_{n}, \beta_{n}\right)<0
$$

The lemma stated below is essential:
Lemma 1.3. [14] Suppose a sequence $\left(\mu_{n}\right)$ in \mathcal{N} with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \wp\left(\mu_{n}, \mu_{n+1}\right)=0 . \tag{1.1}
\end{equation*}
$$

If the sequence is not a Cauchy, then $\exists \varepsilon>0$ and sequences $\mu_{m(j)}$ and $\mu_{n(j)}$ such that $n(j)>m(j)>j$ and the sequences

$$
\begin{gathered}
\wp\left(\mu_{m(j)}, \mu_{n(j)}\right), \wp\left(\mu_{m(j)}, \mu_{n(j)+1}\right), \wp\left(\mu_{m(j)-1}, \mu_{n(j)}\right), \\
\wp\left(\mu_{m(j)-1}, \mu_{n(j)+1}\right), \wp\left(\mu_{m(j)+1}, \mu_{n(j)+1}\right)
\end{gathered}
$$

converges to ε^{+}when $k \rightarrow \infty$
The purpose of this paper is to introduce the notion of Suzuki type multivalued $\mathcal{Z}_{(\phi, \lambda)}$-contraction and to prove the fixed point and data dependence results for such contraction mapping. We give an example to show the validity of our results. Moreover, we present an application to functional equation arising in dynamical system to show the usability of our results.

2. Fixed point results

We now give the definition of Suzuki type multivalued $\mathcal{Z}_{(\phi, \lambda)}$-contraction and obtain some fixed point results.

We start this section with the following notion:
Denote Φ the set consisting of all strictly increasing functions $\varphi:[0,1) \rightarrow(0,1]$. We define

$$
\varphi(s)= \begin{cases}\frac{1}{s+1} & \text { if } 0 \leq s<\frac{1}{2} \\ 1-s & \text { if } \frac{1}{2} \leq s<1\end{cases}
$$

Definition 2.1. A mapping $Q: \mathcal{N} \rightarrow \mathcal{C B}(\mathcal{N})$ is called Suzuki type multivalued $\mathcal{Z}_{(\varphi, \lambda)}$-contraction with respect to ζ, if there is a function $\varphi \in \Phi$ such that

$$
\begin{equation*}
\varphi(s) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(\lambda, Q \mu)\right\} \leq \wp(\mu, \lambda) \tag{2.1}
\end{equation*}
$$

implies

$$
\begin{equation*}
\zeta(\mathcal{H}(Q \mu, Q \lambda), \rho \mathcal{R}(\mu, \lambda)) \geq 0 \tag{2.2}
\end{equation*}
$$

where $\rho \in[0,1)$, and

$$
\mathcal{R}(\mu, \lambda)=\max \left\{\wp(\mu, \lambda), \mathcal{D}(\mu, Q \mu), \mathcal{D}(\lambda, Q \lambda), \frac{1}{2}(\mathcal{D}(\mu, Q \lambda)+\mathcal{D}(\lambda, Q \mu))\right\} .
$$

Theorem 2.2. Suppose that $Q: \mathcal{N} \rightarrow C \mathcal{B}(\mathcal{N})$ is Suzuki type multivalued $\mathcal{Z}_{(\varphi, \rho)}$-contraction, where (\mathcal{N}, \wp) is a complete metric space. Then Q is an MWP operator.

Proof. Choose $\mu_{0} \in X, \mu_{1} \in Q \mu_{0}$ and ρ_{1} be real number such that $0 \leq \rho \leq s \leq \rho_{1}<1$. One can choose $\mu_{2} \in Q \mu_{1}$ such that

$$
\wp\left(\mu_{1}, \mu_{2}\right) \leq \frac{1}{\sqrt{\rho_{1}}} H\left(Q \mu_{0}, Q \mu_{1}\right) .
$$

Since

$$
\begin{align*}
\varphi(s) \max \left\{\mathcal{D}\left(\mu_{0}, Q \mu_{0}\right), \frac{1}{2} \mathcal{D}\left(\mu_{1}, Q \mu_{0}\right)\right\} & \leq \varphi(s) \mathcal{D}\left(\mu_{0}, Q \mu_{0}\right) \\
& \leq \wp\left(\mu_{0}, \mu_{1}\right), \tag{2.3}
\end{align*}
$$

from (2.1) and (2.2), we have

$$
0 \leq \zeta\left(\mathcal{H}\left(Q \mu_{0}, Q \mu_{1}\right), \rho \mathcal{R}\left(\mu_{0}, \mu_{1}\right)\right) \leq \rho \mathcal{R}\left(\mu_{0}, \mu_{1}\right)-\mathcal{H}\left(Q \mu_{0}, Q \mu_{1}\right)
$$

this implies

$$
\mathcal{H}\left(Q \mu_{0}, Q \mu_{1}\right) \leq \rho \mathcal{R}\left(\mu_{0}, \mu_{1}\right),
$$

where

$$
\begin{aligned}
\mathcal{R}\left(\mu_{0}, \mu_{1}\right) & =\max \left\{\wp\left(\mu_{0}, \mu_{1}\right), \mathcal{D}\left(\mu_{0}, Q \mu_{0}\right), \mathcal{D}\left(\mu_{1}, Q \mu_{1}\right), \frac{\mathcal{D}\left(\mu_{0}, Q \mu_{1}\right)+\mathcal{D}\left(\mu_{1}, Q \mu_{0}\right)}{2}\right\} \\
& =\max \left\{\wp\left(\mu_{0}, \mu_{1}\right), \mathcal{D}\left(\mu_{1}, Q \mu_{1}\right), \frac{\mathcal{D}\left(\mu_{0}, Q \mu_{1}\right)}{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \max \left\{\wp\left(\mu_{0}, \mu_{1}\right), \wp\left(\mu_{1}, \mu_{2}\right), \frac{\wp\left(\mu_{0}, \mu_{1}\right)+\wp\left(\mu_{1}, \mu_{2}\right)}{2}\right\} \\
& =\max \left\{\wp\left(\mu_{0}, \mu_{1}\right), \wp\left(\mu_{1}, \mu_{2}\right)\right\} .
\end{aligned}
$$

If $\mathcal{R}\left(\mu_{0}, \mu_{1}\right) \leq \wp\left(\mu_{1}, \mu_{2}\right)$, then

$$
\begin{aligned}
\wp\left(\mu_{1}, \mu_{2}\right) & \leq \frac{1}{\sqrt{\rho_{1}}} \mathcal{H}\left(Q \mu_{0}, Q \mu_{1}\right) \\
& \leq \frac{\rho}{\rho_{1}} \mathcal{R}\left(\mu_{0}, \mu_{1}\right) \\
& \leq \sqrt{\rho_{1}} \wp\left(\mu_{1}, \mu_{2}\right) .
\end{aligned}
$$

This implies $\wp\left(\mu_{1}, \mu_{2}\right)=0$ or $\mu_{1}=\mu_{2} \in Q \mu_{1}$, i.e. μ_{1} is a fixed point. So, we consider the case when $\mathcal{R}\left(\mu_{0}, \mu_{1}\right) \leq \wp\left(\mu_{0}, \mu_{1}\right)$, this gives

$$
\wp\left(\mu_{1}, \mu_{2}\right) \leq \sqrt{\rho_{1}} \wp\left(\mu_{0}, \mu_{1}\right)<\wp\left(\mu_{0}, \mu_{1}\right) .
$$

Hence we can recursively define a sequence $\left(\mu_{n}\right)$ such that $\mu_{n+1} \in Q \mu_{n}$ and

$$
\wp\left(\mu_{n+1}, \mu_{n+2}\right)<\wp\left(\mu_{n}, \mu_{n+1}\right)
$$

which implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \wp\left(\mu_{n}, \mu_{n+1}\right)=0 . \tag{2.4}
\end{equation*}
$$

To prove that $\left(\mu_{n}\right)$ is Cauchy, contrary suppose that it is not, then by Lemma 1.3, there is $\epsilon>0$ and two subsequences $m(j), n(j)$ with $n(j)>m(j)>j$ such that $\wp\left(\mu_{m(j)}, \mu_{n(j)}\right) \rightarrow \epsilon^{+}, \wp\left(\mu_{m(j)+1}, \mu_{n(j)+1}\right) \rightarrow \epsilon^{+}$as $j \rightarrow \infty$ also

$$
\lim _{j \rightarrow \infty} \rho \mathcal{R}\left(\mu_{m(j)}, \mu_{n(j)}\right)=\epsilon^{+} .
$$

By (2.4), we have

$$
\begin{align*}
& \varphi(s) \max \left\{\mathcal{D}\left(\mu_{n(j)}, Q \mu_{n(j)}\right), \frac{1}{2} \mathcal{D}\left(\mu_{m(j)}, Q \mu_{n(j)}\right)\right\} \tag{2.5}\\
\leq & \max \left\{\wp\left(\mu_{n(j)}, \mu_{n(j)+1}\right), \frac{1}{2} \wp\left(\mu_{m(j)}, \mu_{n(j)+1}\right)\right\} \\
\leq & \max \left\{\wp\left(\mu_{m(j)}, \mu_{n(j)}\right)+\wp\left(\mu_{n(j)}, \mu_{n(j)+1}\right), \wp\left(\mu_{m(j)}, \mu_{n(j)+1}\right)\right\} \\
= & \wp\left(\mu_{m(j)}, \mu_{n(j)}\right)+\wp\left(\mu_{n(j)}, \mu_{n(j)+1}\right) \\
< & \wp\left(\mu_{m(j)}, \mu_{n(j)}\right), \tag{2.6}
\end{align*}
$$

thus by $(2.1),(2.2)$ and $\left(\zeta_{b}\right)$, we have

$$
\begin{align*}
0 & \leq \zeta\left(\mathcal{H}\left(Q \mu_{m(j)}, Q \mu_{n(j)}\right), \rho \mathcal{R}\left(\mu_{m(j)}, \mu_{n(j)}\right)\right) \tag{2.7}\\
& \leq \rho \mathcal{R}\left(\mu_{m(j)}, \mu_{n(j)}\right)-\mathcal{H}\left(Q \mu_{m(j)}, Q \mu_{n(j)}\right), \tag{2.8}
\end{align*}
$$

therefore, we have

$$
\wp\left(\mu_{m(j)+1}, \mu_{n(j)+1}\right) \leq \mathcal{H}\left(Q \mu_{m(j)}, Q \mu_{n(j)}\right)
$$

$$
\begin{aligned}
& \leq \rho \mathcal{R}\left(\mu_{m(j)}, \mu_{n(j)}\right) \\
& <\wp\left(\mu_{m(j)}, \mu_{n(j)}\right),
\end{aligned}
$$

hence

$$
\lim _{j \rightarrow \infty} \mathcal{H}\left(Q \mu_{m(j)}, Q \mu_{n(j)}\right)=\epsilon^{+},
$$

so by $\left(\zeta_{c}\right)$ and (2.2), we have

$$
0 \leq \lim _{j \rightarrow \infty} \sup \zeta\left(\mathcal{H}\left(Q \mu_{m(j)}, Q \mu_{n(j)}\right), \rho \mathcal{R}\left(\mu_{m(j)}, \mu_{n(j)}\right)\right)<0,
$$

this leads to a contradiction. Hence $\left(\mu_{n}\right)$ is a Cauchy sequence. Completeness of \mathcal{N} implies that there is $u \in \mathcal{N}$ such that $\lim _{n \rightarrow \infty} \mu_{n}=u$. Moreover

$$
\mathcal{D}\left(\mu_{n+1}, Q u\right) \leq \mathcal{H}\left(Q \mu_{n}, Q u\right)
$$

Our claim is

$$
\begin{equation*}
\mathcal{D}(u, Q \mu) \leq \rho \max \{\wp(u, \mu), \mathcal{D}(\mu, Q \mu)\} \tag{2.9}
\end{equation*}
$$

for all $\mu \neq u$. Since $\lim _{n \rightarrow \infty} \wp\left(u_{n}, u\right)=0$, there exists an $n_{0} \in \mathbb{N}$ such that $\wp\left(u, u_{n}\right)<\frac{1}{3} \wp(u, \mu)$ for all $n \geq n_{0}$. Note that $\varphi(s) \leq 1$ and

$$
\begin{aligned}
\varphi(s) \max \left\{\mathcal{D}\left(u_{n}, Q u_{n}\right), \frac{1}{2} \mathcal{D}\left(\mu, Q u_{n}\right)\right\} & \leq \max \left\{\mathcal{D}\left(u_{n}, Q u_{n}\right), \frac{1}{2} \mathcal{D}\left(\mu, Q u_{n}\right)\right\} \\
& \leq \max \left\{\wp\left(u_{n}, u_{n+1}\right), \frac{1}{2} \wp\left(\mu, u_{n+1}\right)\right\} \\
& \leq \max \left\{\wp\left(u_{n}, u\right)+\wp\left(u, u_{n+1}\right), \frac{1}{2}\left(\wp(\mu, u)+\wp\left(u, u_{n+1}\right)\right)\right\} \\
& \leq \max \left\{\frac{1}{3} \wp(u, \mu)+\frac{1}{3} \wp(u, \mu), \frac{1}{2}\left[\wp(\mu, u)+\frac{1}{3} \wp(u, \mu)\right]\right\} \\
& \leq \max \left\{\frac{2}{3} \wp(u, \mu), \frac{2}{3} \wp(\mu, u)\right\}=\frac{2}{3} \wp(\mu, u) \\
& =\left(\wp(u, \mu)-\frac{1}{3} \wp(u, \mu)\right) \leq\left(\wp(u, \mu)-\wp\left(u_{n}, u\right)\right) \\
& \leq \wp\left(u_{n}, \mu\right) .
\end{aligned}
$$

Thus $\varphi(s) \max \left\{\mathcal{D}\left(u_{n}, Q u_{n}\right), \frac{1}{2} \mathcal{D}\left(\mu, Q u_{n}\right)\right\} \leq \wp\left(u_{n}, \mu\right)$ holds for all $n \geq n_{0}$. From (2.1) and (2.2), we have

$$
\zeta\left(\mathcal{H}\left(Q u_{n}, Q \mu\right), \rho \mathcal{R}\left(u_{n+1}, \mu\right)\right) \geq 0,
$$

this gives

$$
\begin{align*}
\mathcal{D}\left(u_{n+1}, Q \mu\right) & \leq \mathcal{H}\left(Q u_{n}, Q \mu\right) \\
& \leq \rho \max \left\{\wp\left(u_{n}, \mu\right), \mathcal{D}\left(u_{n}, Q u_{n}\right), \mathcal{D}(\mu, Q \mu), \frac{\mathcal{D}\left(u_{n}, Q \mu\right)+\mathcal{D}\left(\mu, Q u_{n}\right)}{2}\right\} \\
& \leq \rho \max \left\{\wp\left(u_{n}, \mu\right), \wp\left(u_{n}, u_{n+1}\right), \mathcal{D}(\mu, Q \mu), \frac{\mathcal{D}\left(u_{n}, Q \mu\right)+\wp\left(\mu, u_{n+1}\right)}{2}\right\} . \tag{2.10}
\end{align*}
$$

Tending $n \rightarrow \infty$ to inequality (2.10), we arrived at

$$
\mathcal{D}(u, Q \mu) \leq \rho \max \left\{\wp(u, \mu), \mathcal{D}(\mu, Q \mu), \frac{\mathcal{D}(u, Q \mu)+\wp(\mu, u)}{2}\right\} .
$$

If

$$
\max \left\{\wp(u, \mu), \mathcal{D}(\mu, Q \mu), \frac{\mathcal{D}(u, Q \mu)+\wp(\mu, u)}{2}\right\}=\frac{\mathcal{D}(u, Q \mu)+\wp(\mu, u)}{2},
$$

then

$$
\mathcal{D}(u, Q \mu) \leq \rho\left(\frac{\mathcal{D}(u, Q \mu)+\wp(\mu, u)}{2}\right)
$$

and this implies that

$$
\mathcal{D}(u, Q \mu) \leq\left(\frac{\rho}{2-\rho}\right) \wp(\mu, u)<\rho \wp(\mu, u) \leq \rho \max \{\wp(u, \mu), \mathcal{D}(\mu, Q \mu)\} .
$$

Hence

$$
\mathcal{D}(u, Q \mu) \leq \rho \max \{\wp(u, \mu), \mathcal{D}(\mu, Q \mu)\}
$$

valid $\forall \mu \neq u$. To show that $u \in Q u$, we discus two cases:
(i) If $0 \leq r \leq s<\frac{1}{2}$. Contrary suppose that $u \notin Q u$. Since $Q u \neq \phi$, there exists $c \in Q u$ such that $c \neq u$ and

$$
\wp(c, u)<\mathcal{D}(u, Q u)+\left(\frac{1}{\rho+1}-1\right) \mathcal{D}(u, Q u) .
$$

Thus

$$
\begin{equation*}
(\rho+1) \wp(c, u)<\mathcal{D}(u, Q u) . \tag{2.11}
\end{equation*}
$$

As $\varphi(s) \max \left\{\mathcal{D}(u, Q u), \frac{1}{2} \mathcal{D}(c, Q u)\right\} \leq \max \{\wp(u, c), \wp(c, c)\} \leq \wp(u, c)$, so by (2.1) and (2.2), we have

$$
\zeta(\mathcal{H}(Q u, Q c), \rho \mathcal{R}(u, c)) \geq 0,
$$

this gives

$$
\begin{aligned}
\mathcal{H}(Q u, Q c) & \leq \rho \max \left\{\wp(u, c), \mathcal{D}(u, Q u), \mathcal{D}(c, Q c), \frac{\mathcal{D}(u, Q c)+\mathcal{D}(c, Q u)}{2}\right\} \\
& \leq \rho \max \left\{\wp(u, c), \mathcal{D}(c, Q c), \frac{[\wp(u, c)+\mathcal{D}(c, Q c)]}{2}\right\} \\
& =\rho \max \{\wp(u, c), \mathcal{D}(c, Q c)\}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\mathcal{H}(Q u, Q c) \leq \rho \max \{\wp(u, c), \mathcal{D}(c, Q c)\} . \tag{2.12}
\end{equation*}
$$

Since $\mathcal{D}(c, Q c) \leq \mathcal{H}(Q u, Q c)$, therefore, we have

$$
\mathcal{H}(Q u, Q c) \leq \rho \max \{\wp(u, c), \mathcal{H}(Q u, Q c)\},
$$

hence

$$
\begin{equation*}
\mathcal{H}(Q u, Q c) \leq \rho_{\wp}(u, c) . \tag{2.13}
\end{equation*}
$$

Since $\rho<1$, therefore

$$
\begin{equation*}
\mathcal{D}(c, Q c) \leq \wp(u, c) . \tag{2.14}
\end{equation*}
$$

By (2.9) and (2.14), we have

$$
\begin{equation*}
\mathcal{D}(u, Q c) \leq \rho \max \{\wp(u, c), \mathcal{D}(c, Q c)\}<\rho \max \{\wp(u, c), \wp(u, c)\}<\rho \wp(u, c)<\wp(u, c) . \tag{2.15}
\end{equation*}
$$

Using (2.9), (2.12), (2.13) and (2.15), we have

$$
\begin{aligned}
\mathcal{D}(u, Q u) & \leq \mathcal{D}(u, Q c)+\mathcal{H}(Q u, Q c)<\wp(u, c)+\rho \wp(u, c) \\
& =(1+\rho) \wp(u, c)<\mathcal{D}(u, Q u),
\end{aligned}
$$

a contradiction. Hence $u \in Q u$.
(ii) If $\frac{1}{2} \leq \rho \leq s<1$, then we first show that

$$
\begin{equation*}
\mathcal{H}(Q \mu, Q u) \leq \rho \mathcal{R}(\mu, u) \tag{2.16}
\end{equation*}
$$

for all $\mu \in \mathcal{N}$ with $\mu \neq u$. For each $n \in \mathbb{N}$, there exists $\lambda_{n} \in Q \mu$ such that $\wp\left(u, \lambda_{n}\right)<\mathcal{D}(u, Q \mu)+\frac{1}{n} \wp(\mu, u)$. So we have

$$
\begin{aligned}
\max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} & \leq \max \left\{\wp\left(\mu, \lambda_{n}\right), \frac{1}{2} \wp\left(u, \lambda_{n}\right)\right\} \\
& \leq \max \left\{\left(\wp(\mu, u)+\wp\left(u, \lambda_{n}\right)\right), \wp\left(u, \lambda_{n}\right)\right\} \\
& =\left(\wp(\mu, u)+\wp\left(u, \lambda_{n}\right)\right) \\
& <\left(\wp(\mu, u)+\mathcal{D}(u, Q \mu)+\frac{1}{n} \wp(\mu, u)\right) .
\end{aligned}
$$

Now by (2.9), we have

$$
\begin{equation*}
\max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\}<\left(\wp(\mu, u)+\rho \max \{\wp(u, \mu), \mathcal{D}(\mu, Q \mu)\}+\frac{1}{n} \wp(\mu, u)\right) \tag{2.17}
\end{equation*}
$$

If $\max \{\wp(u, \mu), \mathcal{D}(\mu, Q \mu)\}=\wp(\mu, u)$, then from (2.17), we obtain that

$$
\begin{aligned}
\max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} & <\left(\wp(\mu, u)+\rho \wp(u, \mu)+\frac{1}{n} \wp(\mu, u)\right) \\
& =\left(1+\rho+\frac{1}{n}\right) \wp(\mu, u) \\
& <\left(1+s+\frac{1}{n}\right) \wp(\mu, u),
\end{aligned}
$$

which gives

$$
\begin{aligned}
\varphi(s) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} & =(1-s) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} \\
& \leq\left(\frac{1}{2}\right) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\frac{1}{1+s}\right) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} \\
& <\left(\frac{1}{1+s}\right)\left(1+s+\frac{1}{n}\right) \wp(\mu, u) \\
& \leq\left(\frac{1+s}{1+s}+\frac{1}{(1+s) n}\right) \wp(\mu, u) \\
& \leq\left(1+\frac{1}{(1+s) n}\right) \wp(\mu, u) .
\end{aligned}
$$

Tending $n \rightarrow \infty$, we have

$$
\varphi(s) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} \leq \wp(\mu, u)
$$

By (2.1) with $\lambda=u$, (2.16) satisfied. If $\max \{\wp(u, \mu), \mathcal{D}(\mu, Q \mu)\}=\mathcal{D}(\mu, Q \mu)$, then (2.9) gives

$$
\begin{aligned}
\mathcal{D}(\mu, Q \mu) & \leq \wp(\mu, u)+\mathcal{D}(u, Q \mu) \\
& \leq \wp(\mu, u)+\rho \mathcal{D}(\mu, Q \mu)
\end{aligned}
$$

and hence $\mathcal{D}(\mu, Q \mu) \leq\left(\frac{1}{1-\rho}\right) \wp(\mu, u)$. By (2.17), we obtain that

$$
\begin{aligned}
\max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} & \leq\left(\wp(\mu, u)+\rho \mathcal{D}(\mu, Q \mu)+\frac{1}{n} \wp(\mu, u)\right) \\
& \leq\left(\wp(\mu, u)+\left(\frac{\rho}{1-\rho}\right) \wp(\mu, u)+\frac{1}{n} \wp(\mu, u)\right) \\
& =\left(\frac{1}{1-\rho}\right) \wp(\mu, u)+\frac{1}{n} \wp(\mu, u) .
\end{aligned}
$$

As $\frac{1}{2} \leq \rho<1$ and $\rho \leq s$, so

$$
\begin{aligned}
\varphi(s) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} & =(1-s) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} \\
& \leq(1-\rho) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} \\
& \leq(1-\rho)\left(\left(\frac{1}{1-\rho}\right) \wp(\mu, u)+\frac{1}{n} \wp(\mu, u)\right) \\
& \leq \wp(u, \mu)+\left(\frac{1-\rho}{n}\right) \wp(u, \mu) \\
& \leq \wp(u, \mu)+\left(\frac{1-\rho}{n}\right) \wp(u, \mu),
\end{aligned}
$$

tending $n \rightarrow \infty$ gives

$$
\varphi(s) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(u, Q \mu)\right\} \leq \wp(\mu, u)
$$

and thus (2.16) satisfied. Using $\mu=u_{n}$ in (2.16), we have

$$
\begin{align*}
\mathcal{D}\left(u_{n+1}, Q u\right) & \leq \mathcal{H}\left(Q u_{n}, Q u\right) \\
& \leq \rho \max \left\{\wp\left(u_{n}, u\right), \mathcal{D}\left(u_{n}, Q u_{n}\right), \mathcal{D}(u, Q u), \frac{\mathcal{D}\left(u_{n}, Q u\right)+\mathcal{D}\left(u, Q u_{n}\right)}{2}\right\} \\
& \leq \rho \max \left\{\wp\left(u_{n}, u\right), \wp\left(u_{n}, u_{n+1}\right), \mathcal{D}(u, Q u), \frac{\mathcal{D}\left(u_{n}, Q u\right)+\wp\left(u, u_{n+1}\right)}{2}\right\} . \tag{2.18}
\end{align*}
$$

Tending $n \rightarrow \infty$ to inequality (2.18), we arrived at

$$
\mathcal{D}(u, Q u) \leq \rho \mathcal{D}(u, Q u)
$$

which further gives that $\mathcal{D}(u, Q u)=0$, that is, $u \in Q u$.

For the case of single-valued Suzuki type $\mathcal{Z}_{(\varphi, \rho)}$-contraction, we have the following result:
Theorem 2.3. Assume that $Q: \mathcal{N} \rightarrow \mathcal{N}$ be Suzuki type $\mathcal{Z}_{(\varphi, \rho)}$-contraction on a complete metric space (\mathcal{N}, \wp), then \mathcal{N} is an MWP operator and has a unique fixed point.

Proof. By Theorem 2.2, Q is an MWP operator. Let $\mu \neq \lambda$ be two fixed points of Q, then

$$
\varphi(s) \max \left\{\wp(\mu, Q \mu), \frac{1}{2} \wp(\lambda, Q \mu)\right\}=\varphi(s) \frac{1}{2} \wp(\mu, \lambda)<\wp(\mu, \lambda)
$$

this implies

$$
\begin{aligned}
0 & \leq \zeta(\wp(Q \mu, Q \lambda), \rho \mathcal{R}(\mu, \lambda)) \\
& =\zeta(\wp(\mu, \lambda), \rho \wp(\mu, \lambda)) \\
& \leq \rho \wp(\mu, \lambda)-\wp(\mu, \lambda)
\end{aligned}
$$

this gives

$$
\wp(\mu, \lambda) \leq \rho \wp(\mu, \lambda),
$$

which is not possible, hence $\wp(\mu, \lambda)=0$. Thus Q possesses a unique fixed point.

Example 2.1. Let $\mathcal{N}=\{0,1,2,3\}$ and $\wp(\mu, \lambda)=|\mu-\lambda|$. Define $Q: \mathcal{N} \rightarrow \mathcal{C}(\mathcal{N})$ by

$$
Q \mu= \begin{cases}\{0,2\} & \text { if } \mu \neq 3, \\ \{1\} & \text { if } \mu=3 .\end{cases}
$$

Now for $\mu, \lambda \in \mathcal{N}$ with $\mu \neq \lambda$, we have

(μ, λ)	$\wp(\mu, \lambda)$	$\mathcal{D}(\mu, Q \mu)$	$\mathcal{D}(\lambda, Q \mu)$	$\mathcal{H}(Q \mu, Q \lambda)$	$R(\mu, \lambda)$
$(0,1)$	1	0	1	0	1
$(0,2)$	2	0	0	0	2
$(0,3)$	3	0	1	1	3
$(1,0)$	1	1	0	0	1
$(1,2)$	1	1	0	0	1
$(1,3)$	2	1	1	1	2
$(2,0)$	2	0	0	0	2
$(2,1)$	1	0	1	0	1
$(2,3)$	1	0	1	1	2
$(3,0)$	3	2	1	1	3
$(3,1)$	2	2	0	1	2
$(3,2)$	1	2	1	1	2

So $\max \{\mathcal{D}(\mu, Q \mu): \mu \in \mathcal{N}\}=2, \max \{\mathcal{D}(\lambda, Q \mu): \mu, \lambda \in \mathcal{N}\}=1$ and $\min \{\wp(\mu, \lambda): \mu, \lambda \in \mathcal{N}\}=1$. Now for $s=0.6, \varphi(s)=0.4$ and

$$
\varphi(s) \max \left\{\mathcal{D}(\mu, Q \mu), \frac{1}{2} \mathcal{D}(\lambda, Q \mu)\right\}=(0.4)(2)<1=\min \{\wp(\mu, \lambda) ; \mu, \lambda \in \mathcal{N}\}
$$

holds true for all $\mu, \lambda \in \mathcal{N}$. Let $\zeta(\alpha, \beta)=\frac{4}{5} \beta-\alpha$, then for $\rho=0.7$, we have

$$
\begin{aligned}
& \zeta(\mathcal{H}(Q 0, Q 1), \rho \mathcal{R}(0,1))=\zeta(0,0.7)=(0.8)(0.7)-0>0 \\
& \zeta(\mathcal{H}(Q 0, Q 2), \rho \mathcal{R}(0,2))=\zeta(0,1.4)=(0.8)(1.4)-0>0 \\
& \zeta(\mathcal{H}(Q 0, Q 3), \rho \mathcal{R}(0,3))=\zeta(1,2.1)=(0.8)(2.1)-1>0 \\
& \zeta(\mathcal{H}(Q 1, Q 2), \rho \mathcal{R}(1,2))=\zeta(0,0.7)=(0.8)(0.7)-0>0 \\
& \zeta(\mathcal{H}(Q 1, Q 3), \rho \mathcal{R}(1,3))=\zeta(1,1.4)=(0.8)(1.4)-1>0 \\
& \zeta(\mathcal{H}(Q 2, Q 3), \rho \mathcal{R}(2,3))=\zeta(1,1.4)=(0.8)(1.4)-1>0 .
\end{aligned}
$$

Hence Q is $\mathcal{Z}_{(\varphi, 0.7)}$-contraction. Thus by Theorem 2.2, Q is an $M W P$ operator and $F i x(Q)=\{0,2\}$.

3. Data dependence

We now prove a data dependence result.
Theorem 3.1. Ssppose that Q_{1}, Q_{2} are two multivalued operators on a metric space (\mathcal{N}, \wp), if

1. Q_{i} is $\mathcal{Z}_{\left(\varphi, \rho_{i}\right)}$-contraction for $i=1,2$,
2. there exist a real number $\rho>0$ such that $\mathcal{H}\left(Q_{1} \mu, Q_{2} \mu\right) \leq \rho, \forall \mu \in \mathcal{N}$.

Then

1. $\operatorname{Fix}\left(Q_{i}\right) \in C \mathcal{L}(\mathcal{N})$, for $i=1,2$,
2. Q_{1} and Q_{2} are multivalued operators and

$$
\mathcal{H}\left(F i x\left(Q_{1}\right), \operatorname{Fix}\left(Q_{2}\right)\right) \leq \frac{\rho}{1-\max \left\{\rho_{1}, \rho_{2}\right\}} .
$$

Proof. Theorem 2.2 gives that $\operatorname{Fix}\left(Q_{i}\right) \neq \phi$ for $i=1,2$. To prove that $\operatorname{Fix}(Q)$ is closed, assume that $\left(\mu_{n}\right) \subset F i x(Q)$ such that $\mu_{n} \rightarrow t$ as $n \rightarrow \infty$, we have

$$
\begin{aligned}
\varphi(s) \max \left\{\mathcal{D}\left(\mu_{n}, Q \mu_{n}\right), \frac{1}{2} \mathcal{D}\left(\omega, Q \mu_{n}\right)\right\} & =\varphi(s) \frac{1}{2} \mathcal{D}\left(\omega, Q \mu_{n}\right) \\
& \leq \frac{1}{2} \mathcal{D}\left(\omega, Q \mu_{n}\right) \\
& <\wp\left(\omega, \mu_{n}\right)
\end{aligned}
$$

this implies

$$
\begin{aligned}
0 & \leq \zeta\left(\mathcal{H}\left(Q \mu_{n}, Q \omega\right), \rho \mathcal{R}\left(\mu_{n}, \omega\right)\right) \\
& \leq \rho \mathcal{R}\left(\mu_{n}, \omega\right)-\mathcal{H}\left(Q \mu_{n}, Q \omega\right)
\end{aligned}
$$

this gives

$$
\mathcal{H}\left(Q \mu_{n}, Q \omega\right) \leq \rho \mathcal{R}\left(\mu_{n}, \omega\right)
$$

Now

$$
\begin{aligned}
\mathcal{D}(\omega, Q \omega) & \leq \wp\left(\omega, \mu_{n}\right)+\mathcal{D}\left(\mu_{n}, Q \omega\right) \\
& \leq \wp\left(\omega, \mu_{n}\right)+\mathcal{H}\left(Q \mu_{n}, Q \omega\right) \\
& \leq \wp\left(\omega, \mu_{n}\right)+\rho \mathcal{R}\left(\mu_{n}, \omega\right) \\
& \leq \wp\left(\omega, \mu_{n}\right)+\rho \max \left\{\wp\left(\omega, \mu_{n}\right), \mathcal{D}\left(\mu_{n}, Q \mu_{n}\right), \mathcal{D}(\omega, Q \omega), \frac{\mathcal{D}\left(\omega, Q \mu_{n}\right)+\mathcal{D}\left(\mu_{n}, Q \omega\right)}{2}\right\},
\end{aligned}
$$

letting $n \rightarrow \infty$, we have $\mathcal{D}(\omega, Q \omega)=0$, so $\omega \in \operatorname{Fix}(Q)$ and hence $F i x(Q)$ is closed.
(b) From Theorem 2.2, it follows from (i) that Q_{1} and Q_{2} are MWP operators. Further, let μ_{0} be fixed point of Q_{1}, then there exist $\mu_{1} \in Q_{2} \mu_{0}$ and a real number $q>1$ such that

$$
\wp\left(\mu_{0}, \mu_{1}\right) \leq q \mathcal{H}\left(Q_{1} \mu_{0}, Q_{2} \mu_{0}\right)
$$

since $\mu_{1} \in Q_{2} \mu_{0}$, we can choose $\mu_{2} \in \mathcal{Q}_{2} \mu_{1}$ such that

$$
\wp\left(\mu_{1}, \mu_{2}\right) \leq q \mathcal{H}\left(Q_{2} \mu_{0}, Q_{2} \mu_{1}\right)
$$

also

$$
\varphi(s) \max \left\{\mathcal{D}\left(\mu_{0}, Q_{2} \mu_{0}\right), \frac{1}{2} \mathcal{D}\left(\mu_{1}, Q_{2} \mu_{0}\right)\right\} \leq \varphi(s) \wp\left(\mu_{0}, \mu_{1}\right) \leq \wp\left(\mu_{0}, \mu_{1}\right)
$$

this implies

$$
\begin{aligned}
0 & \leq \zeta\left(\mathcal{H}\left(Q_{2} \mu_{0}, Q_{2} \mu_{1}\right), \rho_{2} \mathcal{R}\left(\mu_{0}, \mu_{1}\right)\right) \\
& \leq \rho_{2} \mathcal{R}\left(\mu_{0}, \mu_{1}\right)-\mathcal{H}\left(Q_{2} \mu_{0}, Q_{2} \mu_{1}\right)
\end{aligned}
$$

Hence

$$
\mathcal{H}\left(Q_{2} \mu_{0}, Q_{2} \mu_{1}\right) \leq \rho_{2} \mathcal{R}\left(\mu_{0}, \mu_{1}\right) \leq \rho_{2} \wp\left(\mu_{0}, \mu_{1}\right) .
$$

(Choosing $\mathcal{R}\left(\mu_{0}, \mu_{1}\right) \leq \wp\left(\mu_{1}, \mu_{2}\right)$ gives fixed point). Hence

$$
\wp\left(\mu_{1}, \mu_{2}\right) \leq q \mathcal{H}\left(Q_{2} \mu_{0}, Q_{2} \mu_{1}\right) \leq q \rho_{2} \wp\left(\mu_{0}, \mu_{1}\right) .
$$

Therefore, for operator Q_{2}, we get an iterative sequence of successive approximations satisfying $\mu_{n+1} \in$ $Q_{2} \mu_{n}$ such that

$$
\wp\left(\mu_{n}, \mu_{n+1}\right) \leq\left(q \rho_{2}\right)^{n} \wp\left(\mu_{0}, \mu_{1}\right)
$$

for all $n \geq 0$. If there exists a positive integer N such that for $n \geq N$ and $l \geq 1$,

$$
\begin{align*}
\wp\left(\mu_{n+l}, \mu_{n}\right) & \leq \wp\left(\mu_{n}, \mu_{n+1}\right)+\wp\left(\mu_{n+1}, \mu_{n+2}\right)+\ldots+\wp\left(\mu_{n+l-1}, \mu_{n+l}\right) \\
& \leq \frac{\left(q \rho_{2}\right)^{n}}{1-q \rho_{2}} \wp\left(\mu_{0}, \mu_{1}\right) . \tag{3.1}
\end{align*}
$$

Choosing $1<q<\min \left\{\frac{1}{\rho_{1}}, \frac{1}{\rho_{2}}\right\}$ and taking limit as $n \rightarrow \infty$, we have $\left(\mu_{n}\right)$ is a Cauchy sequence in \mathcal{N}. Let $u \in \mathcal{N}$ be the limit point of $\left(\mu_{n}\right)$. We show that $u \in Q_{2}$. Otherwise, let N be the positive integer such that $\mathcal{D}\left(u, Q_{2} \mu_{n}\right)>0=\wp\left(u, \mu_{n}\right), \forall n \geq N$. Then $\wp\left(\mu, \mu_{n+1}\right)>\wp\left(u, \mu_{n}\right)$ for all $n \geq N$, a contradiction. Hence there exist a subsequence $\mu_{n(j)}$ such that for all $j \in \mathbb{N}$, we have

$$
\begin{aligned}
\varphi(s) \max \left\{\mathcal{D}\left(\mu_{n(j)}, Q_{2} \mu_{n(j)}\right), \frac{1}{2} \mathcal{D}\left(u, Q_{2} \mu_{n(j)}\right)\right\} & \leq \max \left\{\wp\left(\mu_{n(j)}, \mu_{n(j)+1}\right), \mathcal{D}\left(u, Q_{2} \mu_{n(j)}\right)\right\} \\
& \leq\left\{\wp\left(\mu_{n(j)}, \mu_{n(j)+1}\right), \wp\left(u, \mu_{n(j)+1}\right)\right\} \\
& \leq\left\{\wp\left(\mu_{n(j)}, \mu_{n(j)+1}\right), \wp\left(u, \mu_{n(j)}\right)+\wp\left(\mu_{n(j)}, \mu_{n(j)+1}\right)\right\} \\
& =\wp\left(u, \mu_{n(j)}\right)+\wp\left(\mu_{n(j)}, \mu_{n(j)+1}\right) \\
& =\wp\left(u, \mu_{n(j)}\right)
\end{aligned}
$$

(since $\wp\left(\mu_{n(j)}, \mu_{n(j)+1}\right) \rightarrow 0$ as $\left.j \rightarrow \infty\right)$. Above inequality gives

$$
0 \leq \zeta\left(\mathcal{H}\left(Q_{2} \mu_{n(j)}, Q_{2} u\right), \rho \mathcal{R}\left(\mu_{n(j)}, u\right)\right)
$$

implies

$$
\mathcal{H}\left(Q_{2} \mu_{n(j)}, Q_{2} u\right) \leq \rho \mathcal{R}\left(\mu_{n(j)}, u\right) .
$$

Thus

$$
\mathcal{D}\left(u, Q_{2} u\right)=\lim _{j \rightarrow \infty} \mathcal{D}\left(\mu_{n(j)+1}, Q_{2} u\right) \leq \lim _{j \rightarrow \infty} \mathcal{H}\left(Q_{2} \mu_{n(j)}, Q_{2} u\right) \leq \lim _{j \rightarrow \infty} \rho_{2} \wp\left(\mu_{n(j)}, u\right)=0 .
$$

So $u \in \operatorname{Fix}\left(Q_{2}\right)$. In (2.1), letting $l \rightarrow \infty$, we get

$$
\wp\left(\mu_{n}, u\right) \leq \frac{\left(q \rho_{2}\right)^{n}}{1-q \rho_{2}} \wp\left(\mu_{0}, \mu_{1}\right)
$$

for all $n \in \mathbb{N}$. Then

$$
\wp\left(\mu_{0}, u\right) \leq \frac{1}{1-q \rho_{2}} \wp\left(\mu_{0}, \mu_{1}\right) \leq \frac{q \rho}{1-q \rho_{2}} .
$$

On the same lines, we have that for each $u_{0} \in \operatorname{Fix}\left(Q_{2}\right)$, there exists $\mu \in \operatorname{Fix}\left(Q_{1}\right)$ such that

$$
\wp\left(u_{0}, \mu\right) \leq \frac{1}{1-q \rho_{2}} \wp\left(u_{0}, u_{1}\right) \leq \frac{q \rho}{1-q \rho_{2}} .
$$

Hence

$$
\mathcal{H}\left(F i x\left(Q_{1}\right), \operatorname{Fix}\left(Q_{2}\right)\right) \leq \frac{q \rho}{1-\max \left\{q \rho_{1}, q \rho_{2}\right\}} .
$$

Taking limit as $q \searrow 1$, we get the desired result.

4. An application

A variety of fixed point theorems have been used to explore the existence and uniqueness of solution of functional equations arising in dynamic programming. Utilizing Theorem 2.3, we explore the existence and uniqueness of solution for a nonlinear functional equation. From now on, $W_{1}(\mathbb{R})$ and $W_{2}(\mathbb{R})$ are assumed to be Banach spaces and $U_{1} \subset W_{1}, U_{2} \subset W_{2}$. Class of all bounded real-valued functions on U_{1} is denoted by $\mathcal{B}\left(U_{1}\right)$. The metric space pair $\mathcal{B}\left(U_{1}, \wp\right)$ where

$$
d_{\mathcal{B}}(f, g)=\sup _{\mu \in U_{1}}|f(\mu)-g(\mu)|, \quad f, g \in U_{1},
$$

is complete. Viewing U_{1} and U_{2} as the state and decision spaces respectively, the problem of dynamic programming reduces to the problem of solving the functional equation:

$$
p(\mu)=\sup _{\lambda \in U_{2}} F(\mu, \lambda, p(\eta(\mu, \lambda)))
$$

where $\eta: U_{1} \times U_{2} \rightarrow U_{1}$ is the transformation of the process and $p(\mu)$ represents the optimal return function with initial functional equation:

$$
\begin{equation*}
p(\mu)=\sup _{\lambda \in U_{2}}\{v(\mu, \lambda)+G(\mu, \lambda, p(\eta(\mu, \lambda)))\}, \mu \in U_{1} \tag{4.1}
\end{equation*}
$$

where $v: U_{1} \times U_{2} \rightarrow \mathbb{R}$ and $G: U_{1} \times U_{2} \times \mathbb{R} \rightarrow \mathbb{R}$ are bounded functions. Let $\mathcal{Q}: \mathcal{B}\left(U_{1}\right) \rightarrow \mathcal{B}\left(U_{1}\right)$ be defined by:

$$
Q(f(\mu))=\sup _{\lambda \in U_{2}}\{v(\mu, \lambda)+G(\mu, \lambda, p(\eta(\mu, \lambda)))\}, \mu \in U_{1}, f \in \mathcal{B}\left(U_{1}\right) .
$$

Theorem 4.1. Assume that there exists $\rho>0$ such that for every $(\mu, \lambda) \in U_{1} \times U_{2}, f, g \in \mathcal{B}\left(U_{1}\right)$ and $t \in U_{1}$ the inequality

$$
\begin{equation*}
\varphi(s) \max \left\{|f(t)-Q(f(t))|, \frac{1}{2}|g(t)-Q(f(t))|\right\} \leq|f(t)-g(t)| \tag{4.2}
\end{equation*}
$$

implies

$$
\begin{equation*}
|G(\mu, \lambda, f(t))-G(\mu, \lambda, g(t))| \leq \frac{\rho \mathcal{R}(f(t), g(t))}{\rho \mathcal{R}(f(t), g(t))+1} \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{R}(f(t), g(t))= & \max \{|f(t)-g(t)|,|f(t)-Q f(t)|,|g(t)-Q(g(t))|, \\
& \left.\frac{|f(t)-Q(g(t))|+|g(t)-Q(f(t))|}{2}\right\} .
\end{aligned}
$$

Then (4.1) possesses a bounded solution.
Proof. It is obvious that Q is self map on $\mathcal{B}\left(U_{1}\right)$. Suppose γ is an arbitrary positive real number and $f_{1}, f_{2} \in \mathcal{B}\left(U_{1}\right)$. Take $\mu \in U_{1}$ and choose $\lambda_{1}, \lambda_{2} \in U_{2}$ such that

$$
\begin{equation*}
Q\left(f_{1}(\mu)\right)<v\left(\mu, \lambda_{1}\right)+G\left(\mu, \lambda_{1}, f_{1}\left(\eta_{1}\right)\right)+\gamma \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
Q\left(f_{2}(\mu)\right)<g\left(\mu, \lambda_{2}\right)+G\left(\mu, \lambda_{2}, f_{2}\left(\eta_{2}\right)\right)+\gamma \tag{4.5}
\end{equation*}
$$

where $\eta_{i}=\eta_{i}\left(\mu, \lambda_{i}\right), i=1,2$. By definition of Q, we get

$$
\begin{aligned}
& Q\left(f_{1}(\mu)\right) \geq v\left(\mu, \lambda_{2}\right)+G\left(\mu, \lambda_{2}, f_{1}\left(\eta_{2}\right)\right) \\
& Q\left(f_{2}(\mu)\right) \geq v\left(\mu, \lambda_{1}\right)+G\left(\mu, \lambda_{1}, f_{2}\left(\eta_{1}\right)\right) .
\end{aligned}
$$

If the inequality (4.2) holds with $f=f_{1}, g=f_{2}$, then from (4.3), (4.4) and (4.6), we have

$$
\begin{align*}
Q\left(f_{1}(\mu)\right)-Q\left(f_{2}(\mu)\right) & <G\left(\mu, \lambda_{1}, f_{1}\left(\eta_{1}\right)\right)-G\left(\mu, \lambda_{1}, f_{2}\left(\eta_{1}\right)\right)+\gamma \\
& \leq \frac{\rho \mathcal{R}\left(f_{1}(t), f_{2}(t)\right)}{\rho \mathcal{R}\left(f_{1}(t), f_{2}(t)\right)+1}+\gamma \tag{4.6}
\end{align*}
$$

Similarly, from (4.3), (4.5) and (4.6), we have

$$
\begin{equation*}
Q\left(f_{2}(\mu)\right)-Q\left(f_{1}(\mu)\right)<\frac{\rho \mathcal{R}\left(f_{1}(t), f_{2}(t)\right)}{\rho \mathcal{R}\left(f_{1}(t), f_{2}(t)\right)+1}+\gamma \tag{4.7}
\end{equation*}
$$

Hence, from (4.6) and (4.7), we obtain that

$$
\left|Q\left(f_{1}(\mu)\right)-Q\left(f_{2}(\mu)\right)\right|<\frac{\rho \mathcal{R}\left(f_{1}(t), f_{2}(t)\right)}{\rho \mathcal{R}\left(f_{1}(t), f_{2}(t)\right)+1}+\gamma
$$

since the inequality holds for any $\mu \in U_{1}$ and $\gamma>0$, we get that

$$
\varphi(s) \max \left\{d_{\mathcal{B}}\left(f_{1}, Q\left(f_{1}\right)\right), \frac{1}{2} d_{\mathcal{B}}\left(f_{2}, Q\left(f_{1}\right)\right)\right\} \leq d_{\mathcal{B}}\left(f_{1}, f_{2}\right)
$$

implies

$$
d_{\mathcal{B}}\left(Q\left(f_{1}\right), Q\left(f_{2}\right)\right) \leq \operatorname{pmax}\left\{d_{\mathcal{B}}\left(f_{1}, f_{2}\right), d_{b}\left(f_{1}, Q f_{1}\right), d_{\mathcal{B}}\left(f_{2}, Q f_{2}\right), \frac{d_{\mathcal{B}}\left(f_{1}, Q f_{2}\right)+d_{\mathcal{B}}\left(f_{2}, Q f_{1}\right)}{2}\right\}
$$

so if we choose $\zeta(\alpha, \beta)=\frac{\beta}{\beta+1}-\alpha$, then we have

$$
\zeta\left(d_{\mathcal{B}}\left(Q f_{1}, Q f_{2}\right), \rho \mathcal{R}\left(f_{1}, f_{2}\right)\right) \geq 0 .
$$

Hence, all the assertions of Theorem 2.3 are verified and therefore we get the conclusion.
Example 4.1. Let $W_{1}=\mathbb{R}=W_{2}, U_{1}=[1,50], U_{2}=\mathbb{R}^{+}$. We define $\eta: U_{1} \times U_{2} \rightarrow U_{1}, v: U_{1} \times U_{2} \rightarrow \mathbb{R}$ and $G: U_{1} \times U_{2} \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{gathered}
\eta(\mu, \lambda)=\frac{50 \mu+\lambda^{6}}{\mu^{2}+\lambda^{6}} \\
v(\mu, \lambda)=\frac{\sin \left(\mu+\lambda^{2}\right)}{7 \lambda^{2}+\lambda+1}
\end{gathered}
$$

and

$$
A(\mu, \lambda, z)=z \mid \sin \left(\mu^{2}+\lambda^{2}\right)
$$

Now for $s=0.5, \varphi(s)=\frac{1}{2}$. Therefore for $\rho=0.65$, it is clear that (4.2)-(4.3) are satisfied. Hence from Theorem 2.3 that the functional equation (4.1) possesses a bounded solution.

5. Conclusions

In this paper we introduced a new type of set valued contraction in Suzuki sense together with simulation functions and proved some new fixed point and data dependence theorems for such class of mappings. We gave an example to prove the validity of our results. At last, we presented an application to nonlinear functional equation arising in dynamical system to show the usability of obtained results.

Acknowledgments

The author Thabet Abdeljawad would like to thank Prince Sultan University for funding this work through the research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM)(Group Number RG-DES-2017-01-17).

Conflict of interest

The authors declare no conflict of interest.

References

1. I. Altun, H. A. Hnacer, G. Minak, On a general class of weakly picard operators, Miskolc Math. Notes, 16 (2015), 25-32.
2. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations intégrales, Fundamenta Math., 3 (1922), 133-181.
3. G. Durmaz, Some theorems for a new type of multivalued contractive maps on metric space, Turkish J. Math., 41 (2017), 1092-1100.
4. G. Durmaz, I. Altun, A new perspective for multivalued weakly picard operators, Publications De L'institut Math., 101 (2017), 197-204.
5. A. A. Eldred, J. Anuradha, P. Veeramani, On equivalence of generalized multivalued contractions and Nadler's fixed point theorem, J. Math. Anal. Appl., 336 (2007), 751-757.
6. H. A. Hancer, G. Mmak, I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory, 18 (2017), 229-236.
7. M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 8.
8. Z. Kadelburg, S. Radenovi, A note on some recent best proximity point results for non-self mappings, Gulf J. Math., 1 (2013), 36-41.
9. T. Kamran, S. Hussain, Weakly (s, r)-contractive multi-valued operators, Rend. Circ. Mat. Palermo, 64 (2015), 475-482.
10. E. Karapinar, Fixed points results via simulation functions, Filomat, 30 (2016), 2343-2350.
11. F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29 (2015), 1189-1194.
12. S. B. Nadler Jr, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
13. O. Popescu, A new type of contractive multivalued operators, Bull. Sci. Math., 137 (2013), 30-44.
14. S. Radenović, S. Chandok, Simulation type functions and coincidence points, Filomat, 32 (2018), 141-147.
15. A. Rold, E. Karapinar, C. Rold, J. Martinez, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345-355.
16. I. A. Rus, Basic problems of the metric fixed point theory revisited (II), Stud. Univ. Babes-Bolyai, 36 (1991), 81-89.
17. J. Von Neuman, Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, Ergebn. Math. Kolloq., 8 (1937), 73-83.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
