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1. Introduction

The absolute value equation (AVE) of the form

Ax − |x| = b, (1.1)

where A ∈ Rn×n, x, b ∈ Rn, and |x| denotes the component-wise absolute value of the vector x, i.e.,
|x| = (|x1|, · · · , |xn|)T , arises in a variety of optimization problems, e.g. linear complementarity problem,
linear programming or convex quadratic programming problems; see for example [7, 17, 18, 20, 21]. It
is a special case of the generalized absolute value equation of the type

Ax + B|x| = b, (1.2)

where B ∈ Rn×n. The generalized absolute value equation (1.2) was introduced in [21] and investigated
in a more general context [17, 18, 20].

The conditions of the unique solvability of AVE (1.1) and generalized absolute value equation (1.2)
have been given in [10,12–14,18,21,22,25], for example, in [18], Mangasarian and Meyer have shown
that the AVE (1.1) for any constant vector has a unique solvability when the smallest singular values
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of the involved matrix A are greater than one. When AVE (1.1) has the unique solution, how to find
the solution is a major research topic. In this study, we consider the iteration method for solving the
AVE (1.1). In recent years, a large variety of methods for solving AVE (1.1) can be found in the
literature [1, 4–6, 8, 15, 16, 19, 22, 24, 25]. Among these methods, Picard-type methods capture one’s
attention. Rohn et al. in [22] proposed the Picard iteration method to solve AVE (1.1)

x(k+1) = A−1
(
|x(k)| + b

)
, k = 0, 1, 2, · · · , (1.3)

where x(0) is the initial guess. From (1.3), we can see that there is a linear system with the constant
coefficient matrix A that needs to be solved in each iteration of the Picard method. To improve the
performance of the Picard method, the linear system with matrix A should be solved by inner iteration,
this leads to the inexact Picard iteration method. As an example, Salkuyeh [24] suggested that using
Hermitian and skew-Hermitian splitting iteration (HSS) method [2] to approximate the solution of
the linear system with A at each Picard iteration, and proposed the Picard-HSS method for solving
AVE (1.1). In fact, the Picard-HSS method was proposed originally by Bai and Yang for weakly
nonlinear systems in [3]. The sufficient conditions to guarantee the convergence of the Picard-HSS
method and some numerical experiments are given to show the effectiveness of the method for solving
AVE (1.1) in [24].

Note that each step of the inner HSS iteration of the Picard-HSS method [3,24] requires solving two
linear subsystems, one characterized by a Hermitian coefficient matrix and other by a skew-Hermitian
coefficient matrix. The solution of linear subsystem with Hermitian coefficient matrix can be easily
obtained by CG method, however, the solution of linear subsystem with skew-Hermitian coefficient
matrix is not easy to obtain, in some cases, its solution is as difficult as that of the original linear system.
To avoid solving a linear subsystem with skew-Hermitian coefficient matrix in the inner iteration of the
inexact Picard method, we use the single-step HSS (SHSS) method [9] to approximate the solution of
the linear system with coefficient matrix A and present a new inexact Picard method, abbreviated as
Picard-SHSS iteration method, in this paper.

The rest of this paper is organized as follows. In Section 2, after review some notes and the SHSS
iteration method, the Picard-SHSS iteration method for solving AVE (1.1) is described. And then the
convergence properties of the Picard-SHSS iteration method is studied. Numerical experiments are
presented in Section 3, to show the feasibility and effectiveness of the Picard-SHSS method.

2. The Picard-SHSS method

For convenience, some notation, definitions and results that will be used in the following parts are
given below. For a matrix A ∈ Rn×n, AT represents the transpose of A, and ρ(A) denotes the spectral
radius of A. A is said to be positive definite if its symmetric part H = 1

2 (A + AT ) is positive definite,
see [11] for the definition of positive definite matrix in a complex set.

Let A ∈ Rn×n be a positive definite matrix, and A = H + S be its Hermitian and skew-Hermitian
splitting with H = 1

2 (A + AT ) and S = 1
2 (A−AT ). Based on the Hermitian and skew-Hermitian splitting

of A, Bai et al. [2] presented the HSS method{
(αI + H)x(l+ 1

2 ) = (αI − S )x(l) + q,
(αI + S )x(l+1) = (αI − H)x(l+ 1

2 ) + q
(2.1)
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to solve positive definite system of linear equations Ax = q, here α is a positive iteration parameter.
There are two linear subsystems that need to be solved at each step of the HSS iteration method, one is
the linear subsystem with coefficient matrix αI+H and the other is the linear subsystem with coefficient
matrix αI +S for any positive constant α and identity matrix I; see [2] for more details. The challenges
of the HSS iteration method lie in solving the linear subsystem with αI + S , which is as difficult as
that of the original linear system in some cases. To avoid solving a linear subsystem with αI + S in the
HSS iteration method, the SHSS method was proposed recently [9]. The iteration scheme of the SHSS
method used for solving system of the linear equations Ax = q can be written equivalently as

(αI + H)x(l+1) = (αI − S )x(l) + q. (2.2)

It has been proved in [9] that, under a loose restriction on the iteration parameter α, the SHSS method
is convergent to the unique solution of the linear system Ax = q for any initial guess x(0) ∈ Rn.

When A is positive definite matrix, using the HSS method (2.1) as an inner iteration in the Picard
method (1.3), Salkuyeh [24] proposed the following Picard-HSS method for solving the AVE (1.1)

Method 2.1. (The Picard-HSS iteration method) Let A ∈ Rn×n be a positive definite matrix, H =
1
2 (A + AT ) and S = 1

2 (A − AT ) be the Hermitian and skew-Hermitian parts of A respectively. Given
an initial guess x(0) ∈ Rn and a sequence {lk}

∞
k=0 of positive integers, compute x(k+1) for k = 0, 1, 2, · · ·

using the following iteration scheme until {x(k)} satisfies the stopping criterion:

(a). Set x(k,0) = x(k);
(b). For l = 0, 1, · · · , lk − 1, solve the following linear system to obtain x(k,l+1):{

(αI + H)x(k,l+ 1
2 ) = (αI − S )x(k,l) + +|x(k)| + b,

(αI + S )x(k,l+1) = (αI − H)x(k,l+ 1
2 ) + +|x(k)| + b,

where α is a positive constant and I is a the identity matrix;
(c). Set x(k+1) = x(k,lk).

The next iterate of x(k+1) can be approximately computed by the SHSS iteration by making use of
the splitting A = M(α) − N(α) as following (see [9])

M(α)x(k,l+1) = N(α)x(k,l) + |x(k)| + b,
l = 0, 1, · · · , lk − 1,
k = 0, 1, 2, · · · ,

(2.3)

where M(α) = αI + H and N(α) = αI − S , α is a positive constant, {lk}
∞
k=0 a prescribed sequence of

positive integers, and x(k,0) = x(k) is the starting point of the inner SHSS iteration at k-th outer Picard
iteration. This leads to the following inexact Picard iteration method, called Picard-SHSS iteration
method, for solving the AVE (1.1)

Method 2.2. (The Picard-SHSS iteration method) Let A ∈ Rn×n be a positive definite matrx, H =
1
2 (A + AT ) and S = 1

2 (A − AT ) be the Hermitian and skew-Hermitian parts of A respectively. Given
an initial guess x(0) ∈ Rn and a sequence {lk}

∞
k=0 of positive integers, compute x(k+1) for k = 0, 1, 2, · · ·

using the following iteration scheme:
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(a). Set x(k,0) = x(k);
(b). For l = 0, 1, · · · , lk − 1, solve the following linear system to obtain x(k,l+1):

(αI + H)x(k,l+1) = (αI − S )x(k,l) + |x(k)| + b,

where α is a positive constant and I is a the identity matrix;
(c). Set x(k+1) = x(k,lk);
(d). If x(k+1) satisfies ‖Ax(k+1)−|x(k+1) |−b‖2

‖b‖2
≤ 10−7, then stop; otherwise, let x(k) = x(k+1) and go back to (a).

Compared with the Picard-HSS iteration method [24], a linear subsystem with αI + S is avoided in
the inner iteration of the Picard-SHSS iteration method. The involved linear subsystem with αI + H of
the Picard-SHSS iteration method can be efficiently solved exactly by a sparse Cholesky factorization,
or inexactly by a preconditioned Conjugate Gradient method [23].

The next theorem provides sufficient condition for the convergence of the Picard-SHSS method to
solve the AVE (1.1).

Theorem 2.1. Let A ∈ Rn×n be a positive definite matrix and H = 1
2 (A + AT ) and S = 1

2 (A − AT ) be
its Hermitian and skew-Hermitian parts, respectively. Let η = ‖A−1‖2 < 1, α be a constant number

such that α > max
{
0, σ

2
max−λ

2
min

2λmin

}
, where λmin is the smallest eigenvalue of H and σmax is the largest

singular-value of S . Then the AVE (1.1) has a unique solution x∗, and for any initial guess x(0) ∈ Rn

and any sequence of positive integers lk, k = 0, 1, · · · , the iteration sequence {x(k)}∞k=0 produced by the
Picard-SHSS iteration method converges to x∗ provided that lk ≥ N for all k = 0, 1, · · · , where N is a
natural number satisfying

‖T (α)s‖2 <
1 − η
1 + η

∀s ≥ N

with T (α) = M(α)−1N(α).

Proof. The proof is similar to that of [24, Theorem 1], for self-contained purpose, we give the proof
as follows. Based on the iteration scheme (2.3), we can express the (k + 1)th iterate x(k+1) of the
Picard-SHSS iteration method as

x(k+1) = T (α)lk x(k) +

lk−1∑
j=0

T (α) jM(α)−1(|x(k)| + b), k = 0, 1, 2, · · · . (2.4)

Note that η < 1, then AVE (1.1) has a unique solution x∗ ∈ Rn [18] such that

x∗ = T (α)lk x∗ +

lk−1∑
j=0

T (α) jM(α)−1(|x∗| + b), k = 0, 1, 2, · · · . (2.5)

By subtracting (2.5) from (2.4) we have

x(k+1) − x∗ = T (α)lk(x(k) − x∗) +

lk−1∑
j=0

T (α) jM(α)−1(|x(k)| − x∗). (2.6)
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It follows from [9, Theorem 2.1] that ρ(T (α)) < 1 when α satisfies α > max
{
0, σ

2
max−λ

2
min

2λmin

}
. In this

case, some calculations yield
∑lk−1

j=0 T (α) jM(α)−1 =
(
I − T (α)lk

)
A−1. Now (2.6) becomes

x(k+1) − x∗ = T (α)lk(x(k) − x∗) +
(
I − T (α)lk

)
A−1(|x(k)| − x∗)

= T (α)lk
[
(x(k) − x∗) − A−1(|x(k)| − x∗)

]
+ A−1(|x(k)| − x∗).

Note that ‖|x| − |y|‖2 ≤ ‖x − y‖2 for any x, y ∈ Rn, it then follows that∥∥∥x(k+1) − x∗
∥∥∥

2
≤

(∥∥∥T (α)lk
∥∥∥

2
(1 + η) + η

) ∥∥∥x(k) − x∗
∥∥∥

2
.

The condition of ρ(T (α)) < 1 when α satisfies α > max
{
0, σ

2
max−λ

2
min

2λmin

}
ensures that T (α) tend to 0 as

s tend to infinity. Therefore, there is a natural number N such that

‖T (α)s‖2 < ε :=
1 − η
1 + η

∀s ≥ N.

Now, if lk ≥ N for all k = 0, 1, · · · , then
∥∥∥x(k+1) − x∗

∥∥∥
2
<

∥∥∥x(k) − x∗
∥∥∥

2
, hence the iteration sequence

{x(k)}∞k=0 produced by the Picard-SHSS iteration method converges to x∗. �
In actual computation, the residual-updating form of the Picard-SHSS iteration method is more

convenient, which can be written as following.
The Picard-SHSS iteration method (residual-updating variant): Let A ∈ Rn×n be no-Hermitian
positive definite, H = 1

2 (A + AT ) and S = 1
2 (A − AT ) be the Hermitian and skew-Hermitian parts of A

respectively. Given an initial guess x(0) ∈ Rn and a sequence {lk}
∞
k=0 of positive integers, compute x(k+1)

for k = 0, 1, 2, · · · using the following iteration scheme until {x(k)} satisfies the stopping criterion:

(a). Set s(k,0) = 0 and b(k) = |x(k)| + b − Ax(k);
(b). For l = 0, 1, · · · , lk − 1, solve the following linear system to obtain s(k,l+1):

(αI + H)s(k,l+1) = (αI − S )s(k,l) + b(k),

where α is a positive constant and I is the identity matrix;
(c). Set x(k+1) = x(k) + s(k,lk);
(d). If x(k+1) satisfies ‖Ax(k+1)−|x(k+1) |−b‖2

‖b‖2
≤ 10−7, then stop; otherwise, let x(k) = x(k+1) and go back to (a).

3. Numerical experiments

In this section, we give an example with numerical experiments to show the effectiveness of the
Picard-SHSS iteration method to solve AVE (1.1), to do this, the numerical properties of the Picard-
HSS and Picard-SHSS methods are examined and compared experimentally. We use the residual-
updating versions of the Picard-HSS iteration method [24] and Picard-SHSS iteration method.

All the numerical experiments presented in this section have been computed in double precision
using some MATLAB R2012b on Intel (R) Core (TM) i5-2400 CPU 3.10 GHz and 4.00 GB of RAM.
All runs are started from the initial zero vector and terminated if the current relative residual satisfies

RES :=
‖Ax(k) − |x(k)| − b‖2

‖b‖2
≤ 10−7,
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where x(k) is the computed solution by each of the methods at iteration k, and a maximum number of
the iterations 500 is used. In addition, the stopping criterion for the inner iterations of the Picard-HSS
and Picard-SHSS methods are set to be

‖b(k) − As(k,l)‖2

‖b(k)‖2
≤ 0.01,

and a maximum number of the iterations 10 (lk = 10, k = 0, 1, 2, · · · ) for inner iterations are used.
The coefficient matrix A of AVE (1.1) is given by

A = Tx ⊗ Im + Im ⊗ Ty + pIn, (3.1)

where Im and In are the identity matrices of order m and n with n = m2, ⊗ means the Kronecker
product, Tx and Ty are tridiagonal matrices Tx = tridiag(t2, t1, t3)m×m and Ty = tridiag(t2, 0, t3)m×m

with t1 = 4, t2 = −1 − Re, t3 = −1 + Re. Here Re = (qh)/2 and h = 1/(m + 1) are the mesh Reynolds
number and the equidistant step size, respectively, and q is a positive constant. In fact, the matrix A
arising from the finite difference approximation the two-dimensional convection-diffusion equation{

−(uxx + uyy) + q(ux + uy) + pu = f (x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

where Ω = (0, 1) × (0, 1), ∂Ω is its boundary, q is a positive constant used to measure the magnitude
of the diffusive term and p is a real number. If we use the five-point finite difference scheme to the
diffusive terms and the central difference scheme to the convective terms, then we obtained the matrix
A. It is easy to find that for every nonnegative number q the matrix A is in general non-symmetric
positive definite [24]. The right-hand side vector of AVE (1.1) is taken such a way that the vector
x = (x1, x2, · · · , xn)T with xi = (−1)ii, i = 1, 2, · · · , n be the exact solution.

In our numerical experiments, the matrix A in AVE (1.1) is defined by (3.1) with different values of
q (q = 0, 1, 10, and 100) and different values of p (p = 0 and −1). The parameters used in the Picard-
HSS and Picard-SHSS iteration methods are chosen to be the ones, which result in the least number of
iteration steps of iteration methods, see Tables 1 and 2. In Tables 3 and 4, we present the numerical
results with respect to the Picard-HSS and Picard-SHSS iteration methods. We give the elapsed CPU
time in seconds for the convergence (denoted by CPU), the number of iterations for the convergence
(denoted by IT) and the relative residuals (denoted by RES).

From the Tables 3 and 4, we see that both the Picard-HSS and Picard-SHSS iteration methods can
successfully produced approximate solution to the AVE (1.1) for all of the problem-scales n = m2

and the convective measurements q. For the convergent cases, the CPU time also increases rapidly
with the increasing of the problem-scale for all tested iteration methods. Moreover, numerical results
in the two tables show that the Picard-SHSS iteration method performs better than the Picard-HSS
iteration method in most cases as the former one cost the least CPU time to achieve stopping criterion
except the cases of q = 100, m = 10 and q = 100, m = 20. In addition, for p = −1, the Picard-SHSS
iteration method costs the least number of iteration steps and CPU time to achieve stopping criterion. In
summary, the Picard-SHSS iteration method is useful and effective for solving the NP-hard AVE (1.1).
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Table 1. The values of α for Picard-HSS and Picard-SHSS methods (p = 0).

m = 10 m = 20 m = 40 m = 80

q = 0 Picard-HSS 11.69 12.6 13.4 13
Picard-SHSS 5.745 6.5 6.4 6.6

q = 1 Picard-HSS 12.01 13.6 14 13
Picard-SHSS 5.926 6.6 6.75 6.6

q = 10 Picard-HSS 6.76 10.99 13.43 15.8
Picard-SHSS 3.594 5.52 6.63 8.0

q = 100 Picard-HSS 23.3 23.1 8.7 9.2
Picard-SHSS 81.5 26.4 4.99 4.57

Table 2. The values of α for Picard-HSS and Picard-SHSS methods (p = −1).

m = 10 m = 20 m = 40 m = 80

q = 0 Picard-HSS 13.8 11.2 10.36 10.1
Picard-SHSS 6.96 5.7 5.21 5.1

q = 1 Picard-HSS 14 11.29 10.4 11
Picard-SHSS 7.05 5.72 5.2 5.1

q = 10 Picard-HSS 20.55 13.6 11.1 11
Picard-PHSS 11.2 7.0 5.65 5.2

q = 100 Picard-HSS 27.2 22 11.1 21
Picard-SHSS 108 33.1 11.57 10.65
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Table 3. Numerical results for different values of m and q (p = 0).

Methods m = 10 m = 20 m = 40 m = 80

q = 0 Picard-HSS IT 36 32 30 28
CPU 0.0280 0.0371 0.1266 0.9486
RES 9.8815e − 8 9.3643e − 8 9.9900e − 8 9.9043e − 8

Picard-SHSS IT 37 32 30 29
CPU 0.0137 0.0245 0.1075 0.9060
RES 9.4432e − 8 9.6857e − 8 9.7569e − 8 9.9256e − 8

q = 1 Picard-HSS IT 35 32 31 28
CPU 0.0220 0.0457 0.2377 1.9978
RES 9.1372e − 8 9.8614e − 8 9.3177e − 8 9.7012e − 8

Picard-SHSS IT 36 32 31 29
CPU 0.0136 0.0273 0.1292 1.1940
RES 9.8685e − 8 9.4248e − 8 9.4655e − 8 9.6233e − 8

q = 10 Picard-HSS IT 29 66 33 36
CPU 0.0163 0.0939 0.2636 2.5265
RES 9.5635e − 8 9.9755e − 8 9.8395e − 8 9.9024e − 8

Picard-SHSS IT 29 63 33 37
CPU 0.0105 0.0528 0.1372 1.4083
RES 9.6650e − 8 9.8439e − 8 9.7901e − 8 9.8170e − 8

q = 100 Picard-HSS IT 11 17 35 146
CPU 0.0117 0.0342 0.2826 9.6469
RES 9.8396e − 8 9.9503e − 8 9.3177e − 8 9.7165e − 8

Picard-SHSS IT 44 25 35 140
CPU 0.0161 0.0246 0.1471 4.9182
RES 9.8783e − 8 9.8253e − 8 9.8972e − 8 9.7299e − 8
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Table 4. Numerical results for different values of m and q (p = −1).

Methods m = 10 m = 20 m = 40 m = 80

q = 0 Picard-HSS IT 24 62 206 769
CPU 0.0186 0.0944 0.8224 25.7551
RES 9.6164e − 8 9.5608e − 8 9.8436e − 8 9.8404e − 8

Picard-SHSS IT 21 52 166 614
CPU 0.0099 0.0444 0.5608 18.5361
RES 9.6537e − 8 9.7425e − 8 9.9905e − 8 9.8795e − 8

q = 1 Picard-HSS IT 24 61 203 908
CPU 0.0193 0.0877 1.4320 57.8838
RES 9.7842e − 8 9.9013e − 8 9.3292e − 8 9.9324e − 8

Picard-SHSS IT 21 51 166 598
CPU 0.0102 0.0421 0.6038 18.9311
RES 9.5087e − 8 9.5556e − 8 9.5308e − 8 9.8338e − 8

q = 10 Picard-HSS IT 14 27 74 297
CPU 0.0175 0.0519 0.5532 18.6613
RES 9.8754e − 8 9.1215e − 8 9.8943e − 8 9.6129e − 8

Picard-SHSS IT 14 23 61 204
CPU 0.0084 0.0283 0.2427 6.8279
RES 9.0191e − 8 9.9463e − 8 9.3622e − 8 9.7081e − 8

q = 100 Picard-HSS IT 14 20 64 65
CPU 0.0151 0.0372 0.4811 4.2747
RES 9.8364e − 8 9.8128e − 8 9.4024e − 8 9.8372e − 8

Picard-SHSS IT 83 44 71 63
CPU 0.0508 0.0384 0.2824 2.2035
RES 9.9168e − 8 9.9270e − 8 9.8733e − 8 9.5253e − 8

4. Conclusions

In this paper, the Picard-SHSS method is proposed for solving the absolute value equation. The
sufficient condition for the convergence of the proposed method for solving the absolute value equation
is given. A numerical example is given to confirm our theoretical results and to verify the effectiveness
of the new method.
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