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1. Introduction

Let B denote the class of analytic functions f (z) =
∑∞

k=0 akzk defined in the unit disk D := {z ∈ C :
|z| < 1} such that | f (z)| < 1 for z ∈ D.

We call

B f (z) :=
∞∑

k=0

|ak||z|k

the Bohr sum of f (z). The well known Bohr radius problem is to find r0, such that

B f (z) ≤ 1 (1.1)

holds for |z| ≤ r0. The constant r0 = 1/3 is sharp, which is called the Bohr radius. The radius was
originally obtained in 1914 by Bohr [13] with 1/6. Later, Wiener, Riesz and Schur established the
inequality (1.1) for r = |z| ≤ 1/3 and showed that the constant 1/3 cannot be improved [22, 25, 26].

There are lots of works about the classical Bohr inequality and its generalized forms. Ali et al.,
[8] and Kayumov and Ponnusamy [15] considered the problem of Bohr radius for the classes of even
and odd analytic functions and for alternating series, respectively. In [19], the authors generalized and
improved several Bohr inequalities. In [21], several Bohr-type inequalities were obtained when the
Taylor coefficients of classical Bohr inequality are partly replaced by higher order derivatives of f .
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It is worth pointing out that Bohr’s radius problem deal with analytic functions from unit disk D
into D initially, but later it was generalized to mappings from D to punctured disk [4] or other domains
[2]. For more discussion on the Bohr radius for analytic functions [3, 7, 9, 27].

Recently, Bohr’s inequality has created enormous interest in various setting. For example, Bohr’s
idea is extended to functions of several complex variables and multi-dimensions [5, 6, 11, 12]. In
addition, the authors study the Bohr radius for harmonic mappings [1, 10, 17, 20].

The Bohr-Rogosinski sum R f
N(z) of f ∈ B is defined by

R f
N(z) := | f (z)| +

∞∑
k=N

|ak|rk, |z| = r.

Observe that if N = 1 and f (z) is replaced by f (0), then the Bohr-Rogosinski sum is the Bohr sum.
The corresponding Bohr-Rogosinski radius problem is to find RN , such that

R f
N(z) ≤ 1

holds for |z| ≤ RN . Recently, Kayumov and Ponnusamy [16] have given the Bohr-Rogosinski radius of
f . In [21], the author also solved some problem of the Bohr-Rogosinski radius.

Let S N(z) =
∑N−1

k=0 akzk denotes the partial sums of f . The corresponding Rogosinski radius is
|z| < 1/2 for |S N(z)| < 1 [18, 23, 24]. It is obvious that

|S N(z)| =

∣∣∣∣∣∣∣ f (z) −
∞∑

k=N

akzk

∣∣∣∣∣∣∣ ≤ R f
N(z).

Hence, the Rogosinski radius is related to the Bohr-Rogosinski radius.
Let Bm = {ω ∈ B : ω(0) = · · · = ω(m−1)(0) = 0, ω(m)(0) , 0} be the classes of Schwarz functions,

where m ∈ N = {1, 2, · · · }. Our aim of this article is to generalize or improve many versions of
Bohr-type inequalities for bounded analytic functions of Schwarz functions.

The paper is organized as follows. In Section 2, we state some lemmas. In Section 3, we present
many theorems which improve several versions of Bohr-Rogosinski inequalities and Bohr’s type
inequalities for bounded analytic functions. There are some corollaries and an open problem in
Section 4.

2. Some Lemmas

In order to establish our main results, we need the following some lemmas which will play the key
role in proving the main results of this paper.

Lemma 2.1. (Schwarz-Pick lemma) Let φ(z) be analytic in the unit disk D and |φ(z)| < 1. Then

|φ(z1) − φ(z2)|

|1 − φ(z1)φ(z2)|
≤
|z1 − z2|

|1 − z1z2|
f or z1, z2 ∈ D,

and equality holds for distinct z1, z2 ∈ D if and only if φ is a Möbius transformation. In particular,

|φ′(z)| ≤
1 − |φ(z)2|

1 − |z2|
f or z ∈ D,
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and equality holds for some z ∈ D if and only if φ is a Möbius transformation.

Lemma 2.2. ([14]) Suppose f (z) is analytic in the unit disk D and | f (z)| ≤ 1. If f (z) =
∑∞

n=0 anzn, then
|an| ≤ 1 − |a0|

2 for all n ∈ N.

Lemma 2.3. For 0 ≤ x ≤ x0 ≤ 1, it holds that

Φ(x) := x + A(1 − x2) ≤ Φ(x0) whenever 0 ≤ A ≤ 1/2.

The proof is simple, we omit it.

Lemma 2.4. There is a unique root ξm of the equation

r2m + 2rm − 1 = 0, (2.1)

and a unique root αm,n of the equation

rm(rm + 2)(2r2n − rn + 1) + 2r2n + rn − 1 = 0 (2.2)

for r ∈ (0, 1) and m, n ∈ N, respectively. Furthermore, αm,n ≤ ξm for m ≥ n.

Proof. Firstly, it is obvious that there is a unique root of Eq (2.1) on (0, 1).
Secondly, we show that αm,n is the unique root of Eq (2.2). Let

k(r) = rm(rm + 2)(2r2n − rn + 1) + 2r2n + rn − 1.

Then we have

k′(r) =[4(m + n)r2m+2n−1 + 4(2n + m)r2n+m−1 + 4nr2n−1 − 2nrm+n−1]
+ (2mr2m−1 − 2mr2m+n−1) + (nrn−1 − nr2m+n−1)
+ (2mrm−1 − 2mrm+n−1) > 0, f or m ≥ n.

Observe that k(0)k(1) < 0. Thus the monotonicity of k(r) implies that there is an αm,n that is the
unique root of (2.2).

Finally, we need to show that αm,n ≤ ξm. Assuming that αm,n > ξm, then ξ2m
m + 2ξm

m − 1 = 0 implies
that

k(ξm) =ξm
m(ξm

m + 2)(2ξ2n
m − ξ

n
m + 1) + 2ξ2n

m + ξn
m − 1

=(ξ2m
m + 2ξm

m)(2ξ2n
m − ξ

n
m + 1) + 2ξ2n

m + ξn
m − 1

=(2ξ2n
m − ξ

n
m + 1) + 2ξ2n

m + ξn
m − 1

=4ξ2n
m , f or ξm ∈ (0, 1).

Then, k(ξm) > 0 = k(αm,n). This contradicts the monotonicity of k. �
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3. Main results

Theorem 3.1. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ωm ∈ Bm, ωn ∈ Bn for m, n ∈ N. Then
we have

| f (ωm(z))| +
∞∑

k=N

|ak||ωn(z)|k ≤ 1 f or |z| = r ≤ Rm,n,N , (3.1)

where Rm,n,N is the unique root in (0, 1) of the equation

2rnN(1 + rm) − (1 − rn)(1 − rm) = 0, (3.2)

and the radius Rm,n,N cannot be improved.

Remark 3.1. 1). If m = 1, n = 1, and ωm(z) = ωn(z) = z, then Theorem 3.1 reduces to the main result
of Theorem 1 of [16].
2). If m → ∞ in (3.2), then limm→∞ Rm,n,N = An,N , where An,N is the positive root of the equation
2rnN = 1 − rn. Also, A1,1 = 1/3. It is the well-known classical Bohr radius.

Proof. Since f ∈ B, a := |a0| and ωm ∈ Bm, ωn ∈ Bn, by the Schwarz lemma and the Schwarz-Pick
lemma, respectively, we obtain

|ωm(z)| ≤ |z|m, |ωn(z)| ≤ |z|n, and | f (z)| ≤
|z| + a
1 + a|z|

for z ∈ D. It follows that

| f (ωm(z))| ≤
|ωm(z)| + a

1 + a|ωm(z)|
≤

rm + a
1 + arm , |z| = r < 1. (3.3)

By using inequality (3.3) and Lemma 2.2, we have

| f (ωm(z))| +
∞∑

k=N

|ak||ωn(z)|k ≤
rm + a

1 + arm + (1 − a2)
rnN

1 − rn := um,n,N(r).

Now, we need to show that um,n,N(r) ≤ 1 holds for r ≤ Rm,n,N . It is equivalent to showing vm,n,N(r) ≤
0, where

vm,n,N(r) =[um,n,N(r) − 1](1 + arm)(1 − rn)
=(rm + a)(1 − rn) + (1 − a2)rnN(1 + arm) − (1 + arm)(1 − rn)
=(1 − a)(rn − rm+n + rnN + rm + arnN + arm+nN + a2rm+nN − 1)
≤(1 − a)(rn − rm+n + rnN + rm + rnN + rm+nN + rm+nN − 1)
=(1 − a)[2rnN(1 + rm) − (1 − rn)(1 − rm)].

Obviously, it is enough to show that 2rnN(1 + rm) − (1 − rn)(1 − rm) ≤ 0 holds for r ≤ Rm,n,N . Let
g(r) = 2rnN(1+ rm)− (1− rn)(1− rm). Then it is easy to verify that g(0)g(1) < 0 and g(r) is a continuous
and increasing function of r ∈ [0, 1]. Thus Rm,n,N is the unique root of g(r) and g(r) ≤ 0 holds for
r ≤ Rm,n,N .
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Next we show the radius Rm,n,N is sharp. For a ∈ [0, 1), let

ωm(z) = zm, ωn(z) = zn and f (z) =
a + z

1 + az
= a + (1 − a2)

∞∑
k=1

(−a)k−1zk, z ∈ D. (3.4)

Taking z = r, substituting (3.4) into the left side of inequality (3.1), then we have

| f (rm)| +
∞∑

k=N

|ak|rnk =
rm + a

1 + arm +

∞∑
k=N

(1 − a2)ak−1rnk =
rm + a

1 + arm + (1 − a2)
aN−1rnN

1 − arn . (3.5)

Now we just need to show that if r > Rm,n,N , then there exists an a, such that the right side of (3.5)
is greater than 1. That is

rm + a
1 + arm + (1 − a2)

aN−1rnN

1 − arn > 1.

Namely, we need to prove that

(1 − a)[rm+nNaN+1 + (rm+nN + rnN)aN + rnNaN−1 + (rn − rm+n)a + rm − 1] > 0. (3.6)

Let
A1(a, r) = rm+nNaN+1 + (rm+nN + rnN)aN + rnNaN−1 + (rn − rm+n)a + rm − 1.

Observe that A1(a, r) is a continuous and increasing function of a ∈ [0, 1). It holds that A1(a, r) ≤
A1(1, r) = 2rnN(1 + rm) − (1 − rn)(1 − rm) = g(r) for r ∈ (0, 1). Furthermore, by the monotonicity of
g(r), if r > Rm,n,N , then A1(1, r) > 0. Hence, by the continuity of A1(a, r), if r > Rm,n,N , we have

lim
a→1−

A1(a, r) = A1(1, r) > 0.

Therefore, if r > Rm,n,N , then there exists an a, such that inequality (3.6) holds. �

Theorem 3.2. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ωm ∈ Bm, ωn ∈ Bn with m, n ∈ N and
m ≥ n. Then we have

| f (ωm(z))| + | f ′(ωm(z))||ωm(z)| +
∞∑

k=2

|ak||ωn(z)|k ≤ 1 f or |z| = r ≤ αm,n, (3.7)

where αm,n is the unique root in (0, 1) of the equation

rm(rm + 2)(2r2n − rn + 1) + 2r2n + rn − 1 = 0.

The radius αm,n cannot be improved.

Remark 3.2. If m = 1, n = 1, and ωm(z) = ωn(z) = z in Theorem 3.2, then it reduces to Theorem 2.1 of
[21].

Proof. By the hypothesis, inequality (3.3) still holds. Then by Schwarz-Pick lemma, Lemma 2.2 and
Lemma 2.3, respectively, we obtain

| f (ωm(z))| + | f ′(ωm(z))||ωm(z)| +
∞∑

k=2

|ak||ωn(z)|k
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≤| f (ωm(z))| +
1 − | f (ωm(z))|2

1 − |ωm(z)2|
|ωm(z)| + (1 − a2)

∞∑
k=2

|ωn(z)|k

≤| f (ωm(z))| +
rm

1 − r2m (1 − | f (ωm(z))|2) + (1 − a2)
∞∑

k=2

|ωn(z)|k

≤
rm + a

1 + arm +

1 − (
rm + a

1 + arm

)2 rm

1 − r2m + (1 − a2)
r2n

1 − rn

=
rm + a

1 + arm +
(1 − a2)rm

(1 + arm)2 + (1 − a2)
r2n

1 − rn

=1 +
(1 − a)Φm,n(a, r)

(1 + arm)2(1 − rn)
, f or r ≤ ξm, (3.8)

where

Φm,n(a, r) = r2m+2na3 + rm+2n(rm + 2)a2 + [r2m(1 − rn) + (2rm + 1)r2n]a + 2rm(1 − rn) + r2n + rn − 1,

and ξm is the unique root in (0, 1) of the equation r2m + 2rm − 1 = 0.
Let

Φm,n(1, r) = rm(rm + 2)(2r2n − rn + 1) + 2r2n + rn − 1.

It is obvious that Φm,n(1, r) is monotonically increasing function of r ∈ [0, 1). By the hypothesis or
Lemma 2.4, we have Φm,n(1, αm,n) = 0. Thus the monotonicity of Φm,n(1, r) implies that

Φm,n(1, r) ≤ 0 f or r ≤ αm,n.

Furthermore, observe that Φm,n(a, r) is a monotonically increasing function of a ∈ [0, 1] for each
fixed r ∈ [0, 1). Thus

Φm,n(a, r) ≤ Φm,n(1, r) ≤ 0 f or r ≤ αm,n. (3.9)

Therefore, by inequalities (3.8) and (3.9), we obtain inequality (3.7).
To show that the radius αm,n is best possible, we consider the functions ωm(z), ωn(z) and f (z) as in

(3.4). Taking z = r, the left side of inequality (3.7) reduces to

| f (rm)| + | f ′(rm)|rm +

∞∑
k=2

|ak|rnk =
rm + a

1 + arm +
(1 − a2)rm

(1 + arm)2 + (1 − a2)
ar2n

1 − arn . (3.10)

We need to show that if r > αm,n, then there exists an a, such that the right side of (3.10) is larger
than 1. That is

(1 − a)[r2m+2na4 + (r2m+2n + 2rm+2n)a3 + (2rm+2n − rn+2m + r2n)a2

+ (r2m + r2n + rn − 2rm+n)a + 2rm − 1] > 0.

Namely, we need to show that

r2m+2na4+(r2m+2n + 2rm+2n)a3 + (2rm+2n − rn+2m + r2n)a2+

AIMS Mathematics Volume 6, Issue 12, 13608–13621.
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(r2m + r2n + rn − 2rm+n)a + 2rm − 1 > 0. (3.11)

For m ≥ n, let

A2(a, r) =r2m+2na4 + (r2m+2n + 2rm+2n)a3 + (2rm+2n − rn+2m + r2n)a2

+(r2m + r2n + rn − 2rm+n)a + 2rm − 1.

Observe that A2(a, r) is a continuous and increasing function for a ∈ [0, 1). It holds that A2(a, r) ≤
A2(1, r) = rm(rm + 2)(2r2n − rn + 1) + 2r2n + rn − 1 = Φm,n(1, r) holds for r ∈ (0, 1). Furthermore,
the monotonicity of Φm,n(1, r) leads to that if r > αm,n, then A2(1, r) > 0. Hence, by the continuity of
A2(a, r), if r > αm,n, we have

lim
a→1−

A2(a, r) = A2(1, r) > 0.

Therefore, if r > αm,n, then there exists an a, such that inequality (3.11) holds. �

Theorem 3.3. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ωm(z) ∈ Bm, ωn(z) ∈ Bn for m, n ∈ N.
Then we have

| f (ωm(z))| +
∞∑

k=1

|ask||ωn(z)|sk ≤ 1 f or |z| = r ≤ βm,n,s, (3.12)

where s ∈ N, βm,n,s is the unique root in (0, 1) of the equation

rm + 3rns + rm+ns − 1 = 0. (3.13)

The radius βm,n,s cannot be improved.

Remark 3.3. 1). If m = 1, n = 1 and ωm(z) = ωn(z) = z in Theorem 3.3, it reduces to Theorem 2.5 of
[21].
2). If m → ∞ in (3.13), then limm→∞ βm,n,s = An,s, where An,s is the positive root of the equation
3rns − 1 = 0. Also A1,1 = 1

3 is the well-known classical Bohr radius.

Proof. Using inequality (3.3) and Lemma 2.2, we have

| f (ωm(z))| +
∞∑

k=1

|ask||ωn(z)|sk ≤
rm + a

1 + arm + (1 − a2)
rsn

1 − rsn . (3.14)

It is sufficient for us to prove that the right side of (3.14) is less than or equals to 1 for r ≤ βm,n,s.
Actually, we just need to prove φ(r) ≤ 0 for r ≤ βm,n,s, where φ(r) = (rm + a)(1 − rsn) + (1 − a2)rsn(1 +

arm) − (1 + arm)(1 − rsn). Observe that

φ(r) =(1 − a)[rm + 2rsn − rm+sn + (rsn + rm+sn)a + rm+sna2 − 1]
≤(1 − a)(rm + 3rsn + rm+sn − 1).

Let h(r) = rm + 3rsn + rm+sn − 1. Then it is easy to verify that h(0)h(1) < 0, h(r) is a continuous and
increasing function of r ∈ [0, 1]. Thus βm,n,s is unique root of h(r) and h(r) ≤ 0 holds for r ≤ βm,n,s.
Thus φ(r) ≤ 0 for r ≤ βm,n,s.

AIMS Mathematics Volume 6, Issue 12, 13608–13621.



13615

To show the radius βm,n,s is sharp, we consider the functions ωm(z), ωn(z) and f (z) is the same as
(3.4). Taking z = r, the left side of inequality (3.12) reduces to

| f (rm)| +
∞∑

k=1

|ask|rnsk =
rm + a
1 + arm + (1 − a2)

as−1rns

1 − asrns . (3.15)

Next, we need to show that if r > βm,n,s, then there exists an a, such that the right side of (3.15) is
bigger than 1. That is

rm+nsas+1 + 2rnsas + rnsas−1 + rm − 1 > 0. (3.16)

Let
A3(a, r) = rm+nsas+1 + 2rnsas + rnsas−1 + rm − 1.

Observe that A3(a, r) is a continuous and increasing function for a ∈ [0, 1). It follows that A3(a, r) ≤
A3(1, r) = rm+ns + 3rns + rm − 1 = h(r) holds for r ∈ (0, 1). Furthermore, the monotonicity of h(r) leads
to that if r > βm,n,s, then A3(1, r) > 0. Hence, by the continuity of A3(a, r), if r > βm,n,s, we have

lim
a→1−

A3(a, r) = A3(1, r) > 0.

Therefore, if r > βm,n,s, then there exists an a, such that inequality (3.16) holds. �

Theorem 3.4. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ωm(z) ∈ Bm , ωn(z) ∈ Bn, where
m, n ∈ N and n ≥ m. Then we have∣∣∣∣∣∣∣| f (ωm(z))| +

∞∑
k=1

(−1)k|ak||ωn(z)|k
∣∣∣∣∣∣∣ ≤ 1 f or |z| = r ≤ γm,n,

where γm,n is the unique root in (0, 1) of the equation

rm+2n + rm + 3r2n − 1 = 0.

Remark 3.4. If m = 1, n = 1, and ωm(z) = ωn(z) = z in Theorem 3.4, then it reduces to Theorem 2.9 of
[21].

Proof. On the one hand, by the assumption, we have

| f (ωm(z))| +
∞∑

k=1

(−1)k|ak||ωn(z)|k ≤
rm + a

1 + arm +

∞∑
k=1

|a2k||ωn(z)|2k −

∞∑
k=1

|a2k−1||ωn(z)|2k−1

≤
rm + a

1 + arm +

∞∑
k=1

|a2k|r2kn

≤
rm + a

1 + arm + (1 − a2)
r2n

1 − r2n .

Now we need to show that above inequality is smaller than or equal to 1. It is sufficient for us to
prove ψ(r) ≤ 0, where ψ(r) = (rm + a)(1 − r2n) + (1 − a2)r2n(1 + arm) − (1 + arm)(1 − r2n). Observe that

ψ(r) =(1 − a)[rm + 2r2n − rm+2n + (r2n + rm+2n)a + rm+2na2 − 1]

AIMS Mathematics Volume 6, Issue 12, 13608–13621.
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≤(1 − a)(rm + 3r2n + rm+2n − 1).

Furthermore, it is easy to verify that rm + 3r2n + rm+2n − 1 is increasing on r ∈ [0, 1) and have a
unique zero γm,n. Therefore, we have ψ(r) ≤ 0 for r ≤ γm,n.

On the other hand, we have

| f (ωm(z))| +
∞∑

k=1

(−1)k|ak||ωn(z)|k =| f (ωm(z))| +
∞∑

k=1

|a2k||ωn(z)|2k −

∞∑
k=1

|a2k−1||ωn(z)|2k−1

≥ −

∞∑
k=1

|a2k−1|r(2k−1)n = −(|a1|rn +

∞∑
k=1

|a2k+1|r(2k+1)n)

≥ −

(1 − a2)rn +

∞∑
k=1

|a2k+1|r(2k)n


≥ −

 rm + a
1 + arm +

∞∑
k=1

|a2k+1|r(2k)n


≥ −

(
rm + a

1 + arm + (1 − a2)
r2n

1 − r2n

)
.

It is obvious that the last item of above is greater than or equals −1 for all r ≤ γm,n. We complete
the proof. �

4. Some Corollaries

In Theorem 3.1, by setting with the combination of ωn(z) = z, ωm(z) = z, and ωm(z) = ωn(z) = ω(z),
we get Corollaries 4.1–4.3, respectively.

Corollary 4.1. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ω ∈ Bm for m ∈ N. Then we have

| f (ω(z))| +
∞∑

k=N

|ak||z|k ≤ 1 f or |z| = r ≤ Rm,1,N ,

where Rm,1,N is the unique root in (0, 1) of the equation

2rN(1 + rm) − (1 − r)(1 − rm) = 0,

and the radius Rm,1,N cannot be improved.

Corollary 4.2. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ω ∈ Bn for n ∈ N. Then we have

| f (z)| +
∞∑

k=N

|ak||ω(z)|k ≤ 1 f or |z| = r ≤ R1,n,N ,

where R1,n,N is the unique root in (0, 1) of the equation

2rnN(1 + r) − (1 − rn)(1 − r) = 0,

and the radius R1,n,N cannot be improved.
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Corollary 4.3. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ω ∈ Bm for m ∈ N. Then we have

| f (ω(z))| +
∞∑

k=N

|ak||ω(z)|k ≤ 1 f or |z| = r ≤ Rm,m,N ,

where Rm,m,N is the positive root in (0, 1) of the equation

2rmN(1 + rm) − (1 − rm)2 = 0,

and the radius Rm,m,N cannot be improved.

In Theorem 3.2, setting ωn(z) = z and ωm(z) = ωn(z) = ω(z), we have Corollaries 4.4 and 4.5,
respectively.

Corollary 4.4. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ω ∈ Bm for m ∈ N. Then we have

| f (ω(z))| + | f ′(ω(z))||ω(z)| +
∞∑

k=2

|ak||z|k ≤ 1 f or |z| = r ≤ αm,1,

where αm,1 is the unique root in (0, 1) of the equation

rm(rm + 2)(2r2 − r + 1) + 2r2 + r − 1 = 0.

The radius αm,1 cannot be improved.

Corollary 4.5. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ω ∈ Bm for m ∈ N. Then we have

| f (ω(z))| + | f ′(ω(z))||ω(z)| +
∞∑

k=2

|ak||ω(z)|k ≤ 1 f or |z| = r ≤ αm,m,

where αm,m is the unique root in (0, 1) of the equation

2r4m + 3r3m + r2m + 3rm − 1 = 0.

The radius αm,m cannot be improved.

In Theorem 3.3, setting ωn(z) = z, ωm(z) = z, and ωm(z) = ωn(z) = ω(z), we obtain Corollaries
4.6–4.8, respectively.

Corollary 4.6. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ω ∈ Bm for m ∈ N. Then we have

| f (ω(z))| +
∞∑

k=1

|ask||z|sk ≤ 1 f or |z| = r ≤ βm,1,s,

where βm,1,s is the unique root in (0, 1) of the equation

rm+s + rm + 3rs − 1 = 0.

The radius βm,1,s cannot be improved.
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Corollary 4.7. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ω ∈ Bn for m ∈ N. Then we have

| f (z)| +
∞∑

k=1

|ask||ω(z)|sk ≤ 1 f or |z| = r ≤ β1,n,s,

where β1,n,s is the unique root in (0, 1) of the equation

rns+1 + 3rns + r − 1 = 0.

The radius β1,n,s cannot be improved.

Corollary 4.8. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ω ∈ Bm for m ∈ N. Then we have

| f (ω(z))| +
∞∑

k=1

|ask||ω(z)|sk ≤ 1 f or |z| = r ≤ βm,m,s,

where βm,m,s is the unique root in (0, 1) of the equation

rms+m + 3rms + rm − 1 = 0.

The radius βm,m,s cannot be improved.

In Theorem 3.3, setting s = 2, we get Corollary 4.9.

Corollary 4.9. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ωm ∈ Bm, ωn(z) ∈ Bn for m, n ∈ N.
Then we have

| f (ωm(z))| +
∞∑

k=1

|a2k||ωn(z)|2k ≤ 1 f or |z| = r ≤ βm,n,2,

where βm,n,2 is the unique root in (0, 1) of the equation

rm+2n + rm + 3r2n − 1 = 0.

The radius βm,n,2 cannot be improved.

In Theorem 3.4, setting ωm(z) = z, and ωm(z) = ωn(z) = ω(z), we give Corollaries 4.10 and 4.11,
respectively.

Corollary 4.10. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ω ∈ Bn for n ∈ N. Then we have∣∣∣∣∣∣∣| f (z)| +
∞∑

k=1

(−1)k|ak||ω(z)|k
∣∣∣∣∣∣∣ ≤ 1 f or |z| = r ≤ γ1,n,

where γ1,n is the unique root in (0, 1) of the equation

r2n+1 + 3r2n + r − 1 = 0.
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Corollary 4.11. Suppose that f (z) =
∑∞

k=0 akzk ∈ B, a := |a0| and ω ∈ Bm for m ∈ N. Then we have∣∣∣∣∣∣∣| f (ω(z))| +
∞∑

k=1

(−1)k|ak||ω(z)|k
∣∣∣∣∣∣∣ ≤ 1 f or |z| = r ≤ γm,m,

where γm,m is the unique root in (0, 1) of the equation

r3m + 3r2m + rm − 1 = 0.

It is worth pointing out that we have not proved radius γm,n is sharp in Theorem 3.4. Therefore, the
following problem is open.
Open problem: Find the largest radius r0 for f (z) =

∑∞
k=0 akzk ∈ B, and ωm(z) ∈ Bm, ωn(z) ∈ Bn with

m, n ∈ N, such that ∣∣∣∣∣∣∣| f (ωm(z))| +
∞∑

k=1

(−1)k|ak||ωn(z)|k
∣∣∣∣∣∣∣ ≤ 1 f or r ≤ r0.

5. Conclusions

We obtain some new versions of Bohr-type inequalities for bounded analytic functions of Schwarz
functions by replacing the variable z by Schwarz functions in function’s power series expansions. we
conclude that most of the corresponding Bohr radii are exact. These inequalities generalize the classical
Bohr inequality and some earlier results on the Bohr inequality.
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25. S. Sidon, Über einen satz von herrn bohr, Math. Z., 26 (1927), 731–732.
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