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1. Introduction

Telegraph equation is introduced by Oliver Heaviside and is a linear second-order hyperbolic
partial differential equations that describe the current and voltage on an electrical transmission line
with distance. The model demonstrates that wave patterns can form along the line and that the
electromagnetic waves can be reflected on the wire. The nonhomogeneous telegraph equation with
boundary and initial conditions is given by

utt(x, t) + 2αut(x, t) + β2u(x, t) = uxx(x, t) + f (x, t), (x, t) ∈ Ω ×Ω, α > β ≥ 0, (1.1)

with initial and Dirichlet boundary conditions

u(x, 0) = f0(t),
∂u
∂t

(x, 0) = f1(x), x ∈ Ω, (1.2)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021080


1297

u(0, t) = g0(x), g(1, t) = g1(t), t ∈ Ω, (1.3)

where α and β are the real constants and Ω := [0, 1]. This equation referred to as the second-order
hyperbolic partial differential equation with constant coefficients, models a mixture between wave
propagation and diffusion by introducing a term that accounts for effects of finite velocity to the
standard heat or mass transport equation. This equation represents a damped wave motion when
α > 0 and β = 0.

In this paper, we employ the multi-wavelet Galerkin method to solve nonhomogeneous telegraph
equation (1.1) with initial (1.2) and boundary conditions (1.3). The Alpert’s multi-wavelet bases are
infinitely differentiable while having small compact support. In other words, these bases have
combined the advantages of both finite difference and spectral bases. The first application of Alpert’s
multi-wavelet bases to the solution of PDEs is the adaptive solution of nonlinear time-dependent
PDEs [1]. In this approach, the multiresolution representation of the derivative operator introduced,
and then an adaptive solver developed for both linear and nonlinear PDEs. Further, multi-wavelet
methods have been developed for PDEs such as conservation laws [10, 16, 23]. For other similar
studies to related PDEs we refer to [4–7]

The required conditions for the existence of a unique solution to a nonhomogeneous telegraph
equation with initial and boundary conditions an integral boundary condition via Galerkin’s method
investigated in [3, 14]. The reproducing kernel Hilbert space method is utilised to solve this
equation [3]. Lakestani et al. [19] employed a numerical solution based on the Galerkin and
collocation method to solve this equation appropriately. In [18], the authors proposed the differential
quadrature algorithm to obtain an approximate solution of the two-dimensional telegraph equation. A
fast and simple method based on the Chebyshev wavelets method is proposed by Heydari et al., [15].
In this paper, the matrices of integration and differentiation are applied to reduce complexity. Mittal et
al. [20] used cubic B-spline collocation method, whereas Dehghan and Shorki [11] proposed an
algorithm based on thin plates spline radial basis functions using collocation points for solving this
equation. A high accuracy method for the long-time evolution of the acoustic wave equation is
introduced in [21]. Authors of [8] presented dual reciprocity boundary integral equation method. Due
to the importance of this equation, many numerical methods have been proposed to solve the
telegraph equation such as Quardatic B-spline collocation method [12], collocation method based on
Chebyshev cardinal function [9], Lagrange interpolation and modified cubic B-spline differential
quadrature methods [17], a hybrid meshless method [26], generalized finite difference method [25].

The paper is structured as follows. A brief introduction of the Alpert’s multi-wavelets is provided
in Section 2. In Section 3, the wavelet Galerkin method is used to approximate the solution of the
problem, and the convergence analysis is investigated. Some numerical experiments are solved to
illustrate the efficiency and accuracy of the proposed method in Section 4. finally conclusions are
included in Section 5.

2. Alpert’s multi-wavelet

Assume that Ω := [0, 1] = ∪b∈BXJ,b is the finite discretizations of Ω, where XJ,b := [xb, xb+1], b ∈
B := {0, . . . , 2J − 1} with J ∈ Z+ ∪ {0}, are determined by the point xb := b/(2J). On this discretization,
appling the dilation D2 j and the translation Tb operators to primal scaling functions {φ0

0,0, · · · , φ
r−1
0,0 },
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one can introduce the subspaces

Vr
J := S pan{φk

j,b := D2 jTbφ
k, b ∈ B j, k ∈ R} ⊂ L2(Ω), r ≥ 0,

of scaling functions. Here R = {0, 1, · · · , r − 1} and the primal scaling functions are the Lagrange
polynomials of degree less than r that introduced in [1].

Every function p ∈ L2(Ω) can be represented in the form

p ≈ Pr
J(p) =

∑
b∈BJ

∑
k∈R

pk
J,bφ

k
J,b, (2.1)

where 〈., .〉 denotes the L2-inner product

〈 f , g〉 =

∫ 1

0
| f g|dx,

and Pr
J is the orthogonal projection that maps L2(Ω) onto the subspace Vr

J. To find the coefficients pk
J,b

that are determined by 〈p, φk
J,b〉 =

∫
XJ,b

f (x)φk
J,b(x)dx, we shall compute these integrals. We apply the

r-point Gauss-Legendre quadrature by a suitable choice of the weights ωk and nodes τk for k ∈ R to
avoid these integrals [1, 24], via

pk
J,b ≈ 2−J/2

√
ωk

2
p
(
2−J(

τk + 1
2

+ b)
)
, k ∈ R, b ∈ BJ, (2.2)

Convergence analysis of the projection Pr
J(p) is investigated for the r-times continuously

differentiable function p ∈ Cr(Ω).

‖Pr
J(p) − p‖ ≤ 2−Jr 2

4rr!
sup

x∈[0,1]
|p(r)(x)|. (2.3)

For the full proof of this approximation and further details, we refer the readers to [2]. Thus we can
conclude that Pr

J(p) converges to p with rate of convergence O(2−Jr).
Let Φr

J be the vector function Φr
J := [Φr,J,0, · · · ,Φr,J,2J−1]T and consists of vectors

Φr,J,b := [φ0
J,b, · · · , φ

r−1
J,b ]. The vector function Φr

J includes the scaling functions and called
multi-scaling function. Furthermore, by definition of vector P that includes entries Pbr+k+1 := pk

J,b, we
can rewrite Eq (2.2) as follows

Pr
J(p) = PT Φr

J, (2.4)

where P is an N-dimensional vector (N := r2J). The building blocks of these bases construction can
be applied to approximate a higher-dimensional function. To this end, one can introduce the two-
dimensional subspace Vr,2

J := Vr
J × Vr

J ⊂ L2(Ω)2 that is spanned by

{φk
J,bφ

k′
J,b′ : b, b′ ∈ BJ, k, k′ ∈ R}.

Thus by this assumption, to derive an approximation of the function p ∈ L2(Ω)2 by the projection
operator Pr

J, we have

p ≈ Pr
J(p) =

∑
b∈B j

r−1∑
k′=0

r−1∑
k=0

∑
b′∈B j

Prb+(k+1),rb′+(k′+1)φ
k
J,b(x)φk′

J,b′(y) = Φr
J

T (x)PΦr
J(y), (2.5)
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where components of the square matrix P of order N are obtained by

Prb+(k+1),rb′+(k′+1) ≈ 2−J

√
ωk

2

√
ωk′

2
p
(
2−J(τ̂k + b), 2−J(τ̂k′ + b′)

)
, (2.6)

where τ̂k = (τk + 1)/2. Consider the 2r-th partial derivatives of f : Ω2 → R are continuous. Utilizing
this assumption, the error of this approximation can be bounded as follows

‖Pr
J p − p‖ ≤ Mmax

21−rJ

4rr!

(
2 +

21−Jr

4rr!

)
, (2.7)

whereMmax is a constant.
By reviewing the spaces Vr

J, it is obvious these bases are nested. Hence there exist complement
spaces Wr

J such that
Vr

J+1 = Vr
J ⊕Wr

J, J ∈ Z ∪ {0}, (2.8)

where ⊕ denotes orthogonal sums. These subspaces are spanned by the multi-wavelet basis

Wr
J = S pan{ψk

J,b := D2JTbψ
k : b ∈ BJ, k ∈ R}.

According to (2.8), the space VJ may be inductively decomposed to Vr
J = Vr

0 ⊕ (⊕J−1
j=0 Wr

j ). This
called multi-scale decomposition and spanned by the multi-wavelet bases and single-scale bases. This
leads us to introduce the multi-scale projection operatorMr

J. Assume that the projection operator Qr
j

the maps L2(Ω) onto Wr
j . Thus we obtain

p ≈ Mr
J(p) = (Pr

0 +

J−1∑
j=0

Qr
j)(p), (2.9)

and consequently, any function p ∈ L2(Ω) can be approximated as a linear combination of multi-
wavelet bases

p ≈ Mr
J(p) =

r−1∑
k=0

pk
0,0φ

k
0,0 +

J−1∑
j=0

∑
b∈B j

∑
k∈R

p̃k
j,bψ

k
j,b, (2.10)

where
pk

0,0 := 〈p, φk
0,0〉, p̃k

j,b := 〈p, ψk
j,b〉. (2.11)

Note that, we can compute the coefficients pk
0,0 by using (2.2). But multi-wavelet coefficients from zero

up to higher-level J − 1 in many cases must be evaluated numerically. To avoid this problem, we use
multi-wavelet transform matrix TJ, introduced in [22, 24]. This matrix connects multi-wavelet bases
and multi-scaling functions, via,

Ψr
J = TJΦ

r
J, (2.12)

where Ψr
J := [Φr,0,b,Ψr,0,b,Ψr,1,b, · · · ,Ψr,J−1,b]T is a vector with the same dimension Φr

J (here Ψr, j,b :=
[ψ0

j,b, · · · , ψ
r−1
j,b ]). This representation helps to rewrite Eq (2.10) as to form

p ≈ Mr
J(p) = P̃T

J Ψr
J, (2.13)

AIMS Mathematics Volume 6, Issue 2, 1296–1308.



1300

where we have the N-dimensional vector P̃J whose entries are pk
0,0 and p̃k

j,b and is given by employing
the multi-wavelet transform matrix TJ as P̃J = TJPJ. Note that according to the properties of TJ we
have T−1

J = T T
J .

The multi-wavelet coefficients (details) become small when the underlying function is smooth
(locally) with increasing refinement levels. If the multi-wavelet bases have Nr

ψ vanishing moment,
then details decay at the rate of 2−JNr

ψ [16]. Because vanishing moment of Alpert’s multi-wavelet is
equal to r, one can obtain p̃k

J,b ≈ O(2−Jr) consequently. This allows us to truncate the full wavelet
transforms while preserving most of the necessary data. Thus we can set to zero all details that satisfy
a certain constraint ε using thresholding operator Cε

Cε(P̃J) = P̄J, (2.14)

and the elements of P̄J are determined by

p̄k
j,b :=

{
p̃k

j,b, ( j, b, k) ∈ Dε,

0, else,
b ∈ B j, j = 0, · · · , J − 1, k = 0, · · · , r − 1, (2.15)

where Dε := {( j, b, k) : |p̃k
j,b| > ε}. Now we can bound the approximation error after thresholding via

‖Pr
J p − Pr

J,Dε
p‖L2(Ω) ≤ Cthrε, (2.16)

wherePr
J,Dε

(p) is the projection operator after thresholding with the threshold ε and Cthr > 0 is constant
independent of J, ε.

3. Multi-wavelet Galerkin method

Let us consider the generalized telegraph equations (TE) on the region Ω×Ω governed by the partial
differential equation

∂2u
∂t2 (x, t) + 2α

∂u
∂x

(x, t) + β2u(x, t) =
∂2u
∂x2 (x, t) + f (x, t), (x, t) ∈ Ω ×Ω, α > β ≥ 0, (3.1)

with initial and Dirichlet boundary conditions

u(x, 0) = f0(t),
∂u
t

(x, 0) = f1(x), x ∈ Ω, (3.2)

u(0, t) = g0(x), g(1, t) = g1(t), t ∈ Ω. (3.3)

In order to derive the multi-wavelet Galerkin method for solving TE (3.1), we assume that the
approximate solution u can be expanded by the Alpert’s multi-wavelet bases Ψr

J, i.e.,

u(x, t) ≈ uJ(x, t) = Ψr
J

T (x)UΨr
J(t). (3.4)

Taking the first and second derivative with respect to x and t from both sides of the Eq (3.4), one
can get

ut(x, t) ≈ Ψr
J

T (x)UDψΨr
J(t), utt(x, t) ≈ Ψr

J
T (x)UD2

ψΨr
J(t),
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ux(x, t) ≈ Ψr
J

T (x)DT
ψUΨr

J(t), uxx(x, t) ≈ Ψr
J

T (x)D2
ψ

T
UΨr

J(t), (3.5)

where the matrix Dψ is used to represents the derivative of multi-wavelet defined by [10, 23].
Inserting (3.4) into (3.1) and employing (3.5) we obtain the residual via

rr
J(x, t) = Ψr

J
T (x)

(
UD2

ψ + 2αUDψ + β2U − D2
ψ

T
Uψ − F̃T

)
Ψr

J(t), (3.6)

where the vector F̃ is obtained the same way as the direction in (2.5) i.e.,

f ≈ Ψr
J

T (x)F̃Ψr
J(t),

with F̃ = TJFT−1
J . The Galerkin method requires rr

J to satisfy 〈rr
J, ψ

k
j,bψ

k′
j′,b′〉 = 0. Multiplying (3.6) by

Ψr
J(x) from left and Ψr

J
T (t) from right and integrating, we end up with

Λ := UD2
ψ + 2αUDψ + β2U − D2

ψ

T
U − F̃T = 0, (3.7)

where we employ orthonormality of multi-wavelet bases and the local support of these bases.
Equation (3.7) gives (N2)2 independent equations

Λi, j = 0, i = 3 : N, j = 2 : N − 1.

We obtain 4N − 4 other equations from boundary conditions (3.1) and (3.2) via equations (3.3) and
(3.5),

UΨr
J(0) = F̃0, UDψΨr

J(0) = F̃1,

Ψr
J

T (0)U = G̃T
0 , Ψr

J
T (1)U = G̃T

1 .

The problem becomes a system of linear equations with N2 equations and N2 unknowns,

AU = Υ, (3.8)

where U and Υ are the vectorization of U and F̃, respectively. It should be noted here that since
most of the elements of the matrix A are zero, We use appropriate methods such as the generalized
minimal residual method (GMRES ). After solving this system the approximate solution is implicitly
represented by (3.4).

Convergence analysis

To investigate the convergence analysis of the multi-wavelet Galerkin method, we put

∂2uJ

∂t2 (x, t) + 2α
∂uJ

∂x
(x, t) + β2uJ(x, t) =

∂2uJ

∂x2 (x, t) + fJ(x, t), (3.9)

subtracting this equation from (3.1), we obtain

e(x, t) :=
∂2eJ

∂t2 (x, t) + 2α
∂eJ

∂x
(x, t) + β2eJ(x, t) −

∂2eJ

∂x2 (x, t) − ( f (x, t) − fJ(x, t)), (3.10)
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where eJ := u − uJ. Taking L2-norm from both sides and using the triangle inequality yields

‖e‖2 ≤ ‖
∂2eJ

∂t2 (x, t) + 2α
∂eJ

∂x
(x, t) + β2eJ(x, t)‖2 + ‖

∂2eJ

∂x2 (x, t)‖2 + ‖ f (x, t) − fJ(x, t)‖2. (3.11)

Now suppose that
eJ(x, t) := Ψr

J
T (x)EΨr

J(t),

where E is the (N × N) matrix and thus, one can write

‖e‖2 ≤ ‖ED2
ψ + 2αEDψ + β2E‖2 + ‖D2

ψE‖2 + ‖F − FJ‖2,

≤ ‖E‖2‖D2
ψ + 2αDψ + β2IN + D2

ψ‖2 + ‖F − FJ‖2,

where we utilize the orthonormality of multi-wavelet bases. According to the previous section, for
any function p, when multi-wavelet bases hava high vanishing moments and the function p is smooth,
〈p,Ψr

J〉 decays fast in J → ∞. By means of vanishing moments of Alpert’s multi-wavelets and the
matrix norms inequalities, we get

‖e‖2 ≤
√

N‖E‖2‖D2
ψ + 2αDψ + β2IN + D2

ψ‖∞ + ‖F − FJ‖2

Obviously, using (2.7), we can find

‖e‖22 ≤ η
21−rJ

4rr!

(
2 +

21−Jr

4rr!

)
, (3.12)

where η := κM
√

N with κ := ‖D2
ψ + 2αDψ +β2IN + D2

ψ‖∞ andM is a constant. Consequently, ‖e‖2 → 0
when J → ∞.

4. Numerical results

To show the efficiency and accuracy of will employ the proposed method to obtain the approximate
solution of the following examples. All of the computations have been done by Maple and MATLAB
simultaneously.

Example 4.1. Assume the telegraph equation (3.1) with initial and boundary conditions (3.2) and
(3.3). Let

f0(x) = tan( x
2 ), f1(x) = 1

2 (1 + tan2( x
2 )),

g0(t) = tan( t
2 ), g1(t) = tan( 1+t

2 ),

and function

f (x, t) = α
(
1 + tan2(

x + t
2

)
)

+ β2 tan(
x + t

2
).

The exact solution of this equation is u(x, t) = tan( x+t
2 ) [8, 20].

In Table 1, with fixed α = 10 and β = 5, choosing different refinement levels J and multiplicity r
guarantees our convergence investigation. In Table 2, results are also compared with other methods
[12, 20] in terms of L∞, L2 errors at different times. In [12, 20], The space and time discretized by the
rate of 0.001 while for the proposed method this is 0.25. In view of this and the results, our method
is better much more than them. Taking r = 7 and J = 2, the approximate solution and L∞ errors are
shown in Figure 1.
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Table 1. Effects of parameters r and J on L∞, L2 errors for Example 1.

r J t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

4
2

L∞ 2.74e − 3 5.22e − 3 5376e − 3 5.76e − 3 1.37e − 3
L2 1.83e − 3 5.84e − 3 1.68e − 3 3.11e − 3 4.02e − 3

3
L∞ 2.09e − 3 4.21e − 3 4.78e − 3 3.01e − 3 1.04e − 3
L2 7.49e − 5 3.53e − 4 1.03e − 3 2.02e − 3 3.28e − 3

5
2

L∞ 2.49e − 5 1.18e − 4 2.83e − 4 2.93e − 4 1.68e − 5
L2 2.22e − 6 3.17e − 5 1.01e − 4 1.30e − 4 1.88e − 4

3
L∞ 1.33e − 5 7.66e − 5 1.96e − 4 2.09e − 4 2.38e − 5
L2 2.76e − 6 2.01e − 5 6.27e − 5 7.96e − 5 1.32e − 4

Table 2. Comparison of the L∞, L2 errors using presented method and others taking α = 10
and β = 5 for Example 1.

presented method Mittal et al. [20] Dosti et al. [12]

t L∞ Ł2 L∞ Ł2 L∞ Ł2

0.2 1.14e − 8 1.94e − 8 3.61e − 4 2.18e − 4 2.77e − 4 3.32e − 8
0.4 2.96e − 8 3.98e − 8 1.04e − 4 5.66e − 4 7.18e − 4 2.31e − 7
0.6 5.36e − 7 5.94e − 7 2.60e − 3 1.15e − 4 1.38e − 3 8.21e − 7
0.8 1.13e − 6 5.88e − 7 7.63e − 3 2.61e − 3 3.09e − 3 3.24e − 6
1.0 5.82e − 7 8.02e − 7 4.66e − 2 1.04e − 2 1.34e − 2 3.28e − 5

0

0.2

0.4

0.6

1

0.8

1

1.2

1.4

1.6

0.5

10 0.80.60.40.20

0

0.5

1

1

1.5

2

10
-6

2.5

3

0.5

10.80.60 0.40.20

Figure 1. Plot of the approximate solution (left) and L∞ errors (right) taking r = 7 and J = 2
for Example 1.
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Example 4.2. In this example, we consider u(x, t) = (x − x2)t2e−t is the analytical solution of the
telegraph equation (1.1) with initial and boundary conditions

f0(x) = f1(x) = 0,
g0(t) = g1(t) = 0,

and

f (x, t) = (2 − 2t + t2)(x − x2)e−t + 2t2e−t.

L2, L∞ errors are reported in Table 3 taking r = 5 ad J = 3. Results have been compared with the
results of [11, 20]. These results indicate that the proposed method solves this equation better than
them. Time and space steps in these papers have been reported ∆t = 0.001 and h = 0.01 while they are
equal to 0.125 in our simulation. The graph of numerical solution uJ and L∞ error are shown in Figure
2 and the exact and approximate solution at different values of the time t and space x are plotted in
Figure 3.

Table 3. Comparison of the L∞, L2 errors using presented method and others taking α = 8
and β = 4 for Example 2.

presented method Mittal et al. [20] Dehghan et al. [11]

L∞ Ł2 L∞ Ł2 L∞ Ł2

t = 1 2.81e − 017 1.31e − 06 5.92e − 5 4.55e − 5 1.85e − 5 1.44e − 4

1
0

0

0.02

0.2

0.04

0.5
0.4

0.06

0.08

0.6

0.1

0.8
01

-2

1

0

2

1

10
-6

4

0.8

6

0.5
0.6

8

0.4

0.2
0 0

Figure 2. Plots of approximate solution (left) and absolute value errors (right) with α = 8
and β = 4 taking r = 5 and J = 2 for Example 2.
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0.035
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x=0.6

x=0.8
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Figure 3. Comparison of numerical and exact solution of Example 2 with α = 8 and β = 4,
taking r = 5 and J = 2, at different values of the space x and time level t.

Example 4.3. Consider the Eq (1.1) with the right hand side function

f (x, t) = −2α sin(t) sin(x) + β2 cos(t) sin(x),

and the initial and boundary conditions

f0(x) = sin(x), f1(x) = 0,
g0(t) = 0 g1(t) = cos(t) sin(1),

The exact solution of this problem is given in [8, 20], as

u(x, t) = cos(t) sin(x).

The effect of multiplicity parameter r is show in Figure 4. Table 4, shows a comparison among
the L∞, L2 errors for the proposed method and other methods [12, 20]. Given this table, we can find
the proposed method very flexible and better than others. The effects of the refinement level J and
multiplicity parameter r on L∞, L2 errors are given in Table 5.
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Figure 4. Effect of multiplicity parameter r on L∞ and percentage of sparsity taking J = 2
for Example 3.
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Table 4. Comparison of the L∞, L2 errors using presented method and others taking α = 6
and β = 2 for Example 3.

presented method Mittal et al. [20] Dosti et al. [12]
h = 0.25,∆t = 0.25 h = 0.005,∆t = 0.001 h = 0.005,∆t = 0.001

t L∞ Ł2 L∞ Ł2 L∞ Ł2

0.2 5.70e − 10 8.58e − 12 6.83e − 5 3.43e − 5 2.42e − 5 1.70e − 10
0.4 3.83e − 10 1.34e − 11 1.49e − 4 8.58e − 5 7.93e − 5 2.67e − 9
0.6 3.84e − 10 1.67e − 10 2.24e − 4 1.34e − 4 1.21e − 4 6.78e − 9
0.8 5.74e − 10 3.81e − 10 2.90e − 4 1.75e − 4 1.49e − 4 1.07e − 8
1.0 1.46e − 10 2.81e − 10 3.44e − 4 2.09e − 4 1.65e − 4 1.34e − 8

Table 5. Effects of parameters r and J on L∞, L2 errors for Example 3.

r J t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

5
2

L∞ 5.96e − 5 9.54e − 5 9.54e − 5 5.96e − 5 1.21e − 5
L2 1.84e − 6 2.39e − 6 4.34e − 5 7.12e − 5 5.46e − 5

3
L∞ 2.77e − 5 4.43e − 5 4.43e − 5 2.77e − 5 1.23e − 5
L2 9.56e − 7 1.13e − 6 2.05e − 5 3.30e − 5 2.52e − 5

6
2

L∞ 2.98e − 5 2.55e − 5 2.54e − 5 3.01e − 5 1.3e − 5
L2 6.85e − 7 1.17e − 6 1.35e − 6 1.63e − 6 2.50e − 5

3
L∞ 2.09e − 5 1.48e − 5 1.48e − 5 2.09e − 5 1.23e − 5
L2 4.59e − 7 7.80e − 7 9.22e − 7 1.12e − 6 1.66e − 5

5. Conclusions

In this study, the multi-wavelet Galerkin method was used to obtain an approximate solution of the
telegraph equation. This method reduces the problem to a sparse system of linear equations, and then
this system is solved by the GMRES method. The convergence analysis was investigated and some
numerical tests were guaranteed it. Numerical experiments were shown the ability and flexibility of
the proposed method in comparison to other methods.
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