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1. Introduction

In 1827, C. F. Gauss proved that if two smooth surfaces are isometric, then these surfaces have
the same Gaussian curvature at corresponding points. Then the notion of curvature is one of the
most attractive and significant topic in differential geometry. For a Riemannian submanifold, the main
extrinsic curvature invariant is the squared mean curvature and the main intrinsic curvature invariants
include classical curvature invariants namely the sectional curvature which corresponds to the Gaussian
curvature in the Euclidean space, the Ricci curvature and the scalar curvature.

In pseudo-Riemannian settings, there exist null plane sections which the sectional curvature map
can not be defined as classically on these sections. Therefore, S. Harris [16] introduced the null
sectional curvature of a null plane. Later, A. L. Albujer and S. Haesen [1] showed that the null
sectional curvature is proportional to the difference in length of the two spacelike closing geodesics
which is a generalization of the interpretation of the sectional curvature in the Riemannian case as
was observed by T. Levi-Civita [20]. Furthermore, there exist very qualified papers dealing the notion
of null sectional curvatures on pseudo-Riemannian manifolds and their submanifolds
(cf. [5, 9–11, 13, 17, 18]).

Another curvature invariant for pseudo-Riemannian manifolds and their submanifolds is the qualar
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curvature. Inspired by the crude mixture of terms quasi and scalar, M. Nardmann [22] introduced the
notion of qualar curvature by decomposing scalar curvature. He also give some relations involving the
qualar curvature and the scalar curvature for solving the Riemannian prescribed scalar curvature
problem in a psedo-Riemannian manifold. Since the qualar curvature is a sum of sectional curvatures
of some plane sections, one can consider that this curvature is a intrinsic invariant for a
pseudo-Riemannian submanifold as Ricci curvature and scalar curvature.

Motivated by these facts, we investigate to qualar curvatures of pseudo Riemannian manifolds and
pseudo-Riemannian submanifolds. Furthermore, we present some relations involving qualar curvatures
and null sectional curvatures for these manifolds and their submanifolds. In Section 2, some basic
facts related to pseudo-Riemannian manifolds are mentioned. In Section 3, some relations involving
the qualar and null curvatures of a pseudo Riemnnian manifolds are obtained. In Section 4, with the
help of Gauss formula, some results dealing qualar curvatures of pseudo-Riemannian submanifolds are
given.

2. Pseudo Riemannian manifolds

Let (M̃, g̃) be an m-dimensional pseudo-Riemannian manifold with the indefinite metric g̃ of
constant index q. The inner product of g̃ is denoted by 〈, 〉 throughout this paper. If q = 1 then (M̃, g̃)
is called a Lorentzian manifold. A pseudo-Riemannian manifold has constant curvature c is called a
pseudo-Riemannian space form and it is usually denoted by M̃(c). For any pseudo-Riemannian space
form M̃(c), there exists the following relation for any X,Y and Z vector fields in the tangent bundle
T M̃:

R̃(X,Y)Z = c{〈Z, X〉Y − 〈Z,Y〉X〉}. (2.1)

Let {e1, . . . , eq, eq+1, . . . , em} be an orthonormal basis of T M̃. Suppose that e1, . . . , eq are timelike and
eq+1, . . . , em are spacelike vectors. Then there exists two orthogonal distribution Ṽ = Span{e1, . . . , eq}

and H̃ = Span{eq+1, . . . , em} of (M̃, g̃) such that we have the following g̃-orthogonal decomposition:

T M̃ = Ṽ ⊕ H̃. (2.2)

Here, Ṽ and H̃ are called as the maximally timelike and maximally spacelike distributions of (M̃, g̃)
respectively. Note that every maximally timelike and spacelike distributions are isomorphic as smooth
vector bundles over on M̃ [4]. Also, using the decomposition given in (2.2), one can consider this
case as a special case of a pseudo-Riemannian almost product structure which is firstly defined by A.
Gray [14] and studied by various geometers in [2, 3, 6, 8, 12, 15, 19, 24].

Let Π = Span{ei, e j} be a non-degenerate plane section in T M̃. The sectional curvature K̃(Π) of Π

is defined by

K̃(Π) ≡ K̃(ei, e j) = εiε j〈R̃(ei, e j)e j, ei〉, (2.3)

where εi = 〈ei, ei〉 = ∓1 for i , j ∈ {1, . . . ,m}. In the case of Π is a degenerate plane section spanned by
a null vector ξ and a unit vector ei, the sectional curvature so called null sectional curvature is defined
by

K̃(Π) ≡ K̃(ei, ξ) = εi〈R̃(ei, ξ)ξ, ei〉. (2.4)
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For a fixed i ∈ {1, . . . ,m}, the Ricci curvature of ei is defined by

R̃ic(ei) =

m∑
j=1

K̃(ei, e j). (2.5)

The manifold is called an Einstein manifold if the Ricci curvature (tensor) is constant for all vector
fields on T M̃. The scalar curvature at a point p ∈ M̃ is given by

τ̃(p) =

m∑
i< j

K̃(ei, e j). (2.6)

Furthermore, the qualar curvature at a point p ∈ M̃, denoted by q̃ual(p), is defined by

q̃ual(p) = 2
q∑

i=1

m∑
s=q+1

K̃(ei, es). (2.7)

We note that the qualar curvature is equal to the twice mixed scalar curvature of a pseudo Riemannian
almost product manifold, for example, see the equation (3.49) in [24].

Let Πk be a k-dimensional plane section on T M̃ and {e1, . . . , ek} be an orthonormal basis of Πk. The
Ricci curvature of a k-dimensional plane section Πk at a vector field ei is defined to be

R̃icΠk(ei) =

k∑
i, j=1

εiε j〈R̃(ei, e j)e j, ei〉

=

k∑
i, j=1

K̃(ei, e j), (2.8)

where i ∈ {1, . . . , k}. The scalar curvature of Πk at a point p ∈ M̃ is defined to be

τ̃Πk(p) =
∑

1≤i< j≤k

εiε j〈R̃(ei, e j)e j, ei〉

=
∑

1≤i< j≤k

K̃(ei, e j). (2.9)

3. Qualar curvatures and null sectional curvatures

Let (M̃, g̃) be an m-dimensional pseudo Riemannian manifold. Then, we can write null vectors
using by timelike and spacelike vectors as follows:

ξs
i =

1
√

2
{ei + es},

where i ∈ {1, . . . , q} and s ∈ {q + 1, . . . ,m}. In this case, the plane section spanned by ξs
i and es is a

non-degenerate plane section and we have

K̃(ξs
i , es) = −K̃(ei, es). (3.1)
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In a similar manner, the plane section spanned by ξs
i and ei is a non-degenerate plane section and we

also have

K̃(ξs
i , ei) = K̃(ei, es) (3.2)

Let ` ∈ {1, . . . ,m} and ` , i, ` , s. The plane section spanned by ξs
i and e` is a degenerate plane

section and its null sectional curvature is given by

K̃(ξs
i , e`) = −

1
2

K̃(ei, e`) +
1
2

K̃(es, e`) + ε`〈R̃(ei, e`)e`, es〉. (3.3)

Considering these facts, we obtain the following lemma:

Lemma 3.1. Let (M̃, g̃) be an m-dimensional pseudo Riemannian manifold of index q. Then we have

q̃ual(p) =

q∑
i=1

m∑
s=q+1

[K̃(ξs
i , ei) − K̃(ξs

i , es)]. (3.4)

Proof. Putting (3.1) and (3.2) in (2.7), the proof of lemma is straightforward. �

Taking into consideration of (3.1), (3.2) and (3.3), we obtain the followings:

Lemma 3.2. Let (M̃, g̃) be an m-dimensional pseudo Riemannian manifold of index q. Then the
following relations hold:

i) For s ∈ {q + 1, . . . ,m}, we have

q∑
i,`=1
i,`

K̃(ξs
i , e`) = τ̃Ṽ(p) − (q − 1)R̃icṼ(es) + 2

q∑
i,`=1
i,`

ε`〈R̃(ei, e`)e`, es〉. (3.5)

ii) For i ∈ {1, . . . , q}, we have

m∑
s,`=q+1

s,`

K̃(ξs
i , e`) = τ̃H̃(p) − (m − q − 1)R̃icH̃(ei)

+2
m∑

s,`=q+1
s,`

ε`〈R̃(ei, e`)e`, es〉. (3.6)

Corollary 1. If (M̃, g̃) is an m-dimensional indefinite space form, then we have

q∑
i,`=1
i,`

K̃(ξt
i , e`) = 0 and

m∑
s,`=q+1

s,`

K̃(ξs
j , e`) = 0 (3.7)

for t ∈ {q + 1, . . . ,m} and j ∈ {1, . . . , q}.
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Proof. Under the assumption, we have from the Eq (2.1) that

〈R̃(ei, e`)e`, es〉 = 0. (3.8)

Taking into account of (2.8), (2.9), (3.8) and Lemma 3.2, the proof is straightforward. �

Corollary 2. If (M̃, g̃) is an m-dimensional Lorentzian manifold, then the following relation holds:

m∑
1,`=2

K̃(ξs
1, e`) = τH̃(p) − (m − 2)R̃ic(e1) (3.9)

for s ∈ {q + 1, . . . ,m}.

Now we recall the following proposition of S. G. Harris (cf. Proposition 2.3 in [16]):

Proposition 3.3. [16] A Lorentzian manifold of dimension at least three has constant curvature if and
only if it has null sectional curvature everywhere zero.

As a generalization of the result of Proposition 3.3 of S. G. Harris, we obtain the following:

Proposition 3.4. Let (M̃, g̃) is an m-dimensional (m > 3) Lorentzian manifold. Then we have the
following situations:

i. If (M̃, g̃) is an Einstein manifold, then there exists an orthonormal basis {e1, . . . , eq, eq+1, . . . , em}

on T M̃ satisfying

m∑
1,`=2

K̃(ξs
1, e`) = 0. (3.10)

ii. If (M̃, g̃) has null sectional curvature everywhere zero then it is an Einstein manifold.

Proof. Suppose that (M̃, g̃) is an Einstein manifold. In this case, we have

τ̃H̃(p) = (m − 2) R̃ic(X) (3.11)

for any unit timelike vector field X ∈ T M̃. Putting (3.11) in (3.9), we obtain (3.10) which implies the
statement (i).

The proof of statement (ii) is straightforward from Proposition 3.3.
�

4. Qualar curvatures of pseudo Riemannian submanifolds

Let (M, g) be n-dimensional pseudo Riemannian submanifold of (M̃, g̃) with the induced metric g
of constant index q. The submanifold (M, g) is called as

i. a spacelike submanifold if q = 0,
ii. a timelike submanifold if n = q,

iii. a pseudo-Riemannian submanifold if it is neither spacelike nor timelike.
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Let us denote the Riemannian connections with respect to the pseudo Riemannian metric g̃ by ∇̃ and the
induced pseudo Riemannian connection on M by ∇ respectively. The Gauss and Weingarten formulas
are given by

∇̃XY = ∇XY + σ(X,Y), (4.1)
∇̃XN = −AN X + ∇⊥X N (4.2)

for any tangent vector fields X and Y and N normal to M, where σ denotes the second fundamental
form and ∇⊥ the normal connection and A the shape operator of M. Also, it is known that the tensors
A and σ are related by the following equation:

〈AN X,Y〉 = 〈σ(X,Y),N〉. (4.3)

Let R denotes the Riemannian curvature tensor of the submanifold. The equation of Gauss is given
by

〈R(X,Y)Z,W〉 = 〈R̃(X,Y)Z,W〉 + 〈σ(X,W), σ(Y,Z)〉 − 〈σ(X,Z), σ(Y,W)〉 (4.4)

for any X,Y,Z,W ∈ T M. Using the Gauss equation, one has

εiε j〈R(e j, ei)ei, e j〉 = εiε j〈R̃(e j, ei)ei, e j〉 + εiε j

〈
σ(ei, ei), σ(e j, e j)

〉
−εiε j

〈
σ(ei, e j), σ(e j, ei)

〉
. (4.5)

Thus, we have

τ(p) = τ̃Tp M(p) +

m∑
r,s=n+1

ε̃rε̃s

n∑
i, j=1

εiε jσ
r
iiσ

s
j j −

m∑
r=n+1

ε̃r

n∑
i, j=1

εiε j(σr
i j)

2, (4.6)

where

σ(ei, e j) =

m∑
r=n+1

εrσ
r
i j. (4.7)

Here, εr = 〈er, ee〉 for any r ∈ {n + 1, . . . ,m}. The mean curvature vector ~(p) at p ∈ M is defined by

~(p) =
1
n

trace(AN) =
1
n

n∑
j=1

ε jσ(e j, e j). (4.8)

Now we can write

σ (X,Y) = σṼ (X,Y) + σH̃ (X,Y) , X,Y ∈ T M,

~(p) = ~|Ṽ(p) + ~|H̃(p), (4.9)

where σṼ (X,Y), ~|Ṽ(p) ∈ Ṽ belong to the vertical distribution Ṽ and σH̃ (X,Y), ~|H̃(p) belong to the
horizontal distribution H̃. Note that these decompositions are unique.
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The submanifold M is called totally geodesic if σ = 0, and it is called minimal if ~ = 0. If
σ(X,Y) = 〈X,Y〉~ for all X,Y ∈ T M, then M is called totally umbilical. Also, M is called quasi-
minimal if ~ , 0 and 〈~(p), ~(p)〉 = 0 at each point p ∈ M. For more details, we refer to [7, 8, 23].

Let {e1, . . . , eq, eq+1, . . . , en} be an orthonormal basis on T M, where e1, . . . , eq are timelike and
eq+1, . . . , en are spacelike vectors. Since (M, g) is a pseudo Riemannian submanifold, we can write
T M as orhogonal direct sum of its maximally spacelike distribution H and maximally timelike
distribution V as follows:

T M = V ⊕ H, (4.10)

where V = Span{e1, . . . , eq} and H = Span{eq+1, . . . , en}.
More specifically, M is called timelike V-geodesic if σṼ

∣∣∣∣
V

= 0, timelike H-geodesic if σṼ
∣∣∣∣
H

= 0,

timelike mixed geodesic if σṼ
∣∣∣∣
V×H

= 0, timelike geodesic if σṼ = 0, spacelike V-geodesic if σH̃
∣∣∣∣
V

= 0,

spacelike H-geodesic if σH̃
∣∣∣∣
H

= 0, spacelike mixed geodesic if σH̃
∣∣∣∣
V×H

= 0, spacelike geodesic if

σH̃ = 0, mixed geodesic if σ|V×H = 0 [25].

Proposition 4.1. Let M be an n-dimensional pseudo Riemannian submanifold of (M̃, g̃) and p ∈ M.
Then we have

qual(p) = q̃ualTp M(p) + 2n〈traceVσ, ~〉 − 2|traceVσ|
2 − 2|σV×H |

2, (4.11)

where traceV denotes the trace with respect to the maximally timelike distribution V of M.

Proof. From (4.5), we get

〈R(ei, es)es, ei〉 = 〈R̃(ei, es)es, ei〉 − 〈σ(es, es), σ(ei, ei)〉 + 〈σ(ei, es), σ(ei, es)〉

for i ∈ {1, . . . , q} and s ∈ {q + 1, . . . , n}. Therefore, we can write

q∑
i=1

n∑
s=q+1

〈R(ei, es)es, ei〉 =

q∑
i=1

n∑
s=q+1

〈R̃(ei, es)es, ei〉 +

q∑
i=1

n∑
s=1

〈σ(es, es), σ(ei, ei)〉

−

q∑
i,s=1

〈σ(es, es), σ(ei, ei)〉 −
q∑

i=1

n∑
s=q+1

〈σ(ei, es), σ(ei, es)〉 . (4.12)

Using (2.7) in (4.12), we obtain

qual(p) = q̃ualTp M(p) + 2
q∑

i=1

n∑
s=1

〈σ(es, es), σ(ei, ei)〉 − 2
q∑

i,s=1

〈σ(es, es), σ(ei, ei)〉

−2
q∑

i=1

n∑
s=q+1

〈σ(ei, es), σ(ei, es)〉 ,

which implies (4.11). �
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For the special case q = 1 of Lemma 4.1, we get the following corollary:

Corollary 3. Let M be an n-dimensional pseudo Riemannian submanifold with index 1 of (M̃, g̃). For
any unit timelike vector X in TpM, the following relation satisfies:

qual(p) = q̃ualTp M(p) + 2n〈σ(X, X), ~〉 − 2|σ(X, X)|2 − 2|σ{X}×H |
2. (4.13)

For the special case q = q̃ = 1 of Lemma 4.1, we get the following corollary:

Corollary 4. Let M be an n-dimensional timelike submanifold of a Lorentzian manifold M̃. For any
unit timelike vector X in TpM, the following relation satisfies:

qual(p) = q̃ualTp M(p) + 2n〈σ(X, X), ~〉 − 2‖σ(X, X)‖2 − 2‖σ{X}×H‖
2. (4.14)

Proof. Since the indexes of both submanifold and ambient manifold are equal to each other, we see
that the second fundamental form which lies in the normal space becomes a spacelike vector. Using
this fact, the proof of corollary is straightforward from Corollary 3. �

Theorem 4.2. Let M be a timelike submanifold of a Lorentzian manifold. For any unit timelike vector
X in TpM, the following relation satisfies:

qual(p) ≤ q̃ualTp M(p) + 2n〈σ(X, X), ~〉. (4.15)

The equality case of (4.15) holds for all unit vectors X in TpM if and only if M is timelike V-geodesic
and mixed geodesic.

Proof. Using (4.14), we obtain the Eq (4.15). The equality case of (4.15) holds for all unit vectors X
in TpM if and only if

σ(X, X) = 0, and σ{X}×H = 0 (4.16)

which imply that M is timelike V-geodesic and mixed geodesic. �

Corollary 5. Let M be a timelike submanifold of an n-dimensional Minkowski space. For any unit
timelike vector X in T M, the following inequality satisfies:

qual(p) ≤ 2n〈σ(X, X), ~〉. (4.17)

The equality case of (4.17) holds for all unit vectors X in T M if and only if M is timelike V-geodesic
and mixed geodesic.

Corollary 6. Let M be a minimal timelike submanifold of a Minkowski space. Then we have

qual(p) ≤ 0. (4.18)

The equality case of (4.18) holds for all p ∈ M if and only if M is timelike V-geodesic and mixed
geodesic.

Corollary 7. Every minimal timelike submanifold of a Minkowski space is of constant curvature if and
only if it is timelike V-geodesic and mixed geodesic.
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Theorem 4.3. Let M be a totally umbilical timelike submanifold of a Lorentzian manifold. Then we
have

2n‖~(p)‖2 < qual(p) − q̃ualTp M(p). (4.19)

Proof. Since M is totally umbilical, we have from (4.14) that

2n‖~(p)‖2 ≤ qual(p) − q̃ualTp M(p) (4.20)

with the equality if and only if M is timelike V-geodesic and mixed geodesic. Therefore, M becomes
totally geodesic which contradicts that the submanifold is totally umbilical. �

Corollary 8. Let M be a totally umbilical timelike submanifold of n-dimensional Minkowski space.
Then we have the following inequality for all p ∈ M:

2n‖~(p)‖2 < qual(p). (4.21)

Now, we shall recall the following Lemma of B. Y. Chen (cf. Lemma 3.2 in [8]).

Lemma 4.4. Let ϕ : M → Rm
q̃ (c) be an isometric immersion of a pseudo Riemannian manifold M into

an indefinite real space form Rm
q̃ (c). If M is totally umbilical, then

i) ~ is a parallel normal vector field, i.e., ∇̃~ = 0;
ii) 〈~, ~〉 is constant;

iii) φ is a parallel immersion, i.e., ∇̃σ = 0 identically on M;
iv) M is of constant curvature c + 〈~, ~〉;
v) AH = 〈~, ~〉I, where I denotes the identity transformation;

vi) M is a parallel submanifold.

From the iv) statement of Lemma 4.4, Corollary 8, we see a contradiction for totally umbilical
timelike submanifold in a Minkowski space. Thus, we get the following result:

Corollary 9. There exist no totally umbilical timelike submanifold in a Minkowski space.

Now, we shall recall the following theorem of J. Li [21]

Theorem 4.5. If M is a totally umbilical hypersurface of a Minkowski space, then either M is a
Riemannian space form or a locally Minkowski space.

Remark 1. We note that Corollary 9 is an another proof way of Theorem 4.5 of J. Li [21].
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