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1. Introduction

Order statistics play a significant role in many areas such as statistics, reliability, auction theory,
risk management and many other branches of applied probability. For n random variables X1, . . . , Xn,
denote Xk:n the kth smallest order statistic of X1, . . . , Xn. Then X1:n ≤ · · · ≤ Xn:n, and Xk:n represents the
lifetime of (n−k+1)-out-of-n system. In particularly, X1:n and Xn:n respectively represent the lifetimes of
series and parallel systems. Thus, to investigate the lifetime of k-out-of-n system is equivalent to study
the stochastic properties of the order statistics. For more details, one may refer to Balakrishnan and
Rao [1], Khaledi and Kochar [2], Zhao and Balakrishnan [3] and Fang and Zhang [4]. In the past few
decades, stochastic comparisons of order statistics have been studied by many scholars, for example,
Barlow and Proschan [5], Bartoszewicz [6], Boland et al. [7], Kundu et al. [8] and Balakrishnan et
al. [9].

In the past decades, most of the work is developed on the independent and identically distributed
random variables. For comprehensive references, interested readers may refer to Kochar [10] and
Balakrishnan and Zhao [11]. Further, a considerable amount of work has also been carried out
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comparing systems with independent heterogeneous components under specific distributions. For
more on this topic, please see Dykstra et al. [12], Balakrishnan et al. [13] and Torrado [14]. However,
the components of the system share many complex factors when the system is functioning, such as
environmental conditions and work stress. For these reasons, it would be practicable to consider
dependent lifetimes of components. Recently, the dependence structure of the components is
investigated by researchers with the help of copula theory. Archimedean copula has been considered
by many scholars due to its flexibility, for instance, Clayton copula, Ali-Mikhail-Haq copula, and
Gumbel-Hougaard copula. For example, Navarro and Spizzichino [15] studied the stochastic ordering
of series and parallel systems with components sharing a common copula. Li and Li [16] considered
ordering properties of the smallest order statistics of Weibull samples having a common Archimedean
copula. Li et al. [17] discussed stochastic comparisons of extreme order statistics from scaled and
interdependent random variables. Fang et al. [18] presented conditions to stochastically compare the
extreme order statistics from dependent and heterogeneous random variables. Kundu and
Chowdhury [19] discussed the lifetimes of two series and parallel systems with location-scale
components assembled with some kind of Archimedean copulas under different stochastic orders.
Fang et al. [20] obtained various ordering results for comparing the lifetimes of the series and the
parallel systems, where each component follows scale proportional hazard or reversed hazard models
with Archimedean copula. For proportional hazard rate and proportional reversed hazard rate models,
Li and Li [21] developed ordering properties of extreme order statistics from heterogeneous
dependent random variables in the sense of the hazard rate and the reversed hazard rate orders.

In this manuscript, we study the stochastic comparisons of series and parallel systems having
Topp-Leone generated components with different scale and shape parameters. The Topp-Leone
generated family of distribution was given by Sadegh Rezaei [22] as a generalization of Topp and
Leone’s distribution. It has the property to model bathtub-shaped hazard rates depending on the
values of parameters and can be used for lifetime modeling. For more applications of the distribution,
one may refer to Sadegh Rezaei [22]. A random variable X is said to be Topp-Leone generated
(T L −G) family of distribution if its cumulative distribution function is

F(x; θ, α, ξ) = [G(x; ξ)θ(2 −G(x; ξ)θ)]α, x ≥ 0, θ > 0, α > 0,

where θ is the scale parameter, α is the shape parameter, G(x; ξ) is the baseline distribution function,
and ξ is the parameter specifying the baseline distribution, and denote X ∼ T L − G(α, θ, ξ). For
convenience, G(x; ξ) is written by G(x). T L − G(α, θ, ξ) is reduced to Topp and Leone’s distribution
when G(x) ∼ U(0, 1) and θ = 1.

The organization of the paper is as follows. In Section 2, we present some fundamental definitions
and lemmas. In Section 3, we develop the usual stochastic and the reversed hazard rate orders of series
and parallel systems with dependent heterogeneous components under Archimedean copulas. Some
numerical examples are provided to illustrate theoretical findings. Section 4 concludes the paper.

2. Preliminaries

In this section, we first recall some basic definitions of some well-known notions of stochastic
orders, majorization orders, and Archimedean copula, and introduce some lemmas may be used in the
sequel. Denote R = (−∞,+∞) and Rn = (−∞,+∞)n.
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Consider two absolutely continuous random variables X and Y have distribution functions F(x)
and G(x), survival functions F̄(x) = 1 − F(x) and Ḡ(x) = 1 − G(x), density functions f (x) and g(x),
hazard rate functions hX(x) = f (x)/F̄(x) and hY(x) = g(x)/Ḡ(x), and reversed hazard rate functions
γ̃X(x) = f (x)/F(x) and γ̃Y(x) = g(x)/G(x), respectively.

Definition 1. X is smaller than Y in the
(i) usual stochastic order (denoted by X ≤st Y) if F̄(x) ≤ Ḡ(x) for all x ∈ R;
(ii) hazard rate order (denoted by X ≤hr Y) if Ḡ(x)/F̄(x) is increasing in x ∈ R, or hX(x) ≥ hY(x)

for all x ∈ R;
(iii) reversed hazard rate order (denoted by X ≤rh Y) if G(x)/F(x) is increasing in x ∈ R, or

γ̃X(x) ≤ γ̃Y(x) for all x ∈ R.

X ≤st Y means X is less likely than Y to take on large values, where “large” means any value
greater than x, and that this is the case for all x′s. The reversed hazard rate could be understood as
the probability intensity of a component survival to the last moment t given that its lifetime does not
exceed t (cf. Yan and Luo [23]). The hazard rate is well known and has been widely applied. As a dual
concept of the hazard rate, the reversed hazard rate is far less popular and frequently used. Recently,
the reversed hazard rate order has received great attention because it is more appropriate and effective
than the hazard rate order for the study of some particular problems such as assessing waiting time,
hidden failures, inactivity times, etc. (cf. Veres-Ferrer and Pavia [24]).

It is well known that the hazard rate order or the reversed hazard rate order implies the usual
stochastic order, and not conversely. For more detailed discussions and applications of stochastic
orders, please refer to Shaked and Shanthikumar [25]. In addition, some scholars recently have
compared order statistics under some weaker orders such as the second-order stochastic dominance,
the details can be referred to Lando et al. [26, 27].

Let x1:n ≤ x2:n ≤ · · · ≤ xn:n and y1:n ≤ y2:n ≤ · · · ≤ yn:n be the increasing arrangements of the
elements of vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), respectively. In particular, x ≤ y means
xi ≤ yi, for all i = 1, . . . , n.

Definition 2. For two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), x is said to
(i) majorize y (written as x

m
� y) if

∑ j
i=1 xi:n ≤

∑ j
i=1 yi:n, j = 1, . . . , n − 1, and

∑n
i=1 xi:n =

∑n
i=1 yi:n;

(ii) supermajorize y (written as x
w
� y) if

∑ j
i=1 xi:n ≤

∑ j
i=1 yi:n, j = 1, . . . , n;

(iii) submajorize y (written as x �w y) if
∑n

j=i x j:n ≥
∑n

j=i y j:n, i = 1, . . . , n.

The majorization, the weak supermajorization order, and the weak submajorization order are widely
used to establish various stochastic inequalities. For more details on the notions and basic properties
of majorization orders, one may refer to Marshall [28].

The following we recall the notions of copula.

Definition 3. For a random vector X = (X1, X2, . . . , Xn) with joint distribution function F, joint
survival function F̄, univariate distribution functions F1, F2, . . . , Fn and univariate survival functions
F̄1, . . . , F̄n. If there exist some function C : [0, 1]n → [0, 1] and Ĉ : [0, 1]n → [0, 1] such that, for all
xi, i = 1, . . . , n,

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), F̄(x1, . . . , xn) = Ĉ(F̄1(x1), . . . , F̄n(xn)),

then C and Ĉ are called the copula and survival copula of random vector X, respectively.
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Definition 4. For a decreasing and continuous function ψ : [0,∞) → [0, 1] such that ψ(0) = 1 and
ψ(+∞) = 0, let φ = ψ−1 be its pseudo-inverse. Then,

Cψ(u1, . . . , un) = ψ(φ(u1) + · · · + φ(un)), ui ∈ (0, 1), i = 1, 2, . . . , n,

is called an Archimedean copula with generator ψ, if (−1)kψ(k)(x) ≥ 0 for k = 1, 2 . . . , n − 2 and
(−1)n−2ψ(n−2)(x) is decreasing and convex.

For more on Archimedean copula, readers may refer to Nelsen [29]. For convenience, from now
on, we denote

ε+ = {(x1, . . . , xn) : 0 < x1 ≤ x2 ≤ · · · ≤ xn},

D+ = {(x1, . . . , xn) : x1 ≥ x2 ≥ · · · ≥ xn > 0}.

Definition 5. A function f is said to be super-additive if f (x + y) ≥ f (x) + f (y), for all x and y in the
domain of f .

Definition 6. A real-valued function ϕ defined on a set A ⊆ Rn is said to be Schur-convex [Schur-
concave] on A if x

m
� y implies ϕ(x) ≥ [≤]ϕ(y) on A.

In the following, we present some lemmas will be used in proving the main results.

Lemma 1. (Li and Fang [30]. Lemma A.1) For two n-dimensional Archimedean copulas Cψ1 and Cψ2 ,
if φ2 ◦ ψ1 is super-additive, then Cψ1(u) ≤ Cψ2(u) for all u = (u1, . . . , un) ∈ [0, 1]n.

Lemma 2. (Marshall et al. [28]. Theorem 3.A.4) Suppose J ⊂ R is an open interval and φ : Jn → R

is continuously differentiable. Then, φ is Schur-convex [Schur-concave] on Jn if and only if
(i) φ is symmetric on Jn; and
(ii) for all i , j and all x ∈ Jn,

(xi − x j)
(
∂φ(x)
∂xi

−
∂φ(x)
∂x j

)
≥ [≤]0,

where ∂φ(x)
∂xi

represents the partial derivative of φ with respect to its i-th argument.

Lemma 3. (Marshall et al. [28]. Theorem 3.A.8) A real valued function φ on Rn, satisfies

x
w
≺ y⇒ φ(x) ≤ [≥]φ(y),

if and only if φ is decreasing and Schur-convex [Schur-concave] on Rn. Similarly, φ satisfies

x ≺w y⇒ φ(x) ≤ [≥]φ(y),

if and only if φ is increasing and Schur-convex [Schur-concave] on Rn.

Lemma 4. (Das and Kayal [31]. Lemma 2.6) Let the function h : (0, 1) → (−∞, 0) be defined as
h(u) = u ln u

1−u . Then, h(u) is decreasing in u for all u ∈ (0, 1).
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Lemma 5. (Li and Li [21]. Lemma 2.3) If λ
w
� µ, ψ is log-concave and (ψ lnψ)/ψ′ is increasing and

concave, then

L(φ(Hλ1(x)), . . . , φ(Hλn(x))) ≤ L(φ(Hµ1(x)), . . . , φ(Hµn(x))),

for any H(x) ∈ [0, 1], where L(u) =
ψ′(

∑n
i=1 ui)

ψ(
∑n

i=1 ui)

∑n
i=1

ψ(ui) lnψ(ui)
ψ′(ui)

, ui ∈ [0, 1], i = 1, . . . , n and φ = ψ−1 is the
pseudo-inverse of ψ.

Throughout this paper, the terms increasing and decreasing are used for non-decreasing and non-
increasing, respectively. It is also assumed that all the random variables are non-negative and absolutely
continuous.

3. Main results

In this section, we compare two system lifetimes with dependent heterogeneous components
following the Topp-Leone generated distribution. The usual stochastic order and the reversed hazard
rate order are obtained for series and parallel systems. Let X = (X1, . . . , Xn) be the dependent
heterogeneous TL-G distributed random vectors, we denote X ∼ TL-G(α, θ, F), where F is the
baseline distribution function, ψ1 is generator of the associated Archimedean copula, and
α = (α1, . . . , αn) and θ = (θ1, . . . , θn) are the tilt parameter vector. Similarly, denote
Y ∼ TL-G(β, δ,G). For convenience, we denote the distribution(survival) function of random variable
X by HX(x)(H̄X(x)). Then, the distribution functions of the parallel systems Xn:n and Yn:n are given by

HXn:n(x) = ϕ1(α, θ, F, ψ1) = ψ1

 n∑
i=1

φ1

((
Fθi(2 − Fθi)

)αi

)
and

HYn:n(x) = ϕ2(β, δ,G, ψ2) = ψ2

 n∑
i=1

φ2

((
Gδi(2 −Gδi)

)βi

) ,
respectively. And the reliability functions of series systems X1:n and Y1:n can be written as

H̄X1:n(x) = ϑ1(α, θ, F, ψ1) = ψ1

 n∑
i=1

φ1

(
1 −

(
Fθi(2 − Fθi)

)αi

)
and

H̄Y1:n(x) = ϑ2(β, δ,G, ψ2) = ψ2

 n∑
i=1

φ2

(
1 −

(
Gδi(2 −Gδi)

)βi

) ,
respectively, where φ1 = ψ−1

1 and φ2 = ψ−1
2 .

First, we develop sufficient conditions for the usual stochastic order between parallel systems with
dependent components. In the following theorem, we consider the case of the heterogeneous shape
parameters and common scale parameters.
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Theorem 1. Suppose that X and Y are two random variables with distribution functions F and G,
respectively. Define X ∼ TL-G(α, θ, F) with generator ψ1 and Y ∼ TL-G(β, θ,G) with generator ψ2,
such that α,β and θ ∈ ε+. If X ≥st Y, φ2 ◦ψ1 is super-additive, and either ψ1 or ψ2 is log-convex. Then,
α

w
� β⇒ Xn:n ≥st Yn:n.

Proof. Without loss of generality, assume that ψ2 is log-convex, it follows from Lemma 1 that

ϕ1(α, θ, F, ψ1) ≤ ϕ1(α, θ, F, ψ2). (3.1)

By the decreasing property of ψ2 and φ2, and note that X ≥st Y, we have

ϕ1(α, θ, F, ψ2) ≤ ϕ2(α, θ,G, ψ2). (3.2)

Combining (3.1) and (3.2), we conclude

ϕ1(α, θ, F, ψ1) ≤ ϕ2(α, θ,G, ψ2).

Thus, to prove the required result, it is sufficient to show that

ϕ2(α, θ,G, ψ2) ≤ ϕ2(β, θ,G, ψ2).

Denote

ϕ2(α, θ,G, ψ2) = ψ2

 n∑
i=1

φ2

((
Gθi(2 −Gθi)

)αi

) . (3.3)

On differentiating (3.3) with respect to αi (i = 1, 2, . . . , n), we obtain

∂ϕ2(α, θ,G, ψ2)
∂αi

= ψ′2

 n∑
i=1

φ2

((
Gθi(2 −Gθi)

)αi

) ψ2

(
φ2

((
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

((
Gθi(2 −Gθi)

)αi

)) ln
(
Gθi(2 −Gθi)

)
≤ 0.

Hence, ϕ2(α, θ,G, ψ2) is decreasing in αi (i = 1, 2, . . . , n). After simplifications, we have

∂ϕ2(α, θ,G, ψ2)
∂αi

−
∂ϕ2(α, θ,G, ψ2)

∂α j

= ψ′2

 n∑
i=1

φ2

((
Gθi(2 −Gθi)

)αi

) ψ2

(
φ2

((
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

((
Gθi(2 −Gθi)

)αi

)) ln
(
Gθi(2 −Gθi)

)

−ψ′2

 n∑
j=1

φ2

((
Gθ j(2 −Gθ j)

)α j

) ψ2

(
φ2

((
Gθ j(2 −Gθ j)

)α j

))
ψ′2

(
φ2

((
Gθ j(2 −Gθ j)

)α j

)) ln
(
Gθ j(2 −Gθ j)

)
.

Under the assumption of α, θ ∈ ε+, we have αi ≤ α j, θi ≤ θ j (1 ≤ i ≤ j ≤ n), which implies that(
Gθi(2 −Gθi)

)αi ≥
(
Gθ j(2 −Gθ j)

)α j . From the log-convexity of ψ2 that holds

ψ2

(
φ2

((
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

((
Gθi(2 −Gθi)

)αi

)) ≥ ψ2

(
φ2

((
Gθ j(2 −Gθ j)

)α j

))
ψ′2

(
φ2

((
Gθ j(2 −Gθ j)

)α j

)) .
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It is obvious that
∂ϕ2(α, θ,G, ψ2)

∂αi
−
∂ϕ2(α, θ,G, ψ2)

∂α j
≥ 0.

It follows immediately from Lemma 2 that ϕ2(α, θ,G, ψ2) is Schur-concave in α. Note that α
w
� β, we

obtain that ϕ2(α, θ,G, ψ2) ≤ ϕ2(β, θ,G, ψ2) by Lemma 3. The proof is completed. �

Remark 1. (i) Note that the super-additivity of φ2◦ψ1 can be roughly interpreted as follows: Kendall’s
τ of the copula with generator ψ2 is larger than that with generator ψ1 and hence is more positive
dependent (refer to Li and Fang [30]). Theorem 1 shows that the less positive dependence, and the
more heterogeneous shape parameters (in the weakly supermajorized order) lead to the stochastically
large lifetime of the parallel system and higher reliability could be achieved.

(ii) It is vital to note that the super-additivity of φ2 ◦ ψ1(x) in Theorem 1 is easy to check for many
well-known Archimedean copulas. For example, for the Clayton copula with generator ψ(x) = (ax +

1)−
1
a for a ∈ (0,∞), it is easy to verify that ψ(x) = −1

a ln(ax + 1) is log-convex in x ∈ [0, 1]. Let

ψ1(x) = (a1x + 1)−
1

a1 and ψ2(x) = (a2x + 1)−
2

a2 . It can be observed that φ2 ◦ψ1(x) = ((a1x + 1)
a2
a1 −1)/a2.

Taking twice derivative of φ2 ◦ ψ1(x) with respect to x, it can be seen that [φ2 ◦ ψ1(x)]′′ ≥ 0 for any
a2 ≥ a1 > 0, which implies the super-additivity of φ2 ◦ ψ1(x).

(iii) To display the whole curves of distribution functions of random variables defined on [0,+∞),
we take the transformation (x + 1)−1 : [0,+∞) 7→ (0, 1] for variable X. Then X ≤st Y is equivalent to
(X + 1)−1 ≥st (Y + 1)−1. Through this transformation, we can display the graphs of the CDFs in the
(0, 1] interval and further realize the panoramic observation of random variables.

The following example 1 illustrates the theoretical result of Theorem 1.

Example 1. Consider F(x) = e−
2
x and G(x) = 1 − 1

1+x , x > 0. It is obvious that X ≥st Y. Let

Xi ∼ TL-G(αi, θi, F) and Yi ∼ TL-G(βi, δi,G), i = 1, 2. Set (α1, α2) = (2, 6)
w
� (4, 5) = (β1, β2), (θ1, θ2) =

(0.6, 0.1) = (δ1, δ2). We further take ψ1(x) = e
1−ex

2 and ψ2(x) = (0.1x + 1)−
1

0.1 , x > 0. It is clear that ψ2 is
log-convex but ψ1 is log-concave. We can easily show that φ2 ◦ψ1(x) is convex in x and φ2 ◦ψ1(0) = 0,
and thus φ2 ◦ ψ1(x) is super-additive. As is seen in Figure 1, the survival curve of (X2:2 + 1)−1 beneath
that of (Y2:2 + 1)−1 confirms X2:2(x) ≥st Y2:2(x). This validates the result in Theorem 1.

H
X2:2+1

-1 (x)

H
Y2:2+1

-1 (x)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

Figure 1. Plots of survival functions of (X2:2 + 1)−1 and (Y2:2 + 1)−1.
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The following result provides some sufficient conditions for the usual stochastic order of series
systems under the weakly submajorized order. We consider equal scale parameter vectors.

Theorem 2. Suppose that X and Y are two random variables with distribution functions F and G,
respectively. Define X ∼ TL-G(α, θ, F) with generator ψ1 and Y ∼ TL-G(β, θ,G) with generator ψ2,
such that α,β and θ ∈ ε+. If X ≤st Y, and φ2 ◦ ψ1 is super-additive, and either ψ1 or ψ2 is log-convex.
Then, α �w β⇒ X1:n ≤st Y1:n.

Proof. Consider the case of ψ2 is log-convex. The super-additivity of φ2 ◦ ψ1 implies that

ϑ1(α, θ, F, ψ1) ≤ ϑ1(α, θ, F, ψ2). (3.4)

Note that ψ2, φ2 are decreasing, by X ≤st Y, we have

ϑ1(α, θ, F, ψ2) ≤ ϑ2(α, θ,G, ψ2). (3.5)

Combining (3.4) and (3.5), we get

ϑ1(α, θ, F, ψ1) ≤ ϑ2(α, θ,G, ψ2).

Hence, to prove the required results, it is sufficient to show that

ϑ2(α, θ,G, ψ2) ≤ ϑ2(β, θ,G, ψ2).

Denote

ϑ2(α, θ,G, ψ2) = ψ2

 n∑
i=1

φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

) . (3.6)

The partial derivative of (3.6) with respect to αi(i = 1, . . . , n) can be given by

∂ϑ2(α, θ,G, ψ2)
∂αi

= −
1
αi
ψ′2

 n∑
i=1

φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

) ψ2

(
φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

))
×

(
Gθi(2 −Gθi)

)αi ln
(
Gθi(2 −Gθi)

)αi

1 −
(
Gθi(2 −Gθi)

)αi
≥ 0.

Thus, ϑ2(α, θ,G, ψ2) is increasing in αi (i = 1, 2, . . . , n). We obtain

∂ϑ2(α, θ,G, ψ2)
∂αi

−
∂ϑ2(α, θ,G, ψ2)

∂α j

= −
1
αi
ψ′2

 n∑
i=1

φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

) ψ2

(
φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

)) (Gθi(2 −Gθi)
)αi ln

(
Gθi(2 −Gθi)

)αi

1 −
(
Gθi(2 −Gθi)

)αi
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+
1
α j
ψ′2

 n∑
j=1

φ2

(
1 −

(
Gθ j(2 −Gθ j)

)α j

) ψ2

(
φ2

(
1 −

(
Gθ j(2 −Gθ j)

)α j

))
ψ′2

(
φ2

(
1 −

(
Gθ j(2 −Gθ j)

)α j

)) (Gθ j(2 −Gθ j)
)α j ln

(
Gθ j(2 −Gθ j)

)α j

1 −
(
Gθ j(2 −Gθ j)

)α j
.

(3.7)

Consider that αi ≤ α j, θi ≤ θ j (1 ≤ i ≤ j ≤ n), which implies that (Gθi(2 −Gθi))αi ≥ (Gθ j(2 −Gθ j))α j . It
follows from log-convexity of ψ2 that

ψ2

(
φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

)) ≤ ψ2

(
φ2

(
1 −

(
Gθ j(2 −Gθ j)

)α j

))
ψ′2

(
φ2

(
1 −

(
Gθ j(2 −Gθ j)

)α j

)) .
By Lemma 4, it holds that(

Gθi(2 −Gθi)
)αi ln

(
Gθi(2 −Gθi)

)αi

1 −
(
Gθi(2 −Gθi)

)αi
≤

(
Gθ j(2 −Gθ j)

)α j ln
(
Gθ j(2 −Gθ j)

)α j

1 −
(
Gθ j(2 −Gθ j)

)α j
.

For convenience, denote

A1 = −
1
αi
, B1 =

ψ2

(
φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

)) , C1 =

(
Gθi(2 −Gθi)

)αi ln
(
Gθi(2 −Gθi)

)αi

1 −
(
Gθi(2 −Gθi)

)αi
,

A2 = −
1
α j
, B2 =

ψ2

(
φ2

(
1 −

(
Gθ j(2 −Gθ j)

)α j

))
ψ′2

(
φ2

(
1 −

(
Gθ j(2 −Gθ j)

)α j

)) , C2 =

(
Gθ j(2 −Gθ j)

)α j ln
(
Gθ j(2 −Gθ j)

)α j

1 −
(
Gθ j(2 −Gθ j)

)α j
,

and

D = ψ′2

 n∑
i=1

φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

) < 0.

Note that A1 ≤ A2 < 0, B1 ≤ B2 < 0,C1 ≤ C2 < 0. Then, equation (3.7) is equivalent to

A1B1C1D − A2B2C2D

= (A1B1C1 − A2B1C1 + A2B1C1 − A2B2C2)D
= {(A1 − A2)B1C1 + A2[(B1 − B2)C1 + B2(C1 −C2)]}D ≥ 0.

Thus
∂ϑ2(α, θ,G, ψ2)

∂αi
−
∂ϑ2(α, θ,G, ψ2)

∂α j
≥ 0.

It follows from Lemma 2 that ϑ2(α, θ,G, ψ2) is Schur-concave in α. Based on α �w β and by Lemma
3, we conclude ϑ2(α, θ,G, ψ2) ≤ ϑ2(β, θ,G, ψ2). This completes the proof. �
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Remark 2. In accordance with Theorem 2, for a series system, the more positive dependence, and the
less heterogeneous (in the weakly subermajorized order) the shape parameters are, the stochastically
longer lifetime of the system and hence higher reliability will be achieved. It should be pointed out that
Theorem 2 expands Theorem 3.5 of Chanchal et al. [32] to the case of the heterogeneous components.
It might be of great interest to study the hazard rate order between X1:n and Y1:n, which is left as an
open problem.

The following example 2 illustrates that the theoretical result of Theorem 2.

Example 2. Consider F(x) = 1 − 1
1+x and G(x) = e−

1
x , x > 0. It is obvious that X ≤st Y. Let

ψ1(x) = e1−(1+x)5
and ψ2(x) = e−x0.3

, x > 0, and Xi ∼ TL-G(αi, θi, F) and Yi ∼ TL-G(βi, δi,G), i = 1, 2,
and set (α1, α2) = (2, 8) �w (3, 4) = (β1, β2), (θ1, θ2) = (1.2, 3) = (δ1, δ2). It is easy to verify that ψ2

is log-convex but ψ1 is log-concave, and φ2 ◦ ψ1(x) is convex in x and φ2 ◦ ψ1(0) = 0, which implies
φ2 ◦ψ1(x) is super-additive. Then, the conditions of Theorem 2 are satisfied. Figure 2 plots distribution
functions of (X1:2 + 1)−1 and (Y1:2 + 1)−1, from which it can be observed that H(X1:2+1)−1(x) is always
smaller than H(Y1:2+1)−1(x), and this verifies X1:2 ≤st Y1:2.

H
X1:2+1

-1 (x)

H
Y1:2+1

-1 (x)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

Figure 2. Plots of distribution functions of (X1:2 + 1)−1 and (Y1:2 + 1)−1.

The next theorem establishes some sufficient conditions for the usual stochastic order, here, we
consider different scale parameter vectors.

Theorem 3. Suppose that X and Y are two random variables with distribution functions F and G,
respectively. Define X ∼ TL-G(α, θ, F) with generator ψ1 and Y ∼ TL-G(α, δ,G) with generator ψ2 ,
such that θ, δ and α ∈ ε+. If X ≥st Y, φ2 ◦ψ1 is super-additive, and either ψ1 or ψ2 is log-convex. Then,
θ

w
� δ⇒ Xn:n ≥st Yn:n.

Proof. First assume that ψ2 is log-convex. Similar to the arguments as in the proof of Theorem 1, we
notice that to prove the present theorem, it is enough to show that

ϕ2(α, θ,G, ψ2) ≤ ϕ2(α, δ,G, ψ2).

Denote

ϕ2(α, θ,G, ψ2) = ψ2

 n∑
i=1

φ2

((
Gθi(2 −Gθi)

)αi

) . (3.8)
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On differentiating (3.9) with respect to θi (i = 1, 2, . . . , n), we have

∂ϕ2(α, θ,G, ψ2)
∂θi

= 2αi ln G
(
1 −Gθi

2 −Gθi

)
ψ′2

 n∑
i=1

φ2

((
Gθi(2 −Gθi)

)αi

) ψ2

(
φ2

((
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

((
Gθi(2 −Gθi)

)αi

)) ≤ 0.

It follows that ϕ2(α, θ,G, ψ2) is decreasing in θi (i = 1, 2, . . . , n). We further get

∂ϕ2(α, θ,G, ψ2)
∂θi

−
∂ϕ2(α, θ,G, ψ2)

∂θ j

= 2αi ln G
(
1 −Gθi

2 −Gθi

)
ψ′2

 n∑
i=1

φ2

((
Gθi(2 −Gθi)

)αi

) ψ2

(
φ2

((
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

((
Gθi(2 −Gθi)

)αi

))

−2α j ln G
(
1 −Gθ j

2 −Gθ j

)
ψ′2

 n∑
j=1

φ2

((
Gθ j(2 −Gθ j)

)α j

) ψ2

(
φ2

((
Gθ j(2 −Gθ j)

)α j

))
ψ′2

(
φ2

((
Gθ j(2 −Gθ j)

)α j

)) . (3.9)

Further, we have αi ≤ α j, θi ≤ θ j (1 ≤ i ≤ j ≤ n). Therefore
(
Gθi(2 −Gθi)

)αi ≥
(
Gθ j(2 −Gθ j)

)α j . By the
log-convexity of ψ2, we conclude

ψ2

(
φ2

((
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

((
Gθi(2 −Gθi)

)αi

)) ≥ ψ2

(
φ2

((
Gθ j(2 −Gθ j)

)α j

))
ψ′2

(
φ2

((
Gθ j(2 −Gθ j)

)α j

))
and

1 −Gθi

2 −Gθi
−

1 −Gθ j

2 −Gθ j
=

Gθ j −Gθ j

(2 −Gθi)(2 −Gθ j)
≤ 0.

For convenience, denote

A′1 =

ψ2

(
φ2

((
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

((
Gθi(2 −Gθi)

)αi

)) , B′1 =
1 −Gθi

2 −Gθi
, C′1 = αi,

A′2 =

ψ2

(
φ2

((
Gθ j(2 −Gθ j)

)α j

))
ψ′2

(
φ2

((
Gθ j(2 −Gθ j)

)α j

)) , B′2 =
1 −Gθ j

2 −Gθ j
, C′2 = α j,

and

D′ = 2 ln Gψ′2

 n∑
i=1

φ2

((
Gθi(2 −Gθi)

)αi

) > 0.

Note that A′2 ≤ A′1 < 0, 0 < B′1 ≤ B′2, 0 < C′1 ≤ C′2. Then, Eq (3.9) is equivalent to

A′1B′1C
′
1D′ − A′2B′2C

′
2D′ = {(A′1 − A′2)B′1C

′
1 + A′2[(B′1 − B′2)C′1 + B′2(C′1 −C′2)]}D′ ≥ 0.
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Thus
∂ϕ2(α, θ,G, ψ2)

∂θi
−
∂ϕ2(α, θ,G, ψ2)

∂θ j
≥ 0.

Thus ϕ2(α, θ,G, ψ2) is Schur-concave in θ. Based on α
w
� β, we obtain ϕ2(α, θ,G, ψ2) ≤ ϕ2(α, δ,G, ψ2)

by Lemma 3. The desired result is proved. �

Remark 3. Theorem 3 manifests that the less positive dependence, and the more heterogeneous scale
parameters (in the weakly supermajorized order) lead to the stochastically large lifetime of the parallel
system and higher reliability could be achieved. It should be noted that Theorem 3 generalizes Theorem
3.2 in Chanchal et al. [32] to the case of the dependent components. It might be of great interest to
establish the (reversed) hazard rate order between Xn:n and Yn:n of Theorem 3, which is left as an open
problem.

The following example 3 illustrates the theoretical result of Theorem 3.

Example 3. For F(x) = e−
1
x and G(x) = 1 − e−x, x > 0. It is obvious that X ≥st Y. Let ψ1(x) = e1−(1+x)5

and ψ2(x) = 0.2
ex−0.8 , x > 0, and Xi ∼ TL-G(αi, θi, F) and Yi ∼ TL-G(βi, δi,G), i = 1, 2. Further set

(θ1, θ2) = (0.2, 0.6)
w
� (0.4, 0.5) = (δ1, δ2), (α1, α2) = (2, 3) = (β1, β2). It is easy to show that ψ2 is

log-convex but ψ1 is log-concave, and φ2 ◦ ψ1(x) is convex in x and φ2 ◦ ψ1(0) = 0, which implies
φ2 ◦ ψ1(x) is super-additive. Then, the conditions of Theorem 3 are satisfied. Figure 3 plots these
survival functions of (X2:2 + 1)−1 and (Y2:2 + 1)−1, from which it can be observed that H̄(X2:2+1)−1(x) is
always smaller than H̄(Y2:2+1)−1(x), and this confirms that X2:2 ≥st Y2:2.

H
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-1 (x)

H
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-1 (x)
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Figure 3. Plots of survival functions of (X2:2 + 1)−1 and (Y2:2 + 1)−1.

The theorem given below provides sufficient conditions for the usual stochastic order, here, we
assume that the shape parameter vectors are the same.

Theorem 4. Suppose that X and Y are two random variables with distribution functions F and G,
respectively. Define X ∼ TL-G(α, θ, F) with generator ψ1 and Y ∼ TL-G(α, δ,G) with generator ψ2,
such that θ, δ and α ∈ ε+. If X ≤st Y and φ2 ◦ ψ1 is super-additive, Then, θ ≤ δ⇒ X1:n ≤st Y1:n.

Proof. Similar to the proof of Theorem 2, we only need to prove that

ϑ2(α, θ,G, ψ2) ≤ ϑ2(α, δ,G, ψ2).
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Denote

ϑ2(α, θ,G, ψ2) = ψ2

 n∑
i=1

φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

) . (3.10)

On differentiating (3.10) with respect to θi (i = 1, . . . , n) give rises to

∂ϑ2(α, θ,G, ψ2)
∂θi

= −ψ′2

 n∑
i=1

φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

) ψ2

(
φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

))
ψ′2

(
φ2

(
1 −

(
Gθi(2 −Gθi)

)αi

))
×2αi ln G

(
1 −Gθi

2 −Gθi

) (
Gθi(2 −Gθi)

)αi

1 −
(
Gθi(2 −Gθi)

)αi
≥ 0.

Thus, ϑ2(α, θ,G, ψ2) is increasing in θi (i = 1, . . . , n). When θ ≤ δ, we obtain that ϑ2(α, θ,G, ψ2) ≤
ϑ2(α, δ,G, ψ2), hence the proof is finished. �

Remark 4. It should be mentioned that the condition φ2 ◦ ψ1(x) is super-additive in Theorem 4 is
quite general and easy to be constructed for many well-known Archimedean copulas. For example,
consider Ali-Mikhail-Haq(AMH) copula with generator ψ(x) = 1−a

ex−a for a ∈ [0, 1), it is easy to see that
lnψ(x) = ln(1 − a) − ln(ex − a) is convex in x ∈ [0, 1]. Let ψ1(x) = 1−a1

ex−a1
and ψ2(x) = 1−a2

ex−a2
. It can be

observed that φ2 ◦ ψ1(x) = ln[ 1−a2
1−a1

(ex − a1) + a2]. Taking derivative of φ2 ◦ ψ1(x) twice with respect
to x, it can be seen that [φ2 ◦ ψ1(x)]′′ ≥ 0 for 1 > a2 > a1 ≥ 0, which implies the super-additivity of
φ2 ◦ ψ1(x).

It is natural to ask whether the condition in Theorem 4 can be weakened ? The following numerical
example provides a negative answer. We show that if we take θ

m
� δ , then the result in Theorem 4 does

not hold.

Counterexample 1. Let Xi ∼ TL-G(αi, θi, F) and Yi ∼ TL-G(βi, δi,G), i = 1, 2. For F(x) = 1 − 1
1+x and

G(x) = e−
1
x , x > 0. It is obvious that X ≤st Y. Further set (θ1, θ2) = (0.4, 0.6)

m
� (0.1, 0.9) = (δ1, δ2),

(α1, α2) = (2, 3) = (β1, β2). Suppose we choose the Ali-Mikhail-Haq(AMH) copula with parameters
a1 = 0.2, a2 = 0.8. We plot the graphs of the distribution functions of (X1:2 + 1)−1 and (Y1:2 + 1)−1 in
Figure 4. The graphs cross each other. This implies that the usual stochastic ordering as mentioned in
Theorem 4 does not hold.
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Figure 4. Plots of distribution functions of (X1:2 + 1)−1 and (Y1:2 + 1)−1.
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Next, we switch our focus to the reversed hazard rate order between two parallel systems having
dependent Topp-Leone generated distributed components. The following theorem presents sufficient
conditions for the comparison of two parallel systems with the same scale parameters.

Theorem 5. Let X ∼ TL-G(α, θ, F) and Y ∼ TL-G(β, θ, F) have the common generator ψ, such that
α,β and θ ∈ ε+. If ψ is log-concave, and (ψ lnψ)/ψ′ is increasing and concave. Then α

w
� β⇒ Xn:n ≥rh

Yn:n.

Proof. The reversed hazard rate function of parallel system Xn:n is

γ̃Xn:n(x)

=

ψ′
(∑n

i=1 φ
((

Fθ(2 − Fθ)
)αi

))
ψ

(∑n
i=1 φ

((
Fθ(2 − Fθ)

)αi

))


n∑
i=1

1

ψ′
(
φ
((

Fθ(2 − Fθ)
)αi

))αi

(
Fθ(2 − Fθ)

)αi−1(
2θFθ−1 f (1 − Fθ)

)
=

ψ′
(∑n

i=1 φ
((

Fθ(2 − Fθ)
)αi

))
ψ

(∑n
i=1 φ

((
Fθ(2 − Fθ)

)αi

))


n∑
i=1

ψ
(
φ
((

Fθ(2 − Fθ)
)αi

))
ψ′

(
φ
((

Fθ(2 − Fθ)
)αi

))2θαiγ̃X

(1 − Fθ

2 − Fθ

)
= 2θ

(1 − Fθ

2 − Fθ

) (
γ̃X

ln
(
Fθ(2 − Fθ)

)) ψ′
(∑n

i=1 φ
((

Fθ(2 − Fθ)
)αi

))
ψ

(∑n
i=1 φ

((
Fθ(2 − Fθ)

)αi

))

×


n∑

i=1

ψ
(
φ
((

Fθ(2 − Fθ)
)αi

))
ln

(
ψ

(
φ
((

Fθ(2 − Fθ)
)αi

)))
ψ′

(
φ
((

Fθ(2 − Fθ)
)αi

))
 .

Denote

L(u) =
ψ′(

∑n
i=1 ui)

ψ(
∑n

i=1 ui)

 n∑
i=1

ψ(ui) lnψ(ui)
ψ′(ui)

 ,
then γ̃Xn:n(x) can be represented as

γ̃Xn:n(x) = 2θ
1 − Fθ

2 − Fθ

(
γ̃X

ln
(
Fθ(2 − Fθ)

))L (
φ
(
(Fθ(2 − Fθ))α1

)
, . . . , φ

(
(Fθ(2 − Fθ))αn

))
.

Similarly, we have

γ̃Yn:n(x) = 2θ
1 − Fθ

2 − Fθ

(
γ̃X

ln
(
Fθ(2 − Fθ)

))L (
φ
(
(Fθ(2 − Fθ))β1

)
, . . . , φ

(
(Fθ(2 − Fθ))βn

))
.

Notice that for θ > 0, Fθ(2 − Fθ) ∈ [0, 1]. Since ψ is log-concave, α
w
� β, and note that (ψ lnψ)/ψ′ is

increasing concave. It follows from Lemma 5 that

L
(
φ
(
(Fθ(2 − Fθ))α1

)
, . . . , φ

(
(Fθ(2 − Fθ))αn

))
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≤ L
(
φ
(
(Fθ(2 − Fθ))β1

)
, . . . , φ

(
(Fθ(2 − Fθ))βn

))
.

γ̃Xn:n(x) ≥ γ̃Yn:n(x) holds immediately from (1 − Fθ)/(2 − Fθ) ≥ 0 and ln(Fθ(2 − Fθ)) ≤ 0. The proof is
completed. �

Remark 5. Theorem 5 states that less heterogeneous shape parameters in the weakly supermajorized
order lead to a large lifetime of the parallel system in the sense of the reversed hazard rate order. It
might be of great interest to study the likelihood ratio order between Xn:n and Yn:n, which is left as an
open problem.

The following example 4 illustrates that the theoretical results of Theorem 5.

Example 4. Let ψ(x) = e4−4ex
, x > 0. It is obvious that ψ(x) is log-concave in x > 0, and

(ψ(x) lnψ(x))/ψ′(x) = (ex − 1)/ex is increasing concave. Assume Xi ∼ TL-G(αi, θi, F) and
Yi ∼ TL-G(βi, θi, F), i = 1, 2, F(x) = [1 − e−x]0.5, x > 0. Further set (α1, α2) = (4, 5)

w
� (2, 6) = (β1, β2),

(θ1, θ2) = (2, 3). The difference between the hazard rate functions of (X2:2 + 1)−1 and (Y2:2 + 1)−1 is
plotted in Figure 5, from which one can observe that h(X2:2+1)−1(x) is always larger than h(Y2:2+1)−1(x),
and this confirms that X2:2 ≥rh Y2:2.
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Figure 5. Plots of the difference of the hazard rate functions of (X2:2 + 1)−1 and (Y2:2 + 1)−1.

4. Conclusion

In this paper, we study stochastic comparisons of series and parallel systems with heterogeneous
Topp-Leone generated components with Archimedean (survival) copulas. We established the usual
stochastic order of the series and parallel systems, and the reversed hazard rate order of the parallel
system. These results generalize some existing results in the literature (see Chanchal et al. [32]) to the
case of dependent components in the T L-G family.
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