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Abstract: By utilizing the Nevanlinna theory of meromorphic functions in several complex variables,
we will establish some theorems about the existence and the forms of entire solutions for several partial
differential difference equations (systems) of Fermat type with two complex variables such as

f (z)2 +

[
f (z + c) +

∂ f
∂z1

+
∂ f
∂z2

]2

= 1

and 
f1(z)2 +

[
f2(z + c) +

∂ f1

∂z1
+
∂ f1

∂z2

]2

= 1,

f2(z)2 +

[
f1(z + c) +

∂ f2

∂z1
+
∂ f2

∂z2

]2

= 1,

which are some extensions and generalizations of the previous theorems given by Xu and Cao [29,30],
Xu, Liu and Li [28], and Liu, Yang [18–20]. Moreover, we give some examples to explain that our
results are precise to some extent.
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1. Introduction

We first assume that the readers are familiar with the notations of the Nevanlinna theory such as
T (r, f ),m(r, f ),N(r, f ) and so on, which can be found, for instant, in Hayman [12], Yang [31], Yi and
Yang [32]. As is known to all, Nevanlinna theory is a powerful tool in analysing the properties of
meromorphic functions including meromorphic functions in arbitrary plane regions, algebroid
functions, functions of several variables, holomorphic curves, uniqueness theory of meromorphic
function and complex differential equations, and so on. Moreover, it is also used in lots of areas of
mathematics including potential theory, measure theory, differential geometry, topology and others.

Around 2006, Chiang and Feng [6], Halburd and Korhonen [8] established independently the
difference analogues of Nevanlinna theory in C, respectively. In the past two decades, many scholars
paid a lot of attention to a large number of interesting topics on complex difference of meromorphic
functions by making use of the difference analogue of Nevanlinna theory, and complex difference
results are in the rapid development.

In all the previous articles, Korhonen, Halburd, Chen and his students investigated the properties
of solutions for a series of linear difference equations, the difference Painlevé equations, the Riccati
equations, the Pielou logistic equations, and obtained the conditions of the existence and estimations
of growth order for the above difference equations [1,4,5,9,27,35]; Laine, Korhonen, Yang, Chen, etc.
established the difference analogue of Clunie Lemma and Mohonko Lemma, and gave the existence
theorems on solutions for some complex difference equations including difference Malmquist type and
some nonlinear difference equations [16, 17, 21]; Korhonen, Zhang, Liu, Yang paid close attention to
some complex differential difference equations [11, 18–20, 24, 34], in special, Liu and his co-authors
[18–20] investigated some types of complex differential difference equations of Fermat type such as

f ′(z)2 + f (z + c)2 = 1, (1.1)
f ′(z)2 + [ f (z + c) − f (z)]2 = 1. (1.2)

They proved that the transcendental entire solutions with finite order of equation (1.1) must satisfy
f (z) = sin(z ± Bi), where B is a constant and c = 2kπ or c = (2k + 1)π, k is an integer, and the
transcendental entire solutions with finite order of equation (1.2) must satisfy f (z) = 12 sin(2z + Bi),
where c = (2k + 1)π, k is an integer, and B is a constant. In 2016, Gao [7] discussed the solutions for
the system of complex differential-difference equations [ f ′1(z)]2 + f2(z + c)2 = 1,

[ f ′2(z)]2 + f1(z + c)2 = 1,
(1.3)

and extend the results given by Liu and Cao.

Theorem 1.1. (see [7, Theorem 1.1]). Suppose that ( f1, f2) is a pair of transcendental entire solutions
with finite order for the system of differential-difference equations (1.3). Then ( f1, f2) satisfies

( f1(z), f2(z)) = (sin(z − bi), sin(z − b1i)),

or
( f1(z), f2(z)) = (sin(z + bi), sin(z + b1i)),

AIMS Mathematics Volume 6, Issue 2, 2003–2017.



2005

where b, b1 are constants, and c = kπ, k is a integer.

In 2012, Korhonen [14] firstly established the difference version of logarithmic derivative lemma
(shortly, we may say logarithmic difference lemma) for meromorphic functions on Cm with hyper order
strictly less than 2

3 , and then used it to consider a class of partial difference equations in the same paper.
Later, Cao and Korhonen [2] improved the logarithmic difference lemma to the case where the hyper
order is strictly less than one. In 2019, Cao and Xu [3] further improved the logarithmic difference
lemma in several variables under the condition of minimal type lim sup

r→∞

log T (r, f )
r = 0. As far as we

know, however, there are very little of results on solutions of complex partial difference equations by
using Nevanlinna theory. By making use of the Nevanlinna theory with several complex variables
(see [2, 3, 14]), Xu and Cao [3, 29, 30], Lu and Li [22] investigated the existence of the solutions
for some Fermat type partial differential-difference equations with several variables, and obtained the
following theorem.

Theorem 1.2. (see [29, Theorem 1.2]). Let c = (c1, c2) ∈ C2. Then any transcendental entire solutions
with finite order of the partial differential-difference equation(

∂ f (z1, z2)
∂z1

)2

+ f (z1 + c1, z2 + c2)2 = 1

has the form of f (z1, z2) = sin(Az1 + B), where A is a constant on C satisfying AeiAc1 = 1, and B is a
constant on C; in the special case whenever c1 = 0, we have f (z1, z2) = sin(z1 + B).

In 2020, Xu, Liu and Li [28] further explored the existence and forms of several systems of complex
partial differential difference equations and extend the previous results given by [29, 30].

Theorem 1.3. (see [28, Theorem 1.3]). Let c = (c1, c2) ∈ C2. Then any pair of transcendental entire
solutions with finite order for the system of Fermat type partial differential-difference equations

(
∂ f1(z1, z2)

∂z1

)2

+ f2(z1 + c1, z2 + c2)2 = 1,(
∂ f2(z1, z2)

∂z1

)2

+ f1(z1 + c1, z2 + c2)2 = 1

(1.4)

has the following form

( f1(z), f2(z)) =

(
eL(z)+B1 + e−(L(z)+B1)

2
,

A21eL(z)+B1 + A22e−(L(z)+B1)

2

)
,

where L(z) = a1z1 + a2z2, B1 is a constant in C, and a1, c, A21, A22 satisfy one of the following cases

(i) A21 = −i, A22 = i, and a1 = i, L(c) = (2k + 1
2 )πi, or a1 = −i, L(c) = (2k − 1

2 )πi;

(ii) A21 = i, A22 = −i, and a1 = i, L(c) = (2k − 1
2 )πi, or a1 = −i, L(c) = (2k + 1

2 )πi;

(iii) A21 = 1, A22 = 1, and a1 = i, L(c) = 2kπi, or a1 = −i, L(c) = (2k + 1)πi;

(iv) A21 = −1, A22 = −1, and a1 = i, L(c) = (2k + 1)πi, or a1 = −i, L(c) = 2kπi.

The above results suggest the following questions.
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Question 1.1. What will happen about the solutions when f (z), f (z + c), ∂ f
∂z1

and ∂ f
∂z2

are included in the
equations in Theorem B?

Question 1.2. What will happen about the solutions when the equations are turned into system under
the hypothesis of Question 1.1?

2. Results

In view of the above questions, this article is concerned with the description of the existence and the
forms of entire solutions for several partial differential difference of Fermat type. The main tools are
used in this paper are the Nevanlinna theory and difference Nevanlinna theory with several complex
variables. Our main results are obtained generalized the previous theorems given by Xu and Cao, Liu,
Cao and Cao [20,29]. Throughout this paper, for convenience, we assume that z+w = (z1 +w1, z2 +w2)
for any z = (z1, z2),w = (w1,w2). The main results of this paper are stated below.

Theorem 2.1. Let c = (c1, c2) ∈ C2 − {(0, 0)}. Then any transcendental entire solution f (z1, z2) with
finite order of the partial differential equation

f (z)2 +

[
f (z + c) +

∂ f
∂z1

]2

= 1 (2.1)

must be of the form

f (z1, z2) =
eL(z)+b + e−L(z)−b

2
,

where L(z) = α1z1 + α2z2, and L(c) := α1c1 + α2c2, α1, α2, b ∈ C satisfy

(i) L(c) = 2kπi + π
2 i and α1 = −2i;

(ii) L(c) = 2kπi + 3π
2 i and α1 = 0.

The following examples show that the forms of transcendental entire solutions with finite order for
equation (2.1) are precise.

Example 2.1. Let α1 = −2i, α2 = 3π
2 and b ∈ C, that is,

f (z1, z2) =
e2z2+b + e−2z2−b

2
.

Then f (z1, z2) satisfies equation (2.1) with (c1, c2) = (c1,
3πi
4 ), where c1 ∈ C.

Example 2.2. Let α1 = 0, α2 = 2 and b = 0, that is,

f (z1, z2) =
e−2iz1+ 3π

2 + e2iz1−
3π
2

2
.

Then f (z1, z2) satisfies equation (2.1) with (c1, c2) = (π2 , i).

If equation (2.1) contains both two partial differentials and difference, we obtain
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Theorem 2.2. Let c = (c1, c2) ∈ C2 − {(0, 0)} and s = c2z1 − c1z2. Then any transcendental entire
solution f (z1, z2) with finite order of the partial differential equation

f (z)2 +

[
f (z + c) +

∂ f
∂z1

+
∂ f
∂z2

]2

= 1 (2.2)

must be of the form

f (z1, z2) =
eL(z)+H(s)+b + e−L(z)−H(s)−b

2
,

where L(z) = α1z1 + α2z2, H(s) is a polynomial in s, and L(c), α1, α2, b ∈ C satisfy

(i) c1 = c2 = kπ + 3
4π, α1 + α2 = −2i and degs H ≥ 2;

(ii) c1 , c2, H(s) ≡ 0, and L(c) = 2kπi + 3π
2 i, α1 + α2 = 0 or L(c) = 2kπi + π

2 i, α1 + α2 = −2i.

We list the following examples to show that the forms of transcendental entire solutions with finite
order for equation (2.2) are precise.

Example 2.3. Let L(z) = −3iz1 + iz2, H(s) = 3πi
4 (z1 − z2)n, n ∈ N+ and b = 0, that is,

f (z1, z2) =
eL(z)+H(s) + e−L(z)−H(s)

2
= cos[−3z1 + z2 +

3π
4

(z1 − z2)n].

Then f (z1, z2) satisfies equation (2.2) with (c1, c2) = ( 3π
4 ,

3π
4 ).

Example 2.4. Let L(z) = −3iz1 + iz2, H(s) ≡ 0, and b = 0, that is,

f (z1, z2) =
eL(z) + e−L(z)

2
= cos(−3z1 + z2).

Then f (z1, z2) satisfies equation (2.2) with (c1, c2) = (−π2 , π).

Example 2.5. Let L(z) = iz1 − iz2, and b = 0, that is, α1 + α2 = 0 and

f (z1, z2) =
eL(z) + e−L(z)

2
= cos(z1 − z2).

Then f (z1, z2) satisfies equation (2.2) with (c1, c2) = (2π, π2 ).

When equation (2.1) is turned to system of functional equations, we have

Theorem 2.3. Let c = (c1, c2) ∈ C2 − {(0, 0)}. Then any pair of finite order transcendental entire
solution ( f1, f2) for the system of the partial differential equations

f1(z)2 +

[
f2(z + c) +

∂ f1

∂z1

]2

= 1,

f2(z)2 +

[
f1(z + c) +

∂ f2

∂z1

]2

= 1

(2.3)

must be of the form

( f1(z), f2(z)) =

(
eL(z)+b + e−L(z)−b

2
,

A1eL(z)+b + A2e−L(z)−b

2

)
,
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where L(z) = α1z1 + α2z2, and α1, α2, b, A1, A2 ∈ C satisfy one of the following cases:

(i) if α1 = 0, then α2c2 = 2kπi + π
2 i, A1 = A2 = −1 or α2c2 = 2kπi + 3π

2 i, A1 = A2 = 1 or α2c2 = 2kπi,
A1 = −i, A2 = i or α2c2 = (2k + 1)πi, A1 = i, A2 = −i, k ∈ Z;

(ii) if α1 = −2i, then α1c1 +α2c2 = 2kπi+ π
2 i, A1 = A2 = 1 or α1c1 +α2c2 = 2kπi+ 3π

2 i, A1 = A2 = −1,
k ∈ Z.

Some examples show the existence of transcendental entire solutions with finite order for system
(2.3).

Example 2.6. Let L(z) = iz2 and b = 0, that is, α1 = 0, α2 = i and

( f1, f2) =

(
eiz2 + e−iz2

2
,−

eiz2 + e−iz2

2

)
= (cos z2,− cos z2).

Then ( f1, f2) satisfies system (2.3) with (c1, c2) = (c1,
π
2 ), where c1 ∈ C.

Example 2.7. Let L(z) = iz2 and b = 0, that is, α1 = 0, α2 = i and

( f1, f2) =

(
eiz2 + e−iz2

2
,
−ieiz2 + ie−iz2

2

)
= (cos z2, sin z2).

Then ( f1, f2) satisfies system (2.3) with (c1, c2) = (c1, 2π), where c1 ∈ C.

Example 2.8. Let L(z) = −2iz1 + iz2 and b = 0, that is, α1 = −2i, α2 = i and

( f1, f2) =

(
eL(z) + e−L(z)

2
,−

eL(z) + e−L(z)

2

)
= (cos(−2z1 + z2),− cos(−2z1 + z2)).

Then ( f1, f2) satisfies system (2.3) with (c1, c2) = (−π2 ,
π
2 ).

Similar to the argument as in the proof of Theorem 2.3, we can get the following result easily.

Theorem 2.4. Let c = (c1, c2) ∈ C2 and c1 , c2. Then any pair of transcendental entire solution ( f1, f2)
with finite order for the system of the partial differential equations

f1(z)2 +

[
f2(z + c) +

∂ f1

∂z1
+
∂ f1

∂z2

]2

= 1,

f2(z)2 +

[
f1(z + c) +

∂ f2

∂z1
+
∂ f2

∂z2

]2

= 1

(2.4)

must be of the form

( f1(z), f2(z)) =

(
eL(z)+b + e−L(z)−b

2
,

A1eL(z)+b + A2e−L(z)−b

2

)
,

where L(z) = α1z1 + α2z2, and α1, α2, b, A1, A2 ∈ C satisfy one of the following cases:

(i) if α1 + α2 = 0, then α1c1 + α2c2 = 2kπi + π
2 i, A1 = A2 = −1 or α1c1 + α2c2 = 2kπi + 3π

2 i,
A1 = A2 = 1 or α1c1 +α2c2 = 2kπi, A1 = −i, A2 = i or α1c1 +α2c2 = (2k + 1)πi, A1 = i, A2 = −i, k ∈ Z;

(ii) if α1 + α2 = −2i, then α1c1 + α2c2 = 2kπi + π
2 i, A1 = A2 = 1 or α1c1 + α2c2 = 2kπi + 3π

2 i,
A1 = A2 = −1, k ∈ Z.
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The following example shows that the condition c1 , c2 in Theorem 2.4 can not be removed.

Example 2.9. Let c1 , 0 and

( f1, f2) =

(
eg(z1,z2) + e−g(z1,z2)

2
,
−ieg(z1,z2) + ie−g(z1,z2)

2

)
,

where g(z1, z2) = z1 − z2 + β(z1 − z2)n, β , 0 and n ∈ N+. Then ( f1, f2) is a pair of transcendental entire
solutions with finite order for system (2.4) with c = (c1, c1).

3. Proofs of Theorems 2.1 and 2.2

The following lemmas play the key roles in proving our results.

Lemma 3.1. ( [25, 26]). For an entire function F on Cn, F(0) , 0 and put ρ(nF) = ρ < ∞. Then there
exist a canonical function fF and a function gF ∈ C

n such that F(z) = fF(z)egF (z). For the special case
n = 1, fF is the canonical product of Weierstrass.

Remark 3.1. Here, denote ρ(nF) to be the order of the counting function of zeros of F.

Lemma 3.2. ( [23]). If g and h are entire functions on the complex plane C and g(h) is an entire
function of finite order, then there are only two possible cases: either

(a) the internal function h is a polynomial and the external function g is of finite order; or else
(b) the internal function h is not a polynomial but a function of finite order, and the external function

g is of zero order.

Lemma 3.3. ( [13, Lemma 3.1]). Let f j(. 0), j = 1, 2, 3, be meromorphic functions on Cm such that f1

is not constant, and f1 + f2 + f3 = 1, and such that

3∑
j=1

{
N2(r,

1
f j

) + 2N(r, f j)
}
< λT (r, f1) + O(log+ T (r, f1)),

for all r outside possibly a set with finite logarithmic measure, where λ < 1 is a positive number. Then
either f2 = 1 or f3 = 1, where N2(r, 1

f ) is the counting function of the zeros of f in |z| ≤ r, where the
simple zero is counted once, and the multiple zero is counted twice.

3.1. The Proof of Theorem 2.1

Suppose that f (z) is a transcendental entire solution with finite order of equation (2.1). Thus, we
rewrite (2.1) as the following form[

f (z) + i
(

f (z + c) +
∂ f
∂z1

)] [
f (z) − i

(
f (z + c) +

∂ f
∂z1

)]
= 1, (3.1)

which implies that both f (z) + i
(

f (z + c) +
∂ f
∂z1

)
and f (z) − i

(
f (z + c) +

∂ f
∂z1

)
have no poles and zeros.

Thus, by Lemmas 3.1 and 3.2, there thus exists a polynomial p(z) such that

f (z) + i
(

f (z + c) +
∂ f
∂z1

)
= ep(z),
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f (z) − i
(

f (z + c) +
∂ f
∂z1

)
= e−p(z).

This leads to

f (z) =
ep(z) + e−p(z)

2
, (3.2)

f (z + c) +
∂ f (z)
∂z1

=
ep(z) − e−p(z)

2i
. (3.3)

Substituting (3.2) into (3.3), it yields that

−

(
∂p
∂z1

+ i
)

ep(z+c)+p(z) +

(
∂p
∂z1

+ i
)

ep(z+c)−p(z) − e2p(z+c) = 1. (3.4)

Obviously, ∂p
∂z1

+ i . 0. Otherwise, e2p(z+c) ≡ −1, thus p(z) is a constant. Then f (z) is a constant, this a
contradiction. By Lemma 3.3, it follows from (3.4) that(

∂p
∂z1

+ i
)

ep(z+c)−p(z) = 1. (3.5)

Thus, in view of (3.4) and (3.5), we conclude that

−

(
∂p
∂z1

+ i
)

ep(z)−p(z+c) = 1. (3.6)

Equations (3.5) and (3.6) mean that e2[p(z+c)−p(z)] = −1. Thus, it yields that p(z) = L(z) + H(s) + b,
where L is a linear function as the form L(z) = α1z1 + α2z2, e2L(c) = −1, and H(s) is a polynomial in
s := c2z1 − c1z2, α1, α2, b ∈ C.

On the other hand, it follows from (3.5) and (3.6) that
(
∂p
∂z1

+ i
)2

= −1, that is, ∂p
∂z1

= 0 or ∂p
∂z1

= −2i.
In view of (3.5) or (3.6), it yields that eL(c) = i and α1 = −2i or eL(c) = −i and α1 = 0, that is,
L(c) = 2kπi + π

2 i and α1 = −2i or L(c) = 2kπi + 3π
2 i and α1 = 0. Moreover, by combining with

p(z) = L(z) + H(s) + b, we have that H′c2 = η, where η is a constant. If c2 = 0, then H(s) = H(−c1z2),
and combining with e2(p(z+c)−p(z)) = −1, then it follows that degs H ≤ 1. If c2 , 0, it is easy to get that
H(s) is a polynomial in s with degs H ≤ 1. Hence, we can conclude that L(z) + H(s) + b is a linear form
in z1, z2, w.l.o.g, we denote that the form is α1z1 + α2z2 + b, where α1, α2, b ∈ C. Thus, by combining
with (3.5) and (3.6), we have

f (z1, z2) =
eL(z)+b + e−L(z)−b

2
,

where L(z) = α1z1 + α2z2, and L(c), α1, α2, b ∈ C satisfy L(c) = 2kπi + π
2 i and α1 = −2i or L(c) =

2kπi + 3π
2 i and α1 = 0, k ∈ Z.

Therefore, this completes the proof of Theorem 2.1.

3.2. The Proof of Theorem 2.2

Suppose that f (z) is a transcendental entire solution with finite order of equation (2.2). Similar to
the argument as in the proof of Theorem 2.1, there exists a nonconstant polynomial p(z) such that (3.2)
and (

∂p
∂z1

+
∂p
∂z2

+ i
)

ep(z+c)−p(z) = 1, (3.7)
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−

(
∂p
∂z1

+
∂p
∂z2

+ i
)

ep(z)−p(z+c) = 1. (3.8)

In view of (3.7) and (3.8), we have e2(p(z+c)−p(z)) = −1. Thus, it yields that p(z) = L(z) + H(s) + b, where
L is a linear function as the form L(z) = α1z1 + α2z2, H(s) is a polynomial in s, and α1, α2, b ∈ C, and
e2L(c) = −1.

On the other hand, from (3.7) and (3.8), we have
(
∂p
∂z1

+
∂p
∂z2

+ i
)2

= −1. Noting that p(z) = L(z) +

H(s) + b, it follow that
[α1 + α2 + H′(c2 − c1) + i]2 = −1. (3.9)

If c1 = c2, then H′(c2 − c1) ≡ 0. This shows that H(s) can be any degree polynomial in s. In fact,
we can assume that degs H ≥ 2. If degs H ≤ 1, then L(z) + H(s) + b is still a linear function of the form
a1z1 + a2z2, this means that H(s) ≡ 0. In view of (3.9), it yields that α1 + α2 = 0 or α1 + α2 = −2i. If
α1 + α2 = 0, that is, α1 = −α2, combining with c1 = c2, then it leads to L(c) = α1c1 − α1c1 = 0, that is,
e2L(c) = 1, this is a contradiction with e2L(c) = −1. If α1 + α2 = −2i, then L(c) = (α1 + α2)c1 = −2ic1.
By combining with eL(c) = −i, we have c1 = c2 = kπ + 3

4π.
If c1 , c2, then H′ must be a constant, that is, degs H ≤ 1. Hence, we can conclude that L(z)+H(s)+b

is a linear form in z1, z2. Thus, this means that H(s) ≡ 0 and H′(c2 − c1) ≡ 0. Hence, we have
p(z) = α1z1 + α2z2 + b, where α1, α2, b ∈ C. So, in view of (3.9), we also have α1 + α2 = 0 or
α1 + α2 = −2i. Further, In view of (3.7) or (3.8), we conclude that L(c) = 2kπi + π

2 i and α1 + α2 = −2i
or L(c) = 2kπi + 3π

2 i and α1 + α2 = 0, k ∈ Z.
Therefore, this completes the proof of Theorem 2.2.

4. The Proof of Theorem 2.3

Suppose that ( f1(z), f2(z)) is a pair of transcendental entire solutions with finite order of (2.3). By
using the same argument as in the proof of Theorem 2.1, there exist two polynomials p(z), q(z) in C2

such that 

f1(z) =
ep(z) + e−p(z)

2
,

f2(z + c) +
∂ f1

∂z1
=

ep(z) − e−p(z)

2i
,

f2(z) =
eq(z) + e−q(z)

2
,

f1(z + c) +
∂ f2

∂z1
=

eq(z) − e−q(z)

2i
.

(4.1)

In view of (4.1), it follows that

− (i +
∂p
∂z1

)ep(z)+q(z+c) + (i +
∂p
∂z1

)e−p(z)+q(z+c) − e2q(z+c) ≡ 1, (4.2)

and

− (i +
∂q
∂z1

)eq(z)+p(z+c) + (i +
∂q
∂z1

)e−q(z)+p(z+c) − e2p(z+c) ≡ 1. (4.3)
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Thus, by applying Lemma 3.3, we can deduce from (4.2) and (4.3) that

(i +
∂p
∂z1

)e−p(z)+q(z+c) = 1, or − (i +
∂p
∂z1

)ep(z)+q(z+c) = 1

and
(i +

∂q
∂z1

)e−q(z)+p(z+c) = 1, or − (i +
∂q
∂z1

)eq(z)+p(z+c) = 1.

Now, we will discuss four cases below.
Case 1. 

(i +
∂p
∂z1

)e−p(z)+q(z+c) = 1,

(i +
∂q
∂z1

)e−q(z)+p(z+c) = 1.
(4.4)

Thus, it follows that −p(z) + q(z + c) = η1 and −q(z) + p(z + c) = η2, that is, p(z + 2c) − p(z) = η2 + η1

and q(z + 2c) − q(z) = η2 + η1, here and below η1, η2 are constants in C, which each occurrence can be
inconsistent. So, we can deduce that p(z) = L(z) + H(s) + B1 and q(z) = L(z) + H(s) + B2, where L(z) is
a linear function of the form L(z) = α1z1 + α2z2, H(s) is a polynomial in s := c1z2 − c2z1, α1, α2, B1, B2

are constants in C. Noting that (i +
∂p
∂z1

) and (i +
∂q
∂z1

) are constants, it follows that p(z) = L(z) + B1 and
q(z) = L(z) + B2. Thus, by combining with (4.2)-(4.4), it yields that

(i + α1)eL(c)+B2−B1 = 1,
(i + α1)eL(c)+B1−B2 = 1,
− (i + α1)e−L(c)+B1−B2 = 1,
− (i + α1)e−L(c)+B2−B1 = 1,

(4.5)

where L(c) := α1c1 + α2c2, this thus leads to

(i + α1)2 = −1, e2L(c) = −1, e2(B1−B2) = 1. (4.6)

Then we have α1 = 0 or α1 = −2i.
Assume that α1 = 0. If eL(c) = i, that is, L(c) = α2c2 = 2kπi + π

2 i, then it follows from (4.5) that
eB2−B1 = −1. Noting that system (4.1), we have

f1(z) =
ep(z) + e−p(z)

2
=

eL(z)+B1 + e−L(z)−B1

2
,

and

f2(z) =
eL(z)+B2 + e−L(z)−B2

2
=

eL(z)+B1+B2−B1 + e−L(z)−B1+B1−B2

2

= −
eL(z)+B1 + e−L(z)−B1

2
= − f1(z).

If eL(c) = −i, that is, L(c) = α2c2 = 2kπi + 3π
2 i, then it follows from (4.5) that eB2−B1 = 1. Thus, it

yields from (4.1) that

f2(z) =
eL(z)+B2 + e−L(z)−B2

2
=

eL(z)+B1+B2−B1 + e−L(z)−B1+B1−B2

2
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=
eL(z)+B1 + e−L(z)−B1

2
= f1(z).

Assume that α1 = −2i. If eL(c) = i, that is, L(c) = −2ic1 + α2c2 = 2kπi + π
2 i, then it follows from

(4.5) that eB2−B1 = 1. Noting that system (4.1), we have

f2(z) =
eL(z)+B2 + e−L(z)−B2

2
=

eL(z)+B1+B2−B1 + e−L(z)−B1+B1−B2

2

=
eL(z)+B1 + e−L(z)−B1

2
= f1(z).

If eL(c) = −i, that is, L(c) = −2ic1 + α2c2 = 2kπi + 3π
2 i, then it follows from (4.5) that eB2−B1 = −1.

Thus, it yields from (4.1) that

f2(z) =
eL(z)+B2 + e−L(z)−B2

2
=

eL(z)+B1+B2−B1 + e−L(z)−B1+B1−B2

2

= −
eL(z)+B1 + e−L(z)−B1

2
= − f1(z).

Case 2. 
(i +

∂p
∂z1

)e−p(z)+q(z+c) = 1,

− (i +
∂q
∂z1

)eq(z)+p(z+c) = 1.

Thus, it follows that −p(z) + q(z + c) = η1 and q(z) + p(z + c) = η2, that is, q(z + 2c) + q(z) = η1 − η2.
Noting that q(z) is a nonconstant polynomial in C2, we can get a contradiction.

Case 3. 
− (i +

∂p
∂z1

)ep(z)+q(z+c) = 1,

(i +
∂q
∂z1

)e−q(z)+p(z+c) = 1.

Thus, it follows that p(z) + q(z + c) = η1 and −q(z) + p(z + c) = η2, that is, p(z + 2c) + p(z) = η2 + η1.
Noting that p(z) is a nonconstant polynomial in C2, we can get a contradiction.

Case 4. 
− (i +

∂p
∂z1

)ep(z)+q(z+c) = 1,

− (i +
∂q
∂z1

)eq(z)+p(z+c) = 1.
(4.7)

Thus, it follows that p(z) + q(z + c) = η1 and q(z) + p(z + c) = η2, that is, p(z + 2c) − p(z) = η2 − η1

and q(z + 2c) − q(z) = η1 − η2. Similar to the same argument as in Case 1, we get that p(z) = L(z) + B1

and q(z) = −L(z) + B2, where L(z) = α1z1 + α2z2, α1, α2, B1, B2 are constants in C. Thus, by combining
with (4.2)-(4.3) and (4.7), it yields that

(i + α1)eL(c)−B1−B2 = 1,
(i − α1)e−L(c)−B1−B2 = 1,
− (i + α1)e−L(c)+B1+B2 = 1,
− (i − α1)eL(c)+B1+B2 = 1,

(4.8)
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which leads to (i − α1)2 = (i + α1)2 = −1, that is, α1 = 0. Then, it leads to

e2L(c) = 1, e2(B1+B2) = −1. (4.9)

If eL(c) = 1, that is, L(c) = 2kπi, then it follows from (4.8) that eB1+B2 = i. Noting that system (4.1),
we have

f1(z) =
ep(z) + e−p(z)

2
=

eL(z)+B1 + e−L(z)−B1

2
,

and

f2(z) =
e−L(z)+B2 + eL(z)−B2

2
=

eL(z)+B1−B1−B2 + e−L(z)−B1+B1+B2

2

=
−ieL(z)+B1 + ie−L(z)−B1

2
.

If eL(c) = −1, that is, L(c) = (2k + 1)πi, then it follows from (4.8) that eB1+B2 = −i. Noting that
system (4.1), we have

f2(z) =
e−L(z)+B2 + eL(z)−B2

2
=

eL(z)+B1−B1−B2 + e−L(z)−B1+B1+B2

2

=
ieL(z)+B1 − ie−L(z)−B1

2
.

Therefore, this completes the proof of Theorem 2.3.

5. Remarks

By observing the argument as in Theorems 2.1 and 2.2, when f (z) is a function with one complex
variable, we can obtain the following conclusions easily.

Theorem 5.1. Then the following complex differential equation

f (z)2 + [ f (z) + f ′(z)]2 = 1 (5.1)

has no any transcendental entire solutions with finite order.

Theorem 5.2. Let c ∈ C − {0}. Suppose that the complex differential difference equation

f (z)2 + [ f (z + c) + f ′(z)]2 = 1 (5.2)

admits a transcendental entire solution with finite order. Then f must be of the form

f (z) =
e2iz+b + e−2iz−b

2
,

and c = −π4 ± kπ, k ∈ Z, where b ∈ C.

Theorem 5.3. The following system of complex differential equations f1(z)2 + [ f2(z) + f ′2(z)]2 = 1,
f2(z)2 + [ f1(z) + f ′1(z)]2 = 1

(5.3)

has no any transcendental entire solutions with finite order.

For further studying the solutions of (2.1)-(2.4), we raise the following question which can not be
solved now.

Question 5.1. How to describe the transcendental meromorphic solutions of (2.1)–(2.4)?
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