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Abstract: In this work we present derivations of the formula listed in entry 4.113 in the sixth edition
of Gradshteyn and Rhyzik’s table of integrals. We evaluate two definite integrals of the form∫ ∞

0

e−iay(−iy + log(z))k + eiay(iy + log(z))k

cosh(by)
dy

and ∫ ∞

0

eiay(iy + log(z))k − e−iay(−iy + log(z))k

sinh(by)
dy

in terms of the Lerch function where k, a, z and b are arbitrary complex numbers. The entries in the
table(s) are obtained as special cases in the paper below.
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1. Introduction

We will derive integrals as indicated in the abstract in terms of the Lerch function. The derivations
follow the method used by us in [6]. A generalization of Cauchy’s integral formula is given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw (1.1)

where C will be defined below. This method involves using a form of Eq (1.1) then multiplying both
sides by a function, then take a definite integral of both sides. This yields a definite integral in terms
of a contour integral. Then we multiply both sides of Eq (1.1) by another function and take the infinite
sum of both sides such that the contour integral of both equations are the same.
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2. Definite integral of the contour integral

We use the method in [6]. Using a generalization of Cauchy’s integral formula we multiply both
sides by in the first term eiay and replacing y by iy + log(z) and in the second by e−iay and replacing y
by −iy + log(z) then add these two equations, followed by multiplying both sides by 1

2 cosh(by) to get

(2.1)
e−iay(−iy + log(z))k + eiay(iy + log(z))k

2Γ(k + 1) cosh(by)
=

1
2πi

∫
C

zww−k−1 sech(by) cos((a + w)y)dw

where the logarithmic function is defined in Eq (4.2) in [2]. The variables a, b, k and z are general
complex numbers. Define ~a =

(
<(a),=(a)

)
, ~b =

(
<(a),=(b))

)
and ~w =

(
<(w),=(w)

)
. Then the

integral over the contour C has w replaced by w + a. We can define the cut and contour C as lying on
the side of ~w + ~a opposite to ~b, coming from infinity initially parallel to ~w + ~a, around the origin with
zero radius and back to infinity parallel to ~w +~a. The contour lies on opposite sides of the cut. We then
take the definite integral over y ∈ [0,∞) of both sides to get

(2.2)

1
Γ(k + 1)

∫ ∞

0

e−iay(−iy + log(z))k + eiay(iy + log(z))k

2 cosh(by)
dy

=
1

4πi

∫ ∞

0

∫
C

zww−k−1 sech(by) cos((a + w)y)dwdy

=
1

4πi

∫
C

(∫ ∞

0
sech(by) cos((a + w)y)dy

)
zwdw
wk+1

=
1

4ib

∫
C

zww−k−1 sech
(
π(a + w)

2b

)
dw

from Eq (1.7.7.1) in [1]. In a similar manner we can derive the second integral formula by subtracting
the two equations and multiplying by 1

2i sinh(by) we get

(2.3)
eiay(iy + log(z))k − e−iay(−iy + log(z))k

Γ(k + 1)2i sinh(by)
=

1
2πi

∫
C

zww−k−1 csch(by) sin((a + w)y)dw

We then take the definite integral over y ∈ [0,∞) of both sides to get

1
k!

∫ ∞

0

eiay(iy + log(z))k − e−iay(−iy + log(z))k

2i sinh(by)
dy =

1
2πi

∫ ∞

0

∫
C

zww−k−1 csch(by) sin((a + w)y)dwdy

=
1

2πi

∫
C

(∫ ∞

0
csch(by) sin((a + w)y)dy

)
zwdw
wk+1

=
1

4bi

∫
C

zww−k−1 tanh
(
π(a + w)

2b

)
dw

(2.4)

from Eq (2.7.7.6) in [1].
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3. Infinite sum of the contour integral

Again, using the method in [6], replacing y with π(2p + 1)/(2b) + log(z) and multiplying both sides
by (−1)p

(
π
b

)
eaπ(2p+1)/(2b) to yield

(3.1)(−1)p
(
π

b

)
ea(π(2p+1)/(2b))

(
π(2p + 1)/(2b) + log(z)

)k

k!
=

(−1)p

2πi

(
π

b

) ∫
C

ew
(
π(2p+1)

2b

)
+

aπ(2p+1)
2b

wk+1 zwdw

followed by taking the infinite sum of both sides of Eq (3.1) with respect to p over [0,∞) to get

(3.2)

b−k−1e
aπ
2bπk+1

k!
Φ

(
−e

aπ
b ,−k,

1
2

+
b log(z)

π

)
=

1
2ib

∞∑
p=0

∫
C

ew
(
π(2p+1)

2b

)
+

aπ(2p+1)
2b

(−1)−pwk+1 zwdw

=
1

2ib

∫
C

∞∑
p=0

ew
(
π(2p+1)

2b

)
+

aπ(2p+1)
2b

(−1)−pwk+1 zwdw

=
1

4ib

∫
C

zww−k−1 sech
(
π(a + w)

2b

)
dw

from (1.232.1) in [5] where < ((w + a)/b) < 0 for the convergence of the sum and if the <(k) < 0
then the argument of the sum over p cannot be zero for some value of p. We use (9.550) in [5]
where Φ(z, s, v) is the Lerch function which is a generalization of the Hurwitz Zeta and polylogarithm
functions.

The Lerch function has a series representation given by

Φ(z, s, v) =

∞∑
n=0

(v + n)−szn (3.3)

where |z|< 1, v 6= 0,−1, .. and is continued analytically by its integral representation given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1 − ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (3.4)

where <(v) > 0, or |z|≤ 1, z 6= 1,<(s) > 0, or z = 1,<(s) > 1. Similarly, using the method in [6],
replacing y with 2π(p + 1)/(2b) + log(z) and multiplying both sides by (−1)p

(
π
b

)
e2aπ(p+1)/(2b) to yield

(3.5)(−1)p
(
π

b

)
e

2aπ(p+1)
2b

(
2π(p+1)

2b + log(z)
)k

k!
=

(−1)p

2πi

(
π

b

) ∫
C

ew(2π(p+1)/(2b))+2aπ(p+1)/(2b)

wk+1 zwdw

followed by taking the infinite sum of both sides of Eq (3.5) with respect to p over [0,∞) to get

(3.6)

e
aπ
b πk+1b−k−1

k!
Φ

(
−e

aπ
b ,−k, 1 +

b log(z)
π

)
=

1
2bi

∞∑
p=0

∫
C

ew(2π(p+1)/(2b))+2aπ(p+1)/(2b)

(−1)−pwk+1 zwdw

=
1

2bi

∫
C

∞∑
p=0

ew(2π(p+1)/(2b))+2aπ(p+1)/(2b)

(−1)−pwk+1 zwdw

=
1

4bi

∫
C

(
zww−k−1 + zww−k−1 tanh

(
π(a + w)

2b

))
dw

from Eq (1.232.1) in [5] where<((a + w)/b) < 0.
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4. Definite integral in terms of the Lerch function

Since the right hand-side of Eq (2.2) is equal to the right-hand side of (3.2), we can equate the left
hand-sides and simplify to get

(4.1)
∫ ∞

0

e−iay(−iy + log(z))k + eiay(iy + log(z))k

cosh(by)
dy = 2b−k−1e

aπ
2bπk+1Φ

(
−e

aπ
b ,−k,

1
2

+
b log(z)

π

)
where a, b, k and z are general complex numbers.

To obtain the first contour integral in the last line of Eq (3.6) we use the Cauchy formula by replacing
y by log(z) and multiplying both sides by π

2b and simplifying we get

π logk(z)
2bk!

=
1

4bi

∫
C

zww−1−kdw (4.2)

We can write down an equivalent formula for the corresponding Lerch function for the second integral
using Eqs (2.4), (3.6), and (4.2)

(4.3)

∫ ∞

0

eiay(iy + log(z))k − e−iay(−iy + log(z))k

sinh(by)
dy = 2ie

aπ
b πk+1b−k−1Φ

(
−e

aπ
b ,−k, 1 +

b log(z)
π

)
−
πi logk(z)

b

a, b, k, and z are general complex numbers.

5. Derivation of the integrals listed in Table 4.113 in [5]

.
In this section we will derive definite integrals in terms of the Lerch function which simplify to the

Hypergeometric function by Eq (1.11.10) in [3].

Φ(z, 1, v) =

∞∑
n=0

zn

n + v
= v−1

2F1(1, v, 1 + v; z) (5.1)

For an extensive list of special cases of the hypergeometric function see [7]. These can be derived
using the contiguous relations in section 15.2 in [2].

Here we form an equation by taking the difference between (4.3) and that equation where a is
replaced by −a. Then set k = −1 and z = eβ to get

(5.2)
∫ ∞

0

sin(ay)
sinh(by)

dy
β2 + y2 =

1
2β

(
e

aπ
b Φ

(
−e

aπ
b , 1, 1 +

bβ
π

)
− e−

aπ
b Φ

(
−e−

aπ
b , 1, 1 +

bβ
π

))
Here we form an equation by taking the sum of (4.3) and that equation where a is replaced by −a.

Then set k = −1 and z = eβ to get

(5.3)
∫ ∞

0

y cos(ay)
sinh(by)

dy
β2 + y2 =

1
2

(
π

bβ
− e−

aπ
b Φ

(
−e−

aπ
b , 1, 1 +

bβ
π

)
− e

aπ
b Φ

(
−e

aπ
b , 1, 1 +

bβ
π

))
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We then set k = −1, z = eβ by forming an equation using (4.1) by taking the difference between
(4.1) and that equation where a is replaced by −a to get

(5.4)
∫ ∞

0

cos(ay)
cosh(by)

dy
β2 + y2 =

1
2a

(
e
βπ
2b Φ

(
−e

βπ
b , 1,

1
2

+
bβ
π

)
+ e−

aπ
2b Φ

(
−e−

βπ
b , 1,

1
2

+
bβ
π

))
Here we form an equation using (4.1) by taking the sum between (4.1) and that equation where a is

replaced by −a.

(5.5)
∫ ∞

0

y sin(ay)
cosh(by)

dy
β2 + y2 =

1
2

(
e
βπ
2b Φ

(
−e

βπ
b , 1,

1
2

+
bβ
π

)
− e−

aπ
2b Φ

(
−e−

βπ
b , 1,

1
2

+
bβ
π

))
6. Table 4.113 in [5] expressed in terms of the Lerch function

f (x)
∫ ∞

0
f (x)dx

sin(ay)
sinh(πy)

dy
y2+β2

1
2β (eaΦ (−ea, 1, 1 + β) − e−aΦ (−e−a, 1, 1 + β))

sin(ay)
sinh(πy)

dy
y2+1

1
2 (eaΦ (−ea, 1, 2) − e−aΦ (−e−a, 1, 2))

sin(ay)
sinh( π2 y)

dy
y2+1

1
2

(
e2aΦ

(
−e2a, 1, 3

2

)
− e−2aΦ

(
−e−2a, 1, 3

2

))
sin(ay)

sinh( π4 y)
dy

y2+1
1
2

(
e4aΦ

(
−e4a, 1, 5

4

)
− e−4aΦ

(
−e−4a, 1, 5

4

))
y sin(ay)

cosh( π4 y)
dy

1+y2
1
2

(
e4aΦ

(
−e4a, 1, 3

4

)
− e−4aΦ

(
−e−4a, 1, 3

4

))
y cos(ay)
sinh(πy)

dy
y2+1

1
2 (−e−aΦ (−e−a, 1, 2) − eaΦ (−ea, 1, 2) + 1)

y cos(ay)
sinh( π2 y)

dy
y2+1

1
2

(
−e−2aΦ

(
−e−2a, 1, 3

2

)
− e2aΦ

(
−e2a, 1, 3

2

)
+ 2

)
cos(ay)

cosh(πy)
dy

β2+y2
1

2β

(
ea/2Φ

(
−ea, 1, β + 1

2

)
+ e−a/2Φ

(
−e−a, 1, β + 1

2

))
cos(ay)

cosh(πy)
dy

1+y2
1
2

(
e−a/2Φ

(
−e−a, 1, 3

2

)
+ ea/2Φ

(
−ea, 1, 3

2

))
cos(ay)

cosh( π2 y)
dy

1+y2
1
2

(
e−aΦ

(
−e−2a, 1, 1

)
+ eaΦ

(
−e2a, 1, 1

))
cos(ay)

cosh( π4 y)
dy

1+y2
1
2

(
e−2aΦ

(
−e−4a, 1, 3

4

)
+ e2aΦ

(
−e4a, 1, 3

4

))
Table 4.113 in [5] is correct with the exception of entry (4.113.1).
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Note that the second parameter of the Lerch function in every entry in the table is unity so we can
write it in terms of the hypergeometric function using (5.1). Many of these can be evaluated in terms
of simpler functions from the extensive tables in [7].

7. Conclusion

In comparing our results with Table 4.113 our formulae have a wider range of the parameters than
are listed in the Gradshteyn and Ryzhik book [5] due to the use of the Lerch function in the derivation of
these integrals. We also provided correct formula for an integral supplied by Erdélyi et al [4]. We will
be looking at other integrals using this contour integral method for future work. The results presented
were numerically verified for both real and imaginary values of the parameters in the integrals using
Mathematica by Wolfram.
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