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1. Introduction

The fixed point theory plays a major role in mathematics and applied sciences, such as mathematical
models, optimization, and economic theories. This is the reason that why the study of metric fixed point
theory has been researched extensively in the past decades. Since 1963, many mathematicians tried to
generalize the usual notation of metric space and extend some known metric space theorems in more
general setting (see [2, 3, 5, 8–15, 21, 22]).

In 2005, Mustafa and Sims [20] introduced and study a new generalized metric spaces which is
called G-metric spaces. They found a new fixed point of various mappings in new structure of these
spaces. The G-metric spaces is defined by the following:

Definition 1 [20] Let X be a nonempty set and a function G be defined on the product set X × X × X
into the interval [0,+∞) satisfying the following properties:
(G1) G(a, b, c) = 0 if and only if a = b = c;
(G2) G(a, a, b) > 0 for all a, b ∈ X with a , b;
(G3) G(a, a, b) ≤ G(a, b, c) for all a, b, c ∈ X with c , b;
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(G4) G(a, b, c) = G(a, c, b) = G(b, a, c) = ... (symmetry);
(G5) G(a, b, c) ≤ G(a, d, d) + G(d, b, c) for all a, b, c, d ∈ X (rectangle inequality).
The function G is called G−metric on X and (X,G) is called G−metric space.

In 1843, Irish mathematician, Hamilton [18] gave the definition of quaternion as the quotient of two
directed lines in a three-dimensional space or equivalently as the quotient of two vectors. The study
of quaternion has a lot set of applications such as applying to mechanics in three-dimensional space
and practical uses in applied mathematics in particular for calculations involving three-dimensional
rotations. There are many features of quaternions are that number system that extends the complex
numbers and multiplication of two quaternions is noncommutative.

We denote H for the skew field of quaternion and q ∈ H has the form p = a + bi + c j + dk
where i2 = j2 = k2 = i jk = −1, i j = − ji = k, k j = − jk = −i, ki = −ik = j and the modulus of p,
|p| =

√
a2 + b2 + c2 + d2 where a, b, c and d are real numbers, and i, j and k are the fundamental

quaternion units. Thus a quaternion p may be viewed as a four-dimensional vector (a, b, c, d). By sim-
ple treating, quaternion can be written as simply quadruples of real numbers [a, b, c, d], with addition
and multiplication operations that are suitably defined. The components group into the imaginary part
(b, c, d) , which we consider this part as a vector and the purely real part a which is called a scalar.
Sometimes, we write a quaternion as [V, a] with V = (b, c, d).

[V, a] = [(b, c, d), a] = [a, b, c, d] = a + bi + c j + dk for all a, b, c, d ∈ R.

For more properties of quaternion analysis, see [7, 16, 17] and and the references therein.

In order to prove our results, we present some necessary basic notions and concepts in the following.
Let H be the set of quaternion and p1, p2 ∈ H. Define a partial order - on H as follows:
p1 - p2 iff Re(p1) ≤ Re(p2) and Ims(p1) ≤ Ims(p2), p1, p2 ∈ H, s = i, j, k where Imi = b, Im j = c
and Imk = d.
(Q1) Re(p1) = Re(p2) and Ims1(p1) = Ims2 pz2) where s1 = j, k, Imi(p1) < Imi(p2);
(Q2) Re(p1) = R(p2), Ims2(p1) = Ims2(p2) where s2 = i, k, Im j(p1) < Im j(p2);
(Q3) Re(p1) = Re(p2), Ims3(p1) = Ims3(p2) where s3 = i, j, Imk(p1) < Imk(p2);
(Q4) Re(p1) = R(p2), Ims1(p1) = Ims1(p2), Imi(p1) = Imi(p2);
(Q5) Re(p1) = R(p2), Ims2(p1) = Ims2(p2), Im j(p1) = Im j(p2);
(Q6) Re(p1) = R(p2), Ims3(p1) = Ims3(p2), Imk(p1) = Imk(p2);
(Q7) Re(p1) = R(p2), Ims(p1) < Ims(p2);
(Q8) Re(p1) < R(p2), Ims(p1) = Ims(p2);
(Q9) Re(p1) < R(p2), Ims1(p1) = Ims1(p2), where s1 = j, k; Imi(p1) < Imi(p2);
(Q10) Re(p1) < R(p2), Ims2(p1) = Ims2(p2), Im j(p1) < Im j(p2);
(Q11) Re(p1) < R(p2), Ims3(p1) = Ims3(p2), Imk(p1) < Imk(p2);
(Q12) Re(p1) < R(p2), Ims1(p1) < Ims1(p2), Imi(p1) = Imi(p2);
(Q13) Re(p1) < R(p2), Ims2(p1) < Ims2(p2), Im j(p1) = Im j(p2);
(Q14) Re(p1) < R(p2), Ims3(p1) < Ims3(p2), Imk(p1) = Imk(p2);
(Q15) Re(p1) < R(p2), Ims(p1) < Ims(p2);
(Q16) Re(p1) = R(p2), Ims(p1) = Ims(p2).

Particularly, we will write p1 � p2 if p1 , p2 and one from (Q1) to (Q16) is satisfied and we will write
p1 ≺ p2 if only (Q14) is satisfied. It should be noted that
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p1 � p2 implies |p1| ≤ |p2| .

In 2014, Ahmed et al. [4] introduced the concept of quaternion metric spaces and established some
fixed point theorems in quaternion setting. For presentation the common fixed point of four self-maps
which satisfy a general contraction condition was shown in normal cone metric spaces. The quaternion
valued metric function is defined as follow.

Definition 2 [4] Let X be a nonempty set and gH : X × X −→ H be a function satisfying the following
properties:
(H1) gH(a, b) ≥ 0 for all a, b ∈ X;
(H2) gH(a, b) = 0 if and only if a = b;
(H3) gH(a, b) = gH(a, b) (symmetry);
(H4) gH(a, b) ≤ gH(a, c) + gH(c, b) for all a, b, c ∈ X (triangle inequality).
The function gH is called quaternion valued metric on X and (X, gH) is called quaternion valued
metric space.

Motivated by Ahmed et al. work in [4], Adewale et al. [1] introduced the following concept of a
quaternion valued G-metric spaces and gave some examples of this spaces.

Definition 3 [1] Let X be a nonempty set and let GH : X × X × X −→ H be a function satisfying the
following conditions:
(QG1) GH(a, b, c) = 0H if a = b = c;
(QG2) 0H ≺ GH(a, a, b) for all a, b ∈ X with a , b;
(QG3) GH(a, a, b) 4 GH(a, b, c) for all a, b, c ∈ X with b , c;
(QG4) GH(a, b, c) = GH(a, c, b) = GH(b, c, a) = ... (symmetry);
(QG5) GH(a, b, c) 4 GH(a, d, d) + GH(d, b, c) for all a, b, c, d ∈ X (rectangle inequality).
Therefore, the function GH is called quaternion valued GH-metric on X and the pair (X,GH) is called
quaternion valued G−metric space.

We found some gap in one of examples ( Example 2, [1]), the domain of quaternion valued GH-metric
is not no the product space X × X × X. So, we now give a new example of GH-metric as follow:

Example 4 Let X = {1n : n ∈ N} with

GH(a, b, c) = GH(b, c, a) = GH(a, c, b) = ...,

for all a, b, c ∈ X. GH : X × X × X −→ H is defined by

GH(q1, q2, q3) = 4GH + 4GHi + 4GH j

where 4GH =
∑

i, j∈{1,2,3} (
∣∣∣ai − a j

∣∣∣ +
∣∣∣bi − b j

∣∣∣ +
∣∣∣ci − c j

∣∣∣) and

q1 = (a1, b1, c1), q2 = (a2, b2, c2), q3 = (a3, b3, c3) ∈ X3.

We see that GH is quaternion valued G−metric on X but not G−metric on X.

We next recall some definition and basic results that will be used in our subsequent analysis.
Proposition 5 [19] Let (X,GH ) be quaternion valued G−metric space. Then for all a, b, c, d ∈ X the
following properties hold:
(1) GH(a, b, c) = 0 implies a = b = c;
(2) GH(a, b, c) 4 GH(a, a, b) + GH(a, a, c);
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(3) GH(a, b, b) 4 2 GH(b, a, a);
(4) GH(a, b, c) 4 GH(a, d, c) + GH(d, b, c);
(5) GH(a, b, c) 4 2

3 (GH(a, b, d) + GH(a, d, c) + GH(d, b, c));
(6) GH(a, b, c) 4 2 (GH(a, a, d) + GH(b, b, d) + GH(c, c, d)).

Definition 6 [6] Let K, L,M and N be four self-mappings of a nonempty set X . Then
(i) a point u ∈ X is said to be a fixed point of K if Ku = u,
(ii) a point u ∈ X is said to be a common fixed point of K and L if Ku = Lu = u,
(iii) a point u ∈ X is said to be a coincidence point of K and N if Ku = Nu and a point t ∈ X such
that t = Ku = Nu is called a point of coincidence of K and N,
(iv) a point t ∈ X is said to be a common point of coincidence of the pairs (K,N) and (L,M) if there
exist u, v ∈ X such that Ku = Nu = t and Lv = Mv = t.

In this paper, we proved existence theorems of coincidence of the pairs (K,N) and (L,M) under
some suitable conditions. Moreover, the weakly compatible condition of the pairs (K,N) and (L,M)
was added for finding a common fixed point of mappings K, L,M and N. Finally, we presented exam-
ples and conditions which satisfy our main theorems.

2. Results

We begin with the following definition:
An implicit relation. Let z be the set of all complex valued lower semi-continuous functions F :
H6 → H satisfying the following conditions: for u, u

′

, v ∈ H
(F1) F is non-increasing in the 5th and 6th variable,
(F2) for u, v % 0H, there exists q ∈ [0, 1) such that |u| ≤ q |v| if F(u, v, u, v, 0H, u + v) - 0H,
(F3) for u, u

′

� 0H, there exists q ∈ [0, 1) such that |u| ≤ q
∣∣∣u′ ∣∣∣ if F(u, u, 0H, 0H, u

′

, u) - 0H.

Now, we present our first main theorems in complete quaternion valued G−metric space.
Theorem 7 Let K, L,M and N be four self-mappings on a complete quaternion valued G−metric space
(X,GH) such that K(X) ⊆ M(X) and L(X) ⊆ N(X). Assume that there exists φ1, φ2 ∈ z such that for all
a, b ∈ X, a , b, 

φ1 (GH(La, La,Kb),GH(Ma,Ma,Nb),GH(Ma, La, La),
GH(Nb,Kb,Kb),GH(Ma,Kb,Kb),GH(Nb, La, La)) - 0H,

φ2 (GH(Ka,Ka, Lb),GH(Na,Na,Mb),GH(Na,Ka,Ka),
GH(Mb, Lb, Lb),GH(Na, Lb, Lb),GH(Mb,Ka,Ka)) - 0H.

(2.1)

If M(X) ∪ N(X) is complete subspace of X, then the pairs (K,N) and (L,M) have a unique common
point of coincidence. Moreover, if the pairs (K,N) and (L,M) are weakly compatible, then the four
mappings have a unique common fixed point.

Proof. Let x0 be arbitrary point in X. Since K(X) ⊆ M(X) and L(X) ⊆ N(X), then we can define the
sequence {an} in X such that, {

b2n+1 = Ma2n+1 = Ka2n,

b2n+2 = Na2n+2 = La2n+1.
(2.2)
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Since {bn} ⊆ M(X)∪N(X). We then show that {bn} is a Cauchy sequence. By putting a = a2n+1 and b =

a2n in (φ1), we have

φ1 (GH(La2n+1, La2n+1,Ka2n),GH(Ma2n+1,Ma2n+1,Na2n),GH(Ma2n+1, La2n+1, La2n+1)

,GH(Na2n,Ka2n,Ka2n),GH(Ma2n+1,Ka2n,Ka2n),GH(Na2n, La2n+1, La2n+1)) - 0H.

This implies that

φ1 (GH(b2n+2, b2n+2, b2n+1),GH(b2n+1, b2n+1, b2n),GH(b2n+1, b2n+2, b2n+2),

GH(b2n, b2n+1, b2n+1),GH(b2n+1, b2n+1, b2n+1),GH(b2n, b2n+2, b2n+2)) - 0H,

This means that

φ1 (GH(b2n+2, b2n+2, b2n+1),GH(b2n+1, b2n+1, b2n),GH(b2n+2, b2n+2, b2n+1),

GH(b2n+1, b2n+1, b2n), 0H,GH(b2n, b2n+1, b2n+1) + GH(b2n+1, b2n+2, b2n+2)) - 0H.

From (F1) and (QG5), we get

φ1 (GH(b2n+2, b2n+2, b2n+1),GH(b2n+1, b2n+1, b2n),GH(b2n+2, b2n+2, b2n+1),

GH(b2n+1, b2n+1, b2n), 0H,GH(b2n+2, b2n+2, b2n+1) + GH(b2n+1, b2n+1, b2n)) - 0H.

From (F2), we obtain

|GH(b2n+2, b2n+2, b2n+1)| ≤ q |GH(b2n+1, b2n+1, b2n)| .

By a similar way, by putting a = a2n+2 and b = a2n+1 in (φ2), we have successively

φ2 (GH(Ka2n+2,Ka2n+2, La2n+1),GH(Na2n+2,Na2n+2,Ma2n+1),

GH(Na2n+2,Ka2n+2,Ka2n+2),GH(Ma2n+1, La2n+1, La2n+1),

GH(Na2n+2, La2n+1, La2n+1),GH(Ma2n+1,Ka2n+2,Ka2n+2)) - 0H,

that is,

φ2 (GH(b2n+3, b2n+3, b2n+2),GH(b2n+2, b2n+2, b2n+1),GH(b2n+2, b2n+3, b2n+3),

GH(b2n+1, b2n+2, b2n+2),GH(b2n+2, b2n+2, b2n+2),GH(b2n+1, b2n+3, b2n+3)) - 0H.

This tends to

φ2 (GH(b2n+3, b2n+3, b2n+2),GH(b2n+2, b2n+2, b2n+1),GH(b2n+3, b2n+3, b2n+2),

GH(b2n+2, b2n+2, b2n+1), 0H,GH(b2n+1, b2n+2, b2n+2) + GH(b2n+2, b2n+3, b2n+3)) - 0H.

From (F1) and (QG5), we obtain

φ2 (GH(b2n+3, b2n+3, b2n+2),GH(b2n+2, b2n+2, b2n+1),GH(b2n+3, b2n+3, b2n+2),

GH(b2n+2, b2n+2, b2n+1), 0H,GH(b2n+2, b2n+2, b2n+1) + GH(b2n+3, b2n+3, b2n+2)) - 0H.

From (F2), we have
|GH(b2n+3, b2n+3, b2n+2)| ≤ q |GH(b2n+2, b2n+2, b2n+1)| .

Consequently,

|GH(bn+1, bn+1, bn)| ≤ q |GH(bn, bn, bn−1)| ≤ ... ≤ qn |GH(b1, b1, b0)| .
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Also, for all n > m, we get

|GH(bn, bn, bm)| ≤ |GH(bm+1, bm+1, bm)| + |GH(bm+2, bm+2, bm+1)| + ... + |GH(bn, bn, bn−1)|

≤
(
qm + qm+1 + ... + qn−1) |GH(b1, b1, b0)|

≤
qm

1 − q
|GH(b1, b1, b0)| −→ 0 as m −→ +∞.

This means that {bn} is a Cauchy sequence in X. Since (X,GH) is complete, then there exists u ∈ X
such that bn −→ u as n −→ +∞. Then from Eq. (2.2), we obtain

lim
n−→+∞

Ka2n = lim
n−→+∞

Ma2n+1 = lim
n−→+∞

Na2n+2 = lim
n−→+∞

La2n+1 = u. (2.3)

Since K(X) ⊆ M(X), if u ∈ M(X), then there exists v ∈ X such that

M v = u. (2.4)

We will show that Lv = Mv. By putting a = v and b = a2n in (φ1), we have

φ1 (GH(Lv, Lv,Ka2n),GH(Mv,Mv,Na2n),GH(Mv, Lv, Lv),GH(Na2n,Ka2n,Ka2n)
,GH(Mv,Ka2n,Ka2n),GH(Na2n, Lv, Lv)) - 0H.

Putting n −→ +∞ and using Eqs. (2.3) and (2.4), we have

φ1 (GH(Lv, Lv, u),GH(u, u, u),GH(u, Lv, Lv),GH(u, u, u),GH(u, u, u),GH(u, Lv, Lv)) - 0H.

This tends to

φ1 (GH(Lv, Lv, u), 0H,GH(Lv, Lv, u), 0H, 0H,GH(Lv, Lv, u)) - 0H.

From (F2), we obtain GH(Lv, Lv, u) = 0H which tends to Lv = u. Hence

Lv = Mv = u. (2.5)

Then, u is a point of coincidence of the pair (L,M).

Since L(X) ⊆ N(X), there exists w ∈ X such that

Nw = u. (2.6)

We will show that Kw = Nw. By putting a = w and b = a2n+1 in (φ2), we have

φ2 (GH(Kw,Kw, La2n+1),GH(Nw,Nw,Ma2n+1),GH(Nw,Kw,Kw),
GH(Ma2n+1, La2n+1, La2n+1),GH(Nw, La2n+1, La2n+1),GH(Ma2n+1,Kw,Kw)) - 0H.

Taking n −→ +∞ and using Eqs. (2.3) and (2.6), we get

φ2 (GH(Kw,Kw, u), 0H,GH(Kw,Kw, u), 0H, 0H,GH(Kw,Kw, u)) - 0H.

From (F2), we get GH(Kw,Kw, u) = 0H which implies Kw = u. Hence

Kw = Nw = u. (2.7)
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Then, u is a point of coincidence of the pair (K,N).

Hence, u ∈ X is a common point of coincidence for the four mappings.

To show the uniqueness of a point of coincidence, Let u∗ , u be another point of coincidence of the
four mappings. Then, there exists v∗,w∗ such that Lv∗ = Mv∗ = u∗ and Kw∗ = Nw∗ = u∗. Taking
a = v∗ and b = w in (φ1), one can write

φ1 (GH(Lv∗, Lv∗,Kw),GH(Mv∗,Mv∗,Nw),GH(Mv∗, Lv∗, Lv∗),GH(Nw,Kw,Kw),

GH(Mv∗,Kw,Kw),GH(Nw, Lv∗, Lv∗)) - 0H.

This tends to

φ1 (GH(u∗, u∗, u),GH(u∗, u∗, u),GH(u∗, u∗, u∗),GH(u, u, u),GH(u∗, u, u),GH(u, u∗, u∗)) - 0H,

that is,

φ1 (GH(u∗, u∗, u),GH(u∗, u∗, u), 0H, 0H,GH(u, u, u∗),GH(u∗, u∗, u)) - 0H.

From (F3), we get
|GH(u∗, u∗, u)| ≤ q1 |GH(u, u, u∗)| . (2.8)

Similarly, Taking a = v and b = w∗ in (φ2), we obtain

|GH(u, u, u∗)| ≤ q1 |GH(u∗, u∗, u)| . (2.9)

From Eqs (2.8) and (2.9), we get

|GH(u∗, u∗, u)| (1 − q2
1) ≤ 0,

which implies that |GH(u∗, u∗, u)| = 0, i.e, u∗ = u. Consequently, the pairs (K,N) and (L,M) have a
unique common point of coincidence.

Using Eqs (2.5), (2.7) and weak compatibility of the pairs (K,N) and (L,M), we obtain that

KNw = NKw , LMv = MLv. (2.10)

Then,
Ku = Nu , Lu = Mu, (2.11)

This implies that u is a point of coincidence of the pairs (K,N) and (L,M).

Now, we show that u is a common fixed point of K, L,M and N. Taking a = u and b = v in (φ1), we
have

φ1 (GH(Lu, Lu,Kv),GH(Mu,Mu,Nv),GH(Mu, Lu, Lu),GH(Nv,Kv,Kv),
GH(Mu,Kv,Kv),GH(Nv, Lu, Lu)) - 0.

This leads us to

φ1 (GH(Lu, Lu, u),GH(Lu, Lu, u),GH(Lu, Lu, Lu),GH(u, u, u),GH(Lu, u, u),GH(u, Lu, Lu)) - 0H,

that is,
φ1 (GH(Lu, Lu, u),GH(Lu, Lu, u), 0H, 0H,GH(u, u, Lu),GH(Lu, Lu, u)) - 0H.
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From (F3), we have
|GH(Lu, Lu, u)| ≤ q1 |GH(u, u, Lu)| . (2.12)

Similarly, taking a = v and b = u in (φ2), we have

|GH(u, u, Lu)| ≤ q1 |GH(Lu, Lu, u)| . (2.13)

From Eqs (2.12) and (2.13), we obtain

|GH(Lu, Lu, u)| (1 − q2
1) ≤ 0,

which implies that GH(Lu, Lu, u) = 0H, i.e., Tu = u. Thus, Lu = Mu = u. Similarly, we can prove
Ku = Nu = u. This implies that

Ku = Lu = Mu = Nu = u.

i.e., u is a common fixed point of K, L,M and N.

The uniqueness of the common fixed point of K, L,M and N is more easy consequence of the unique-
ness of the common point of coincidence of the pairs (K,N) and (L,M). Also, the proof is similar in
case u ∈ N(X). This completes the proof.

Remark 8 The conclusion of Theorem 7 remains true if the completeness of M(X)∪ N(X) is replaced
by the completeness of one of the subspaces K(X), L(X),M(X) or N(X).

The following theorem is a new version of Theorem 7 under generalized contractive condition.

Theorem 9 Let K, L,M and N be four self-mappings on a complete quaternion valued G-metric space
(X,GH) such that K(X) ⊆ M(X) and L(X) ⊆ N(X). Assume that there exists φ1, φ2 ∈ z such that for all
a, b ∈ X, a , b,

φ1
(
GH(La, La,Kb),GH(Ma,Ma,Nb),GH(Ma, La, La),GH(Nb,Kb,Kb),

GH(Ma,Kb,Kb),
[GH(Nb, La, La)]3 + [GH(Ma,Ma,Kb)]3

[GH(Nb, La, La)]2 + GH(Ma,Ma,Kb)]2

)
- 0H,

φ2
(
GH(Ka,Ka, Lb),GH(Na,Na,Mb),GH(Na,Ka,Ka),GH(Mb, Lb, Lb),

GH(Na, Lb, Lb),
[GH(Mb,Ka,Ka)]3 + [GH(Na,Na, Lb)]3

[GH(Mb,Ka,Ka)]2 + GH(Na,Na, Lb)]2

)
- 0.

(2.14)

If M(X) ∪ N(X) is complete subspace of X, then the pairs (K,N) and (L,M) have a unique common
point of coincidence. Moreover, if the pairs (K,N) and (L,M) are weakly compatible, then the four
mappings have a unique common fixed point.

Proof. Let x0 be arbitrary points in X. Since K(X) ⊆ M(X) and L(X) ⊆ N(X), then we can define the
sequence {an} in X as (2.2).

Since {bn} ⊆ M(X)∪N(X). We then show that {bn} is a Cauchy sequence. Putting a = a2n+1 and b = a2n

in (φ1), we obtain
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φ1
(
GH(La2n+1, La2n+1,Ka2n),GH(Ma2n+1,Ma2n+1,Na2n),GH(Ma2n+1, La2n+1, La2n+1),

GH(Na2n,Ka2n,Ka2n),GH(Ma2n+1,Ka2n,Ka2n),

[GH(Na2n, La2n+1, La2n+1)]3 + [GH(Ma2n+1,Ma2n+1,Ka2n)]3

[GH(Na2n, La2n+1, La2n+1)]2 + [GH(Ma2n+1,Ma2n+1,Ka2n)]2

)
- 0H.

This leads us to

φ1
(
GH(b2n+2, b2n+2, b2n+1),GH(b2n+1, b2n+1, b2n),GH(b2n+1, b2n+2, b2n+2),GH(b2n, b2n+1, b2n+1),

GH(b2n+1, b2n+1, b2n+1),
[GH(b2n, b2n+2, b2n+2)]3 + [GH(b2n+1, b2n+1, b2n+1)]3

[GH(b2n, b2n+2, b2n+2)]2 + [GH(b2n+1, b2n+1, b2n+1)]2

)
- 0H,

which implies that

φ1 (GH(b2n+2, b2n+2, b2n+1),GH(b2n+1, b2n+1, b2n),GH(b2n+2, y2n+2, b2n+1),

GH(b2n+1, b2n+1, b2n), 0H,GH(b2n, b2n+2, b2n+2)) - 0.

From (F1), (QG4) and (QG5) we have

φ1 (GH(b2n+2, b2n+2, b2n+1),GH(b2n+1, b2n+1, b2n),GH(b2n+2, b2n+2, b2n+1),GH(b2n+1, b2n+1, b2n)

, 0H,GH(b2n+2, b2n+2, b2n+1) + GH(b2n+1, b2n+1, b2n)) - 0H.

From (F2), we get

|GH(b2n+2, b2n+2, b2n+1)| ≤ q |GH(b2n+1, b2n+1, b2n)| .

Similarly, taking a = a2n+2 and b = a2n+1 in (φ2), we get successively

φ2
(
GH(Ka2n+2,Ka2n+2, La2n+1),GH(Na2n+2,Na2n+2,Ma2n+1),GH(Na2n+2,Ka2n+2,Ka2n+2),

GH(Ma2n+1, La2n+1, La2n+1),GH(Na2n+2, La2n+1, La2n+1),

[GH(Ma2n+1,Ka2n+2,Ka2n+2)]3 + [GH(Na2n+2,Na2n+2, La2n+1)]3

[GH(Ma2n+1,Ka2n+2,Ka2n+2)]2 + [GH(Na2n+2,Na2n+2, La2n+1)]2

)
- 0H.

This implies that

φ2
(
GH(b2n+3, b2n+3, b2n+2),GH(b2n+2, b2n+2, b2n+1),GH(b2n+2, b2n+3, b2n+3),GH(b2n+1, b2n+2, b2n+2),

GH(b2n+2, b2n+2, b2n+2),
[GH(b2n+1, b2n+3, b2n+3)]3 + [GH(b2n+2, b2n+2, b2n+2)]3

[GH(b2n+1, b2n+3, b2n+3)]2 + [GH(b2n+2, b2n+2, b2n+2)]2

)
- 0H,

that is,

φ2 (GH(b2n+3, b2n+3, b2n+2),GH(b2n+2, b2n+2, b2n+1),GH(b2n+3, b2n+3, b2n+2),

GH(b2n+2, b2n+2, b2n+1), 0H,GH(b2n+1, b2n+2, b2n+2) + GH(b2n+2, b2n+3, b2n+3)) - 0H.

From (F1), (QG4) and (QG5), one can write

φ2 (GH(b2n+3, b2n+3, b2n+2),GH(b2n+2, b2n+2, b2n+1),GH(b2n+3, b2n+3, b2n+2),
GH(b2n+2, b2n+2, b2n+1), 0H,GH(b2n+2, b2n+2, b2n+1) + GH(b2n+3, b2n+3, b2n+2)) - 0H.

From (F2), we obtain
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|GH(b2n+3, b2n+3, b2n+2)| ≤ q |GH(b2n+2, b2n+2, b2n+1)| .

By a similar way, (step by step) of the proof of Theorem 7, one can complete the proof.

Example 10 Let X = { 1n : n ∈ N} and GH : X × X × X −→ H as defined in Example 4. Let
K, L,M,N : X3 −→ X3 be defined by

Kx =
1
2

x, Lx =
1
4

x, Mx = x, Nx =
1
2

x.

for all x = (x1, x2, x3) ∈ X3.

It is easy to see that K(X) ⊆ M(X) and L(X) ⊆ N(X). So there exist φ1, φ2 : H6 → H such that

φ1(a, b, c, d, e, f ) = (e + f ) − (a + b + c + d) = φ2(a, b, c, d, e, f ),

for all a, b, c, d, e, f ∈ H. We see that φ1, φ2 ∈ z and satisfy the following conditions (2.1) and (2.14).
Moreover, We see that (0, 0, 0) is unique common coincidence point of (K,N) and (L,M), and also
unique common fixed point of mappings K, L,M and N. So, Theorem 7 and Theorem 9 are supported
by this example.

3. Conclusions

In this work, we prove existence theorems of unique common points for the pairs (K,N) and (L,M),
and unique common fixed points for four mappings K,N, L,M are presented in Theorem 7 and Theo-
rem 9. The Example 10 is shown for supporting our main theorems (Theorem 7 and Theorem 9).
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