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1. Introduction

Interval analysis was first proposed in order to reduce errors during mathematical computation.
Since the first monograph was written by Moore [2], interval analysis plays an important role in many
other fields such as engineering, economics, statistics, and so on. Especially in the engineering field,
the dynamics model can solve many dynamic problems, and such systems usually involve multiple
uncertain parameters or interval coefficients.

Based on the works of Moore, many researchers hope to establish a complete theoretical system for
interval analysis like the real analysis. In 1979, Markov first presented the concept of gH-difference
and differentiability for interval-valued functions in [6], which addressed the problems in subtraction
between two intervals. In 2009, Stefanini gave some more research on gH-derivative and interval
differential equations in [7]. In 2015, Lupulescu studied the fractional calculus for interval-valued
functions in [5]. Last year, Chalco-Cano dealt with the algebra of gH-differentiable interval-valued
functions in [9]. This year, Ghosh proposed the notions of gH-directional derivative, gH-Gâteaux
derivative and gH-Fréchet derivative for interval-valued functions in [18]. The generalization of the
theory for interval analysis drew more and more attentions in the past decade.
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In 2006, Boros give some notions of a subfield K of R and presented the ideas of Q-subdifferential
of Jensen-convex functions in [22]. After this, in 2017, Olbryś introduced the concepts of K-Riemann
integral and gave a new generalization of classical Hermite-Hadamard inequality in [4]. Motivated by
their works, one of the main purposes of this paper is to introduce a new generalization for interval-
valued K-Darboux integral and K-Riemann integral.

On the other hand, convex functions take effects in optimal control theory, economic analysis,
probability estimate, and many other fields. For the past decades, classical convex has been generalized
to many other types. After Costa gave the concepts of interval-valued convex in [1], some classical
inequalities for convex functions have been extended to the form of interval-valued especially the
Hermite-Hadamard inequality. In fact, if a function is convex then it satisfies the Hermite-Hadamard
inequality (More details, see [10–12], [14–17], [19]). Motivated by this, the other purpose of this
paper is to generalize some Hermite-Hadamard type inequalities with respect to K-Riemann integral
for K-convex and log-K-convex interval-valued functions. In addition, the results of this paper may be
used as a powerful tool in fuzzy-valued function, interval optimization, and interval-valued differential
equations.

In section 2, we provide the basic theory of interval analysis and some properties. The definition
of interval-valued K-Darboux, K-Riemann integral and some basic properties are given in section 3.
Then we propose the definition of radial K-gH-derivative and the relationship between K-Riemann
integral in section 4. In section 5, we give some statements for Hermite-Hadamard type inequalities of
K-convex and log-K-convex interval-valued functions. Some examples are also presented.

2. Preliminaries

Let Kc = {I = [a, b] | a, b ∈ R, a ≤ b}. The length of interval I = [a, b] ∈ Kc can be defined by
`(I) := b−a. Moreover, we say I is positive if a > 0, and we denoteK+

c by all positive intervals belong
to Kc.

Some basic properties of algebra operations between two intervals can be found in [2]. For two
intervals A = [a−, a+] and B= [b−, b+] belong to Kc, we now give the following important properties.

Definition 2.1. For any A, B ∈ Kc, the gH-difference between A, B can be defined as

A 	g B =

{
[a− − b−, a+ − b+] , if `(A) ≥ `(B),
[a+ − b+, a− − b−] , if `(A) < `(B).

(2.1)

Specially, if B = b ∈ R is a constant, then

A 	g B = [a− − b, a+ − b].

More properties of gH-difference can be found in [8].
The partial order relationship ”�” between A and B can be defined as

A � B if a− ≤ b− and a+ ≤ b+, (2.2)

A ≺ B if A � B and A , B. (2.3)

The Hausdorff-Pompeiu distanceH : Kc × Kc → [0,∞) between A and B is defined byH(A, B) =

max {|a− − b−| , |a+ − b+|}. Then (Kc,H) is a complete and separable metric space (see [13]).

AIMS Mathematics Volume 6, Issue 2, 1276–1295.



1278

Base on this, define a map ‖ · ‖: Kc → [0,∞), ‖A‖:=max{|a−|, |a+|} = H(A, {0}). It’s easy to see that
‖ · ‖ is a norm on Kc. Hence, (Kc, ‖ · ‖) is a normed quasi-linear space (see [5]).

In this paper, we use symbols F and G refer to interval-valued functions. For any F : [a, b] → Kc

where F = [ f −, f +], we say that F is `-increasing(or `-decreasing) on [a, b] if `(F) : [a, b] → [0,∞)
is strictly increasing(or decreasing) on [a, b]. If `(F) is strictly monotone on [a, b], then we say F is
`-monotone on [a, b].

Definition 2.2. F : [a, b]→ Kc is said to be continuous at x0 ∈ [a, b], if

lim
x→x0
‖F(x) 	g F(x0)‖ = 0. (2.4)

We denote C([a, b],Kc) by the set of all continuous interval-valued function on [a, b].

Definition 2.3. (Stefanini [7]) Let F : [a, b]→ Kc, we say that F(x) is gH-differential at x0 ∈ (a, b), if
there existD ∈ Kc such that

lim
h→0

F (x0 + h) 	g F (x0)
h

= D. (2.5)

D defined in this fashion is denoted the symbol F′(x0) and F′(x0) is said to be the gH-derivative of
F(x) at x0.

More properties of gH-derivative can be found in [9].
Now, we introduced the concept of the field K and number set [a, b]K given by Olbryś in [4]. Let

Q ⊆ K ⊆ R, the set [a, b]K denotes by

[a, b]K = {αa + (1 − α)b : α ∈ K ∩ [0, 1]}. (2.6)

It’s obvious that [a, b]K ⊆ [a, b]. Also, we can regard [a, b]K as a convex combination of {a, b}
with coefficient from K, i.e. [a, b]K = convK({a, b}). For the case K = R, we use [a, b] = conv({a, b})
instead of [a, b]K = convK({a, b}). Actually, such subfield K of the real numbers R always exists. Since
Q ⊂ Q(

√
2) ⊂ ... ⊂ Q(

√
2,
√

3, ...,
√

p) ⊂ ... ⊂ R, where p is a prime. There are infinitely many
subfields K satisfies Q ⊆ K ⊆ R. Meanwhile, Q is a subfield of any number field.

Now we can give the following definitions.

Definition 2.4. Let F : [a, b]→ Kc, we say that F is K-linear if F satisfies two properties:
(1) Additive:

F(x + y) = F(x) + F(y). (2.7)

(2) K-Homogeneity:
F(αx) = αF(x), ∀α ∈ K. (2.8)

Example 2.5. Let K = Q(
√

2) = {a +
√

2b | a, b ∈ Q} and let F : K→ Kc be F(x) = [−
√

2x,
√

2x]. We
can check that F isn’t linear in the usual sense but is K-linear.

Definition 2.6. Let F : [a, b]→ Kc, we say that F is K-convex if for any α ∈ K ∩ (0, 1),

αF(x) + (1 − α)F(y) ⊆ F(αx + (1 − α)y). (2.9)

We denote CXK([a, b],Kc) by the set of all K-convex interval-valued function on [a, b].
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Definition 2.7. Let F : [a, b]→ Kc, we say that F is radial K-continuous at x0 ∈ [a, b] if

lim
α→0
‖F((1 − α)x0 + αx) 	g F(x0)‖ = 0, (2.10)

where α ∈ K+ and K+ denotes the all positive numbers of K. We denote CK([a, b],Kc) by the set of all
radial K-continuous interval-valued function on [a, b].

3. Interval-valued K-Riemann integral

We firstly present the concept of bounded, then the definition of supremum and infimum intervals
for interval-valued functions can be given.

Definition 3.1. Let F : [a, b] → Kc, we say that F is bounded on [a, b]K if there existsM > 0 such
that

‖F(x)‖ ≤ M for any x ∈ [a, b]K.

Remark 3.2. For any F : [a, b] → Kc, F is bounded on [a, b]K doesn’t imply that F is bounded on the
whole [a, b]. For example, consider K = Q and F : [1, 2]→ Kc given by

F(x) =


[1, 2], x ∈ [1, 2]Q,
{0}, x =

√
2,[

1
x−
√

2
− 1, 1

x−
√

2

]
, others.

One can easily check that F is bounded on [1, 2]Q but not bounded on [1, 2].

Definition 3.3. We say that S ∈ Kc is the supremum interval of F : [a, b] → Kc on [a, b]K if the
following conditions hold.

(1) For any x ∈ [a, b]K, we have F(x) � S .

(2) For any ε > 0, there is x0 ∈ [a, b]K such that S 	g ε ≺ F(x0).

Moreover,

S := sup
x∈[a,b]K

F(x) = [s−, s+] =

[
sup

x∈[a,b]K
f −(x), sup

x∈[a,b]K
f +(x)

]
. (3.1)

Definition 3.4. We say that T ∈ Kc is the infimum interval of F : [a, b] → Kc on [a, b]K if the
following conditions hold.

(1) For any x ∈ [a, b]K, we have T � F(x).

(2) For any ε > 0, there is x0 ∈ [a, b]K such that F(x0) ≺ T + ε.

Moreover,

T := inf
x∈[a,b]K

F(x) = [t−, t+] =

[
inf

x∈[a,b]K
f −(x), inf

x∈[a,b]K
f +(x)

]
. (3.2)

Example 3.5. Consider F :
[
−π2 ,

π
2

]
→ Kc defined by F(x) =

[
− 1

x+2 , sin x
]
. Let K = Q, then we have[

−
π

2
,
π

2

]
K

=

[
−
π

2
,
π

2

]
∩ Q.
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Then

S = sup
x∈[− π2 , π2 ]K

F(x) =

[
−

2
π + 4

, 1
]
,

and

T = inf
x∈[− π2 , π2 ]K

F(x) =

[
2

π − 4
,−1

]
.

For a given I = [a, b], let I1 � I2 � . . . � In and Ii = [ai, bi], where ai+1 = bi, 1 ≤ i ≤ n, i ∈ N. The
finite set of intervals τ = {(I1, I2, . . . , In),

⋃n
i=1 Ii = I, 1 ≤ i ≤ n, i ∈ N} is called a partition of I. Let

P[a,b] denote by the set of all partitions of I. Through this, we can give the definition of K-partition of
I.

PK[a,b] := {τ|τ = (I1, I2, . . . , In) ∈ P[a,b], ai, bi ∈ [a, b]K, 1 ≤ i ≤ n, i ∈ N} (3.3)

Consider any τ = (I1, I2, . . . , In) ∈ PK[a,b], let

S i = sup
x∈[ai,bi]K

F(x), Ti = inf
x∈[ai,bi]K

F(x), 1 ≤ i ≤ n, i ∈ N.

Note that
T � Ti � S i � S , 1 ≤ i ≤ n, i ∈ N.

If F : [a, b]→ Kc is bounded on [a, b]K, these supremum and infimum intervals are finite well-defined
intervals.

The upper and lower K-Darboux sum associated to F and partition τ can be defined by

UK(F, τ) :=
n∑

i=1

S i`(Ii),

and

LK(F, τ) :=
n∑

i=1

Ti`(Ii).

Note that UK(F, τ), LK(F, τ) ∈ Kc and

T (b − a) � LK(F, τ) � UK(F, τ) � S (b − a).

Then the upper and lower K-Darboux integral of F on [a, b] can be defined by

∫ b

a
F(x)dKx := inf

{
UK(F, τ) : τ ∈ PK[a,b]

}
,

and ∫ b

a
F(x)dKx := sup

{
LK(F, τ) : τ ∈ PK[a,b]

}
.

Since F is bounded on [a, b]K, the above integrals exist.
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Definition 3.6. Let F : [a, b]→ Kc be bounded on [a, b]K. If we have∫ b

a
F(x)dKx =

∫ b

a
F(x)dKx, (3.4)

then F is said to be K-Darboux integrable on [a, b]. Let
∫ b

a
F(x)dKx ∈ Kc refer to the K-Darboux

integral of F on [a, b]. We denote DK([a, b],Kc) by the set of all K-Darboux integrable interval-valued
functions on [a, b].

For the special case K = R, we use
∫ b

a
F(x)dx instead of

∫ b

a
F(x)dKx and D([a, b],Kc) instead of

DK([a, b],Kc). The next statement shows that K-Darboux integral is well-defined.

Theorem 3.7. Let F : [a, b] → Kc. Then F ∈ DK([a, b],Kc) if and only if for any ε > 0, there exists a
partition τ ∈ PK[a,b] such that ∥∥∥UK(F, τ) 	g LK(F, τ)

∥∥∥ < ε. (3.5)

Proof. First, consider F ∈ DK([a, b],Kc). For any ε > 0, there exist two partitions τ1, τ2 ∈ P
K
[a,b] such

that

UK(F, τ1) ≺
∫ b

a
F(x)dKx +

ε

2
,

∫ b

a
F(x)dKx 	g

ε

2
≺ LK(F, τ2).

Let τ = τ1 ∪ τ2, then we can get∥∥∥UK(F, τ) 	g LK(F, τ)
∥∥∥ ≤ ∥∥∥UK(F, τ1) 	g LK(F, τ2)

∥∥∥
=

∥∥∥∥∥∥∥
UK(F, τ1) 	g

∫ b

a
F(x)dKx

 +

∫ b

a
F(x)dKx 	g LK(F, τ2)


∥∥∥∥∥∥∥

<
ε

2
+
ε

2
= ε.

Conversely, let ε > 0 and choose τ ∈ PK[a,b] which satisfies (3.5). Since

∫ b

a
F(x)dKx � UK(F, τ) and LK(F, τ) �

∫ b

a
F(x)dKx,

we have

0 ≤

∥∥∥∥∥∥∥
∫ b

a
F(x)dKx 	g

∫ b

a
F(x)dKx

∥∥∥∥∥∥∥ ≤ ∥∥∥UK(F, τ) 	g LK(F, τ)
∥∥∥ < ε.

Which finishes the proof. �

By Theorem 3.5 and the properties of classical Darboux integral, we can obtain the following
statement.

Corollary 3.8. Let F : [a, b]→ Kc. Then we say that F ∈ DK([a, b],Kc) if and only if for any sequence
{τn}n∈N ⊆ P

K
[a,b], where τn = (I(n)

1 , I(n)
2 , . . . , I(n)

kn
) such that

max
1≤ j≤kn

`(I(n)
j )→ 0 as n→ ∞,
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and for any point ξ(n)
j ∈ [a(n)

j , b
(n)
j ]K we have

∫ b

a
F(x)dKx = lim

n→∞

kn∑
j=1

F
(
ξ(n)

j

)
`(I(n)

j ). (3.6)

Now, we can give the definition of interval-valued K-Riemann integral.

Definition 3.9. We say that F : [a, b] → Kc is K-Riemann integrable on [a, b], if there exists an
H ∈ Kc for any τ ∈ PK[a,b] such that

max
1≤i≤n

`(Ii)→ 0 as n→ ∞,

and ξi ∈ [ai, bi]K for all 1 ≤ i ≤ n, i ∈ N, we have

lim
n→∞

∥∥∥∥∥∥∥
n∑

i=1

F(ξi)`(Ii) 	g H

∥∥∥∥∥∥∥ = 0. (3.7)

We say that interval H is the K-Riemann integral of F and we denote RK([a, b],Kc) by the set of all
K-Riemann integrable interval-valued functions on [a, b].

Remark 3.10. From Corollary 3.8, it’s not hard to see that K-Darboux integral is equivalent to K-
Riemann integral of interval-valued functions. We use K-Riemann integral and the symbol

∫ b

a
F(x)dKx

instead of K-Darboux integral in the rest of this paper.

Theorem 3.11. Let Q ⊆ K1 ⊆ K2 ⊆ R and let F : [a, b] → Kc, if F ∈ RK2([a, b],Kc), then F ∈
RK1([a, b],Kc) and ∫ b

a
F(x)dK1 x =

∫ b

a
F(x)dK2 x. (3.8)

Proof. Consider τn = (I(n)
1 , I(n)

2 , . . . , I(n)
kn

) ∈ PK1
[a,b] such that

max
1≤ j≤kn

`(I(n)
j )→ 0 as n→ ∞,

Since F ∈ RK2([a, b],Kc), for any point ξ(n)
j ∈ [a(n)

j , b
(n)
j ]K1 , we have

∫ b

a
F(x)dK2 x = lim

n→∞

kn∑
j=1

F
(
ξ(n)

j

)
`(I(n)

j ).

By the arbitrariness of τn ∈ P
K1
[a,b], we have

∫ b

a
F(x)dK1 x = lim

n→∞

kn∑
j=1

F
(
ξ(n)

j

)
`(I(n)

j ).

�
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Corollary 3.12. Let F : [a, b] → Kc. If F ∈ R([a, b],Kc) then for any K ⊆ R, we have
F ∈ RK([a, b],Kc) and ∫ b

a
F(x)dKx =

∫ b

a
F(x)dx. (3.9)

The next example shows that the reverse of the above result is not true.

Example 3.13. Let K1 ⊆ K2 ⊆ R, and K1 , K2. Consider F : [a, b]→ Kc given by

F(x) =

{
[0, 1], x ∈ [a, b]K1 ,

[−1, 0], x ∈ [a, b] \ [a, b]K1 .

It’s obviously that F ∈ RK1([a, b],Kc) and∫ b

a
F(x)dK1 = [0, b − a].

Now, we consider any partition τ ∈ PK2
[a,b] \ P

K1
[a,b]. Since [ai, bi]K1 ⊂ [ai, bi]K2 ⊂ [ai, bi], we obtain

S i = sup
x∈[ai,bi]K2

F(x) = [0, 1], Ti = inf
x∈[ai,bi]K2

F(x) = [−1, 0].

It implies
UK2(F, τ) = [0, b − a], LK2(F, τ) = [a − b, 0].

Thus

[0, b − a] =

∫ b

a
F(x)dK2 x ,

∫ b

a
F(x)dK2 x = [a − b, 0],

which illustrates that F < RK2([a, b],Kc). Moreover, if we pick another subfield K3 with Q ⊆ K3 ⊂ K2,
one can shows that F ∈ RK3([a, b],Kc).

The following results can be obtained easily by the case of real-valued functions(see [3]).

Theorem 3.14. Let F : [a, b] → Kc. If F ∈ CXK([a, b],Kc), then there always have a unique Ψ :
[a, b]→ Kc and

Ψ(x) = F(x), for any x ∈ [a, b]K. (3.10)

Moreover, Ψ is convex and Ψ ∈ C([a, b],Kc).

Proposition 3.15. Let F,G : [a, b]→ Kc and F,G ∈ RK([a, b],Kc).

(i) For any α, β ∈ R, if αF + βG ∈ IRK[a,b], then∫ b

a

[
αF(x) + βG(x)

]
dKx = α

∫ b

a
F(x)dKx + β

∫ b

a
G(x)dKx. (3.11)

(ii) If F ⊆ G, then ∫ b

a
F(x)dKx ⊆

∫ b

a
G(x)dKx. (3.12)
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(iii) If ‖F(x)‖ : [a, b]→ [0,∞) is K-Riemann integrable and∥∥∥∥∥∥
∫ b

a
F(x)dKx

∥∥∥∥∥∥ ≤
∫ b

a
‖F(x)‖ dKx. (3.13)

Theorem 3.16. Let F,G : [a, b]→ Kc. If F,G ∈ RK([a, b],Kc), then∫ b

a
F(x)dKx 	g

∫ b

a
G(x)dKx ⊆

∫ b

a
(F 	g G)(x)dKx. (3.14)

Moreover, if `(F) − `(G) has a constant sign on [a, b], then∫ b

a
F(x)dKx 	g

∫ b

a
G(x)dKx =

∫ b

a
(F 	g G)(x)dKx. (3.15)

Proof. First, let Φ− := f − − g−, Φ+ := f + − g+, then we have∫ b

a
min

{
φ−, φ+} dKx ≤min

{∫ b

a
φ−dKx,

∫ b

a
φ+dKx

}
≤max

{∫ b

a
φ−dKx,

∫ b

a
φ+dKx

}
≤

∫ b

a
max

{
φ−, φ+} dKx.

It implies that∫ b

a
F(x)dKx 	g

∫ b

a
G(x)dKx =

[
min

{∫ b

a
φ−dKx,

∫ b

a
φ+dKx

}
,max

{∫ b

a
φ−dKx,

∫ b

a
φ+dKx

}]
⊆

[∫ b

a
min{φ−, φ+}dKx,

∫ b

a
max{φ−, φ+}dKx

]
=

∫ b

a
(F 	g G)(x)dKx.

Moreover, if `(F) − `(G) has constant sign on [a, b], then F 	g G = [φ−, φ+], if `(F) ≥ `(G), or
F 	g G = [φ+, φ−], if `(F) < `(G). We now assume that `(F) ≥ `(G) on [a, b], and F 	g G = [φ−, φ+].
Thus, we have

∫ b

a
φ−dKx ≤

∫ b

a
φ+dKx, which shows that∫ b

a
(F 	g G)(x)dKx =

∫ b

a
F(x)dKx 	g

∫ b

a
G(x)dKx.

The other case `(F) < `(G) can be proved in the same way. �

Theorem 3.17. Let c ∈ [a, b]K. For any F : [a, b] → Kc, if F ∈ RK([a, b],Kc), then F ∈ RK([a, c],Kc)
and F ∈ RK([c, b],Kc). Moreover∫ b

a
F(x)dKx =

∫ c

a
F(x)dKx +

∫ b

c
F(x)dKx. (3.16)
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Proof. Suppose F ∈ RK([a, b],Kc). For any ε > 0 there exists τ ∈ PK[a,b] such that∥∥∥UK(F, τ) 	g LK(F, τ)
∥∥∥ < ε.

By adding point c to τ write as τc such that τc = (I1, . . . , Ik, Ic, Ik+1, . . . , In), where Ik = [ak, c] and
Ic = [c, bk]. Consider τc = τ1 ∪ τ2 and

τ1 := τc ∩ [a, c]K ∈ PK[a,c], τ2 := τc ∩ [c, b]K ∈ PK[c,b].

Since
UK(F, τc) = UK(F, τ1) + UK(F, τ2), LK(F, τc) = LK(F, τ1) + LK(F, τ2).

It seems that ∣∣∣∣∣∣∣∣UK(F, τ1) 	g LK(F, τ1)
∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣∣∣(UK(F, τc) 	g UK(F, τ2)

)
	g

(
LK(F, τc) 	g LK(F, τ2)

)∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣UK(F, τ) 	g LK(F, τ)
∣∣∣∣∣∣∣∣ < ε.

Similarly, we obtain ∣∣∣∣∣∣∣∣UK(F, τ2) 	g LK(F, τ2)
∣∣∣∣∣∣∣∣ < ε.

This illustrates F ∈ RK([a, c],Kc) and F ∈ RK([c, b],Kc).
Finally, throughout above result, we obtain∫ b

a
F(x)dKx � UK(F, τc) = UK(F, τ1) + UK(F, τ2)

≺ LK(F, τ1) + LK(F, τ2) + ε

≺

∫ c

a
F(x)dKx +

∫ b

c
F(x)dKx + ε.

Similarly, we have ∫ c

a
F(x)dKx +

∫ b

c
F(x)dKx 	g ε ≺

∫ b

a
F(x)dKx.

It seems (3.16) holds. �

Next, we give a calculation of the integral for K-linear interval-valued functions. Note that the
K-linear interval-valued functions may not continuous at all point and the set of discontinuous points
may not countable, so the classical Riemann integrability has failed here.

Proposition 3.18. Let F : [a, b]→ Kc. If F is K-linear, then F ∈ RK([a, b],Kc). Moreover,∫ b

a
F(x)dKx = F

(
a + b

2

)
(b − a). (3.17)
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Proof. It’s obviously that if F is K-linear then F ∈ RK([a, b],Kc). Consider partitions
τn =

(
I(n)
1 , I(n)

2 , . . . , I(n)
kn

)
∈ P

K1
[a,b] and ξ(n)

j = a +
j
n (b − a). By Corollary 3.8,∫ b

a
F(x)dKx = lim

n→∞

n∑
j=1

F
(
ξ(n)

j

) 1
n

(b − a)

= lim
n→∞

F
(
na +

n(n + 1)
2n

(b − a)
)

1
n

(b − a)

= lim
n→∞

F
(
a +

n + 1
2n

(b − a)
)

(b − a)

= lim
n→∞

[
F(a) +

n + 1
2n

F(b − a)
]

(b − a)

=

[
F(a) + F

(
b − a

2

)]
(b − a)

= F
(
a + b

2

)
(b − a).

�

Example 3.19. Let K = Q. Consider F : [0, 1]→ Kc such that F(x) = [−x, x]. Note that F is K-linear.
By Proposition 3.18, we have∫ 1

0
F(x)dKx = F

(
1 + 0

2

)
(1 − 0) =

[
−

1
2
,

1
2

]
.

On the other hand, for a given partition τ = (I1, I2, . . . , In) ∈ PK[0,1] such that `(Ii) = 1
n , and ai, bi ∈ [0, 1]K,

1 ≤ i ≤ n, i ∈ N. Then

UK(F, τ) =

n∑
i=1

S i`(Ii) =

n∑
i=1

[−ai, bi]
n

=

[
1 − n

2n
,

1 + n
2n

]
,

and

LK(F, τ) =

n∑
i=1

Ti`(Ii) =

n∑
i=1

[−bi, ai]
n

=

[
−

1 + n
2n

,
n − 1

2n

]
.

Thus ∫ 1

0
F(x)dKx = inf {UK(F, τ)} =

[
−

1
2
,

1
2

]
= sup {LK(F, τ)} =

∫ 1

0
F(x)dKx.

Consequently, Proposition 3.18 is verified.
The next example shows that if c ∈ (a, b), Theorem 3.17 may not hold.

Example 3.20. Consider F : [a, b]→ Kc is K-linear, let c = αa + (1 − α)b, where α ∈ (0, 1). If K , R,
then ∫ b

a
F(x)dKx 	g

(∫ c

a
F(x)dKx +

∫ b

c
F(x)dKx

)
=F

(
a + b

2

)
(b − a) 	g

(
F

(a + c
2

)
(c − a) + F

(
c + b

2

)
(b − c)

)
=

1
2

(
F(α(a − b)) 	g αF(a − b)

)
(a − b).

(3.18)
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Obviously, if we have α ∈ [0, 1]K, (3.18) is equal to zero. But for some α ∈ (0, 1) \ K, i.e. c ∈
[a, b] \ [a, b]K, (3.18) is different from zero.

4. Radial gH-K-derivative for interval-valued functions

In this section, we introduce the definition of interval-valued radial gH-K-derivative.

Definition 4.1. Let F : [a, b] → Kc, we say that F(x) is radial gH-K differential at x0 in the direction
λ, if there exists I ∈ Kc for any h ∈ K+ such that

lim
h→0

F(x0 + hλ) 	g F(x0)
h

= I. (4.1)

I defined in this fashion is denoted by the symbol Dλ
KF(x0) and Dλ

KF(x0) is said to be the radial gH-
K-derivative of F(x) at x0 in the direction λ.

Check that if F : [a, b]→ Kc is K-linear, then we have

Dλ
KF(x) = F(λ). (4.2)

If F : [a, b] → Kc is gH-differential at x0 ∈ [a, b], then F is radial gH-K-differential at x0 in the
direction λ and

Dλ
KF(x) = λF′(x). (4.3)

The next statement shows the relationship between interval-valued K-Riemann integral and radial
gH-K-derivative.

Theorem 4.2. Let F : [a, b] → Kc, and F ∈ RK([a, x],Kc), for any x ∈ (a, b]. We define Φ : [a, b] →
Kc by

Φ(x) :=
∫ x

a
F(t)dKt. (4.4)

If F ∈ CK([a, b],Kc), then Φ is radial gH-K-differential at x in the direction x − a and

Dx−a
K Φ(x) = F(x)(x − a). (4.5)

Proof. Fix x ∈ (a, b], for any ε > 0 and h ∈ K+, we have∥∥∥∥∥Φ(x + h(x − a)) 	g Φ(x)
h

	g F(x)(x − a)
∥∥∥∥∥

=

∥∥∥∥∥∥1
h

(∫ x+h(x−a)

a
F(t)dKt 	g

∫ x

a
F(t)dKt

)
	g

1
h

∫ x+h(x−a)

x
F(x)dKt

∥∥∥∥∥∥
=

∥∥∥∥∥∥1
h

∫ x+h(x−a)

x
F(t)dKt 	g

1
h

∫ x+h(x−a)

x
F(x)dKt

∥∥∥∥∥∥
=

1
h

∥∥∥∥∥∥
∫ x+h(x−a)

x
(F(t) 	g F(x))dK

∥∥∥∥∥∥ ≤ 1
h

∫ x+h(x−a)

x

∥∥∥F(t) 	g F(x)
∥∥∥ dKt.

Let h ∈ K+ be small enough, then∥∥∥F(t) 	g F(x)
∥∥∥ < ε

x − a
, where t ∈ [x, x + h(x − a)]K.
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Thus
1
h

∫ x+h(x−a)

x

∥∥∥F(t) 	g F(x)
∥∥∥ dKt

≤
1
h

∫ x+h(x−a)

x

ε

x − a
dKt =

1
h
· h(x − a) ·

ε

x − a
= ε.

�

Now, we can give the next characterization of K-convex interval-valued functions.

Theorem 4.3. Let F : [a, b]→ Kc. If F ∈ CXK([a, b],Kc) and F is `-monotone on [a, b], then for any
x ∈ [a, b], we have

F(x) 	g F(a) =
1

x − a

∫ x

a
Dx−a
K F(t)dKt. (4.6)

Proof. Since F ∈ CXK([a, b],Kc), by Theorem 3.14, there exist a unique continuous Ψ : [a, b] → Kc

and
F(t) = Ψ(t), for any t ∈ [a, x]K.

Then we obtain

Dx−a
K F(t) = lim

h→0

F(t + h(x − a)) 	g F(t)
h

= (x − a) · lim
h→0

Ψ(t + h(x − a)) 	g Ψ(t)
h(x − a)

= (x − a)Ψ′+(t),

where h ∈ K+. Thus,

1
x − a

∫ x

a
Dx−a
K F(t)dKt =

∫ x

a
Ψ′+(t)dt = Ψ(x) 	g Ψ(a) = F(x) 	g F(a).

�

The following example illustrates that if F is not `-monotone, then (4.6) is false.
Example 4.4. Consider F : [0, 2]→ Kc such that

F(x) =

[
1
2

x2, 2 ln(x + 1)
]

for any x ∈ [0, 2].

We see that F ∈ CXK([0, 2],Kc) for any subfield K ⊆ R. It’s obviously that F(x) is radial gH-K-
differential on [0, 2], and

D2
KF(x) = 2F′(x) =


[
2x, 4

x+1

]
if x ∈ [0, 1) ,

{2} if x = 1,[
4

x+1 , 2x
]

if x ∈ (1, 2] .

Since D2
KF(x) ∈ R([0, 2],Kc), then we have D2

KF(x) ∈ RK([0, 2],Kc). Check that F(x) is `-increasing
on [0, 1] and `-decreasing on [1, 2], then we obtain∫ 2

0
D2
KF(x)dKx =

∫ 1

0

[
2x,

4
x + 1

]
dKx +

∫ 2

1

[
4

x + 1
, 2x

]
dKx

=

[
1 + 4 ln

3
2
, 3 + 4 ln 2

]
,
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and
F(2) 	g F(0) = [2, 2 ln 3] 	g {0} = [2, 2 ln 3].

Consequently,

1
2 − 0

∫ 2

0
D2
KF(x)dKx =

[
1
2

+ 2 ln
3
2
,

3
2

+ 2 ln 2
]
, [2, 2 ln 3] = F(2) 	g F(0).

But if we only consider F(x) on [0, 1], then

1
1 − 0

∫ 2

0
D1
KF(x)dKx =

∫ 1

0

[
x,

2
x + 1

]
dKx =

[
1
2
, 2 ln 2

]
,

and

F(1) 	g F(0) =

[
1
2
, 2 ln 2

]
	g {0} =

[
1
2
, 2 ln 2

]
.

Thus, Theorem 4.3 is verified.

5. Hermite-Hadamard type inequalities

Above all, let’s study the standard Hermite-Hadamard type inequality in the case of K-Riemann
integral.

Theorem 5.1. Let F : [a, b]→ Kc. If F ∈ CXK([a, b],Kc) then

F(a) + F(b)
2

⊆
1

b − a

∫ b

a
F(x)dKx ⊆ F

(
a + b

2

)
. (5.1)

Proof. Since F ∈ CXK([a, b],Kc), by Theorem 3.14, there exist a unique continuous Ψ : [a, b] → Kc

and
F(t) = Ψ(t), for any t ∈ [a, x]K.

Note that Ψ(x) is convex and satisfied the classical Hermite-Hadamard inequalities. Thus

F(a) + F(b)
2

=
Ψ(a) + Ψ(b)

2
⊆

1
b − a

∫ b

a
Ψ(x)dx ⊆ Ψ

(
a + b

2

)
= F

(
a + b

2

)
.

By Corollary 3.12, we obtain ∫ b

a
F(x)dKx =

∫ b

a
Ψ(x)dx,

which finishes the proof. �

Example 5.2. Consider F : [0, 1] → Kc defined by F(x) = [x2,
√

x + 1]. Let K = Q(
√

3) = {a +

b
√

3 | a, b ∈ Q}. Then we have

F(0) + F(1)
2

=
[0, 1] + [1, 2]

2
=

[
1
2
,

3
2

]
, and F

(
0 + 1

2

)
=

1
4
,

2 +
√

2
2

 .
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Since F ∈ R([0, 1],Kc), by Corollary 3.12, we have F ∈ RK([0, 1],Kc), and∫ 1

0
F(x)dKx =

∫ 1

0
F(x)dx =

∫ 1

0
[x2,
√

x + 1]dx =

[
1
3
,

5
3

]
.

It seems that [
1
2
,

3
2

]
⊆

[
1
3
,

5
3

]
⊆

1
4
,

2 +
√

2
2

 ,
which illustrates

F(0) + F(1)
2

⊆
1

1 − 0

∫ 1

0
F(x)dKx ⊆ F

(
0 + 1

2

)
.

Consequently, Theorem 5.1 is verified.

Example 5.3. Let K ⊂ R, and K , Q. Consider F : [0, 1]→ Kc given by

F(x) =

{
[ex − 1,

√
x + 2], x ∈ [0, 1]K,

[x2 − 4, 1 + ln(1 + x)], x ∈ [0, 1] \ [0, 1]K.

Then
F(0) + F(1)

2
=

[0, 2] + [e − 1, 3]
2

=

[
e − 1

2
,

5
2

]
,

and

F
(
0 + 1

2

)
=

√e − 1,
4 +
√

2
2

 .
Apparently, F < R([0, 1],Kc) but F ∈ RK([0, 1],Kc), by Theorem 4.3 we have∫ 1

0
F(x)dKx =

[
e − 1,

8
3

]
	g [1, 0] =

[
e − 2,

8
3

]
.

Finally, we have [
e − 1

2
,

5
2

]
⊆

[
e − 2,

8
3

]
⊆

√e − 1,
4 +
√

2
2

 .
Consequently, Theorem 5.1 is verified.

Definition 5.4. Let F : [a, b]→ K+
c . We say that F is log-K-convex if for any α ∈ K ∩ (0, 1),

[F(x)]α · [F(y)]1−α ⊆ F(αx + (1 − α)y). (5.2)

We denote CXlog
K ([a, b],Kc) by the set of all log-K-convex interval-valued function on [a, b].

Remark 5.5. For any interval A = [a−, a+] ∈ K+
c , and α > 0, we have

Aα = [a−, a+]α =
[
(a−)α, (a+)α

]
.

Proposition 5.6. Let F : [a, b]→ K+
c . If F ∈ CXlog

K ([a, b],Kc), then we have

√
F(a)F(b) ⊆

√
F(x)F(a + b − x) ⊆ F

(
a + b

2

)
. (5.3)
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After that, we can give the following results about log-K-convex interval-valued functions.

Theorem 5.7. Let F : [a, b]→ K+
c . If F ∈ CXlog

K ([a, b],Kc), then for any α ∈ K ∩ (0, 1) \ { 12 },∫ b

a
[F(x)]1−α[F(a + b − x)]αdKx ⊆

1
1 − 2α

∫ αa+(1−α)b

(1−α)a+αb
F(t)dKt. (5.4)

Proof. The cases α = 0, 1 are trivial. Since F ∈ CXlog
K ([a, b],Kc), then

[F(a + b − x)]α · [F(x)]1−α ⊆ F(α(a + b − x) + (1 − α)x) = F((1 − 2α)x + α(a + b)).

By integrating the above inequality, we obtain∫ b

a
[F(a + b − x)]α · [F(x)]1−αdKx ⊆

∫ b

a
F((1 − 2α)x + α(a + b))dKx.

We define t = (1 − 2α)x + α(a + b), and dKt = (1 − 2α)dKx.
If x = a, we have t = (1 − α)a + αb and if x = b, we have t = αa + (1 − α)b. Thus,∫ b

a
F((1 − 2α)x + α(a + b))dKx =

1
1 − 2α

∫ αa+(1−α)b

(1−α)a+αb
F(t)dKt.

�

Remark 5.8. If α = 1
2 , it’s obvious that∫ b

a
[F(x)]1−α[F(a + b − x)]αdKx ⊆

1
b − a

F
(
a + b

2

)
. (5.5)

Theorem 5.9. Let F : [a, b] → K+
c , and F ∈ CXlog

K ([a, b],Kc). If ϕ : [a, b] → [0,+∞) is K-Riemann
integrable on [a, b] with

∫ b

a
ϕ(x)dKx > 0, then for any p > 0 we have

√
F(a)F(b) ⊆


∫ b

a
ϕ(x)F p(x)F p(a + b − x)dKx∫ b

a
ϕ(x)dKx


1

2p

⊆ F
(
a + b

2

)
. (5.6)

Proof. For any p > 0, if F ∈ CXlog
K ([a, b],Kc), then we have F2p ∈ CXlog

K ([a, b],Kc). By Proposition
5.6,

F p(a)F p(b) ⊆ F p(x)F p(a + b − x) ⊆ F2p

(
a + b

2

)
.

Multiply the above inequality with ϕ(x) and then integrate, we have

F p(a)F p(b)
∫ b

a
ϕ(x)dKx

⊆

∫ b

a
ϕ(x)F p(x)F p(a + b − x)dKx ⊆ F2p

(
a + b

2

) ∫ b

a
ϕ(x)dKx.

Thus, √
F(a)F(b) ⊆


∫ b

a
ϕ(x)F p(x)F p(a + b − x)dKx∫ b

a
ϕ(x)dKx


1

2p

⊆ F
(
a + b

2

)
.

�
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Theorem 5.10. Let F : [a, b] → K+
c , and F ∈ CXlog

K ([a, b],Kc). If ϕ : [a, b] → [0,+∞) is K-Riemann
integrable on [a, b] with

∫ b

a
ϕ(x)dKx > 0, then we have

1
b−a

( ∫ b
a xϕ(x)dK x∫ b
a ϕ(x)dK x

−a
)
[F(a)]

1
b−a

(
b−

∫ b
a xϕ(x)dK x∫ b
a ϕ(x)dK x

)
⊆ exp


∫ b

a
ϕ(x) ln F(x)dKx∫ b

a
ϕ(x)dKx


⊆ F


∫ b

a
ϕ(x)xdKx∫ b

a
ϕ(x)dKx

 .
(5.7)

Proof. Firstly, since F ∈ CXlog
K ([a, b],Kc), consider Jensen’s inequality for interval-valued

functions(see [20, 21]), we obtain∫ b

a
ϕ(x) ln F(x)dKx∫ b

a
ϕ(x)dKx

⊆ ln F


∫ b

a
ϕ(x)xdKx∫ b

a
ϕ(x)dKx

 .
By taking the exponential in the above inequality, we get the first inequality.

Eventually, we have

x − a
b − a

ln F(b) +
b − x
b − a

ln F(a) ⊆ ln F
(

x − a
b − a

b +
b − x
b − a

a
)

= ln F(x).

It seems that

ln

[F(b)]
1

b−a

( ∫ b
a xϕ(x)dK x∫ b
a ϕ(x)dK x

−a
)
[F(a)]

1
b−a

(
b−

∫ b
a xϕ(x)dK x∫ b
a ϕ(x)dK x

)
=

1
b − a



∫ b

a
xϕ(x)dKx∫ b

a
ϕ(x)dKx

− a

 ln F(b) +

b −
∫ b

a
xϕ(x)dKx∫ b

a
ϕ(x)dKx

 ln F(a)


⊆

∫ b

a
ϕ(x) ln F(x)dKx∫ b

a
ϕ(x)dKx

.

By taking the exponential in the above inequality, we get the second inequality. �

Example 5.11. Let K = Q. Consider F : [1, 2] → K+
c given by F(x) = [1

x , x]. Check that F ∈
CXlog

K ([1, 2],Kc). Since F ∈ RK([1, 2],Kc), if α = 1
3 , we have∫ b

a
[F(x)]1−α[F(a + b − x)]αdKx =

∫ 2

1

[
1
x
, x

] 2
3

·

[
1

3 − x
, 3 − x

] 1
3

dKx = [u, v] ,

where

u =
√

3
arctan

3√16 − 1
√

3
− arctan

2 − 3√2
√

3 · 3√2

 ,
and

v =
1
3√2

+
√

3
arctan

3√16 − 1
√

3
− arctan

2 − 3√2
√

3 · 3√2

 .
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Also,

1
1 − 2α

∫ αa+(1−α)b

(1−α)a+αb
F(t)dKt = 3

∫ 5
3

4
3

[
1
t
, t
]

dKt =

[
3 ln

5
4
,

3
2

]
.

Thus, we obtain

[u, v] ⊆
[
3 ln

5
4
,

3
2

]
.

Consequently, Theorem 5.7 is verified.
Now, consider p = 1, given ϕ(x) = x with

∫ 2

1
ϕ(x)dKx = 3

2 , then


∫ b

a
ϕ(x)F p(x)F p(a + b − x)dKx∫ b

a
ϕ(x)dKx


1

2p

=


∫ 2

1
x
[

1
x , x

] [
1

3−x , 3 − x
]

dKx∫ 2

1
xdKx


1
2

=

[
2
3

ln 2,
13
6

] 1
2

.

Also we have

F
(
a + b

2

)
=

[
2
3
,

3
2

]
, and

√
F(a)F(b) =

 √2
2
,
√

2
 .

Thus, we obtain  √2
2
,
√

2
 ⊆ [

2
3

ln 2,
13
6

] 1
2

⊆

[
2
3
,

3
2

]
.

Consequently, Theorem 5.9 is verified.
Next, compute that

F


∫ b

a
ϕ(x)xdKx∫ b

a
ϕ(x)dKx

 = F
(
14
9

)
=

[
9

14
,

14
9

]
,

exp


∫ b

a
ϕ(x) ln F(x)dKx∫ b

a
ϕ(x)dKx

 =
[
e

6−16 ln 2
12 , e

16 ln 2−6
12

]
,

and

[F(b)]
1

b−a

( ∫ b
a xϕ(x)dK x∫ b
a ϕ(x)dK x

−a
)
[F(a)]

1
b−a

(
b−

∫ b
a xϕ(x)dK x∫ b
a ϕ(x)dK x

)
= [F(2)]

5
9 =

[
1
2
, 2

] 5
9

.

Thus, we obtain [
1
2
, 2

] 5
9

⊆
[
e

6−16 ln 2
12 , e

16 ln 2−6
12

]
⊆

[
9

14
,

14
9

]
.

Consequently, Theorem 5.10 is verified.
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6. Conclusion

In this work, the concepts of interval-valued K-Riemann integral and radial K-gH-derivative are
introduced and some basic properties are discussed. Furthermore, some new Hermite-Hadamard type
inequalities for K-convex and log-K-convex interval-valued functions are established. The main result
of this paper give a new type of integral for interval-valued functions, which may be used in the further
study of fuzzy-valued functions, interval optimization and interval-valued differential equations. In the
future, we intend to study some applications in interval optimizations and interval-valued differential
equations by using K-Riemann integral and K-gH-derivative.
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derivatives of interval-valued functions and their application in optimization with interval-valued
functions, Inform. Sciences, 510 (2020), 317–340.

19. M. Alomari, M. Darus, On The Hadamard’s Inequality for Log-Convex Functions on the
Coordinates, J. Inequal. Appl., 2009 (2009), 1–13.
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