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1. Introduction

In this paper, we consider the following neutral-type inertial neural networks:

((Aixi)(t))′′ = −aix′i(t) − bixi(t) +

n∑
j=1

ci j f j(x j(t)) +

n∑
j=1

di j f j(x j(t − τ j(t))) + Ii(t), (1.1)

where t ≥ 0, i ∈ I = {1, 2, · · · , n},

(Aixi)(t) = xi(t) − ci(t)xi(t − τ), (1.2)

xi(t) denotes the state of ith neuron at time t, τ > 0 is a constant, ci(t) is a continuous T−periodic
function on R, f j : R → R is a continuous function which denotes activation function, ai > 0 is
a constant which denotes the damping coefficient, bi > 0 is a constant which denotes the strength of
different neuron, constants ci j > 0 and di j > 0 denote the connection strengths, τ j(t) > 0 is a continuous
T−periodic function on R which is a variable delay, Ii : R → R is a continuous T−periodic function
which denotes an external input. Let τ̂ = maxt∈R{τ, τ j(t)} j ∈ I. The initial conditions of (1.1) are

xi(s) = φx
i (s), x′i(s) = ψx

i (s), s ∈ [−τ̂, 0], i ∈ I.
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When ci(t) = 0 in system (1.1), then system (1.1) is a classic inertial neural networks (INNs)
which has been studied due to its extensive applications in image encryption, secure communication,
information science and so on, see e.g. [1–3]. For globally exponential stability and dissipativity of
INNs, see [4–12]. For periodic solution problems of INNs, see [13, 14]. For synchronization of INNs,
see [15, 16].

System (1.1) belongs to neutral functional differential equation (NFDE) which is a class of equation
depending on past as well as present values, but which involve derivatives with delays as well as
the function itself. Lots of models in many fields including electronics, biology, physics, mechanics
and economics can be described by NFDE. Specifically, a large class of electrical networks can be
well modeled by NFDE which have broad applications in automatic control, high speed computers,
robotics and so on, see [17, 18]. The operator Ai defined by (1.2) is called D−operator. The properties
of D−operator are crucial for studying periodic solution of system (1.1). Hale [19] pointed out that
the stability of D−operator has important application in dynamic behaviours of neutral-type system.
In this paper, we will use the properties of D−operator for studying periodic solution problems of
system (1.1).

So far, to the best of our knowledge, there are few results for the periodic solution problems to INNs
with D−operators. In very recent years, Aouiti etc. [20] studied a neutral-type inertial neural networks
with mixed delay and impulsive perturbations. Duan etc. [21] studied a neutral-type BAM inertial
neural networks with mixed time-varying delays. However, in [20,21], neutral terms are f j(x′j(t−σi j(t)))
and f j(v′j(t − σ j(t))), respectively. Neutral term in system (1.1) is derivative of D−operator Ai. Since
neutral terms in [20, 21] are not D−operator forms, the Lyapunov functionals are complicated and the
proofs are very difficult. However, in the present paper, we can use the properties of D−operator for
constructing a simple Lyapunov functional and the proof is easy.

The main contributions of our study are as follows:
(1) We first use Lemma 2.1 for studying neutral-type INNs.
(2) For studying the asymptotic stability of neutral-type INNs, we change a second-order system into
an equivalent first-order system by proper variable substitution.
(3) Since system (1.1) contain D−operators and delays, obtaining the asymptotic stability of periodic
solution is very difficult. We will construct proper Lyapunov functionals and develop some new
mathematical analysis technique for overcoming the above difficulty.

The following sections are organized as follows: Section 2 gives preliminaries and main Lemmas.
Section 3 gives the existence results of periodic solutions. The asymptotic stability of periodic solutions
is obtained in Section 4. In Section 5, a numerical example is given to show the feasibility of our results.
Finally, Section 6 concludes the paper.

2. Preliminary and main Lemmas

Denote f0 = maxt∈R | f (t)|, CT = {x : x ∈ C(R,Rn), x(t + T ) ≡ x(t)}, C1
T = {x : x ∈ C1(R,Rn), x′ ∈

CT }, T is a given positive constant. The norm || · || of n dimensional Euclidean space is standard in
this paper.
Lemma 2.1. [22] Let

A : CT → CT , [Ax](t) = x(t) − c(t)x(t − τ), ∀t ∈ R.

AIMS Mathematics Volume 6, Issue 12, 13580–13591.



13582

If |c(t)| , 1, then operator A has continuous inverse A−1 on CT , satisfying

(1)

[A−1 f ](t) =


f (t) +

∞∑
j=1

j∏
i=1

c(t − (i − 1)τ) f (t − jτ), c0 < 1, ∀ f ∈ CT ,

−
f (t+τ)
c(t+τ) −

∞∑
j=1

j+1∏
i=1

1
c(t+iτ) f (t + jτ + τ), σ > 1, ∀ f ∈ CT ,

(2) ∫ T

0
|[A−1 f ](t)|dt ≤

 1
1−c0

∫ T

0
| f (t)|dt, c0 < 1, ∀ f ∈ CT ,

1
σ−1

∫ T

0
| f (t)|dt, σ > 1, ∀ f ∈ CT ,

(3)

|A−1 f |0 ≤
{ 1

1−c0
| f |0, c0 < 1, ∀ f ∈ CT ,

1
σ−1 | f |0, σ > 1, ∀ f ∈ CT ,

where CT is T−periodic continuous function space, c0 = maxt∈[0,T ] |c(t)|, σ = mint∈[0,T ] |c(t)|.
Remark 2.1. When c(t) is a constant c, we give the following Lemma:
Lemma A. [23] Let A : CT → CT , (Ax)(t) = x(t) − cx(t − τ), where τ > 0 and c are constants, CT is a
T−periodic continuous function space. If |c| , 1, then operator A has continuous inverse A−1 on CT ,
satisfying

[A−1 f ](t) =


∑
j≥0

c j f (t − jτ), if |c| < 1, ∀ f ∈ CT ,

−
∑
j≥1

c− j f (t + jτ), if |c| > 1, ∀ f ∈ CT ,

and
|(A−1x)(t)| ≤

||x||
|1 − |c||

, ∀x ∈ CT .

Obviously, Lemma A is a special case of Lemma 2.1. In a very recent paper, Xu and Du [24] studied
a neutral-type INNs by using Lemma A. In the present paper, we will use Lemma 2.1 for studying
neutral-type INNs. We greatly improve the results in [24]. In the present paper, since Lemma 2.1
is more complicated than Lemma A, we discuss the existence of periodic solution in two cases (see
Theorem 3.1). The proof is simple for the existence of periodic solution in [24]. Furthermore, since
the neutral-type Ai in this paper is more general, the proof of asymptotic stability of periodic solutions
is more difficult than the corresponding one in [24].
Lemma 2.2. [25] Suppose that X and Y are two Banach spaces, and L : D(L) ⊂ X → Y, is a Fredholm
operator with index zero. Furthermore, Ω ⊂ X is an open bounded set and N : Ω̄→ Y is L-compact on
Ω̄. if all the following conditions hold:

(1) Lx , λNx,∀x ∈ ∂Ω ∩ D(L),∀λ ∈ (0, 1),
(2) Nx < ImL,∀x ∈ ∂Ω ∩ KerL,
(3) deg{QN,Ω ∩ KerL, 0} , 0,

then equation Lx = Nx has a solution on Ω̄ ∩ D(L).
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Throughout the paper, the following assumptions hold. There exist constants p j, l j ≥ 0 and K > 0
such that

(H1) | f j(x)| ≤ p j, j ∈ I, ∀x ∈ R,
(H2) x j f j(x j) < 0 for x j ∈ (−∞,−K) ∪ (K,+∞), j ∈ I,
(H3) | f j(x) − f j(y)| ≤ l j|x − y|, j ∈ I, ∀x, y ∈ R.

3. Existence of periodic solutions

Theorem 3.1. Suppose that
∫ T

0
Ii(s)ds = 0,

∫ T

0
ϕ2

i (s)ds , 0, |ci(t)| , 1 for all t ∈ R, i ∈ I, and
assumptions (H1)–(H2) hold, where ϕi(t) is defined by (3.3). Then system (1.1) has at least one T -
periodic solution, if

T
1
2 k

1
2
1,i

1 − c0,i
+

c1,iT
1 − c0,i

< 1 and
T

1
2 k

1
2
1,i

σ0,i − 1
+

c1,iT
σ0,i − 1

< 1, i ∈ I,

where c0,i = maxt∈[0,T ] |ci(t)|, c1,i = maxt∈[0,T ] |c′i(t)|, σ0,i = mint∈[0,T ] |ci(t)|, k1,i = (1 + c0,i)Tbi, k2,i =

(1 + c0,i)T
(∑n

j=1(ci j + di j)p j + |Ii|0

)
.

Proof. Define a linear operator

L : D(L) ⊂ CT → CT , Lx = (Ax)′′,

where x = (x1, · · · , xn)T , Lx = (L1x1, · · · , Lnxn)T , Ax = (A1x1, · · · , Anxn)T , then

Lixi = (Aixi)′′, i ∈ I, (3.1)

and a nonlinear operator

N : CT → CT , Nixi = −aix′i(t) − bixi(t) +

n∑
j=1

ci j f j(x j(t)) +

n∑
j=1

di j f j(x j(t − τ j(t))) + Ii(t), (3.2)

where D(L) = {x|x ∈ C1
T }. ∀x ∈ KerL, we have (x(t) − c(t)x(t − τ))′′ = 0, where c(t) =

diag{c(t), · · · , cn(t)}. Thus,
x(t) − c(t)x(t − τ) = a1t + a2,

where a1, a2 ∈ R
n. Since x(t) − c(t)x(t − τ) ∈ CT , then a1 = 0. Let ϕ(t) = (ϕ1(t), · · · , ϕn(t))T be a

solution of
xi(t) − ci(t)xi(t − τ) = 1, i ∈ I, (3.3)

where ϕi(t) satisfies
∫ T

0
ϕ2

i (t)dt , 0. We get

KerL = {a0ϕ(t), a0 ∈ R}, ImL = {yi|y ∈ CT ,

∫ T

0
yi(s)ds = 0}.

Obviously, ImL is a closed in CT and dimKerL = codimImL = n, So L is a Fredholm operator with
index zero. Define continuous projectors P, Q

P : CT → KerL, (Pixi)(t) =

∫ T

0
xi(t)ϕi(t)dt∫ T

0
ϕ2

i (t)dt
ϕi(t), i ∈ I
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and

Q : CT → CT/ImL, Qiyi =
1
T

∫ T

0
yi(s)ds, i ∈ I.

Let
LP = L|D(L)∩KerP : D(L) ∩ KerP→ ImL.

Similar to the proof of [22], nonlinear operator N is L-compact on Ω, where Ω ⊂ CT is an open
bounded set.

Consider the operator equation Lx = λNx, λ ∈ (0, 1), where L and N are defined by (3.1) and (3.2),
respectively. Then, we have

(Aixi(t))′′ + λaix′i(t) + λbixi(t) − λ
n∑

j=1

ci j f j(x j(t)) − λ
n∑

j=1

di j f j(x j(t − τ j(t))) − λIi(t) = 0. (3.4)

Integrate both sides of (3.4) on [0,T ], we have∫ T

0
bixi(t)dt −

∫ T

0

n∑
j=1

ci j f j(x j(t))dt −
∫ T

0

n∑
j=1

di j f j(x j(t − τ j(t)))dt = 0. (3.5)

We show that there exists a point t1 ∈ [0,T ] such that

|xi(t1)| ≤ K, i ∈ I, (3.6)

where K is defined by assumption (H2). If xi(t) > K, t ∈ R, i ∈ I, it follows by assumption (H2) that∫ T

0
bixi(t)dt −

∫ T

0

n∑
j=1

ci j f j(x j(t))dt −
∫ T

0

n∑
j=1

di j f j(x j(t − τ j(t)))dt > 0

which contradicts (3.5). On the other hand, if xi(t) < −K, t ∈ R, i ∈ I, we have the same contradiction.
Hence, (3.6) holds. Thus,

|xi|0 = max
t∈[0,T ]

∣∣∣∣∣xi(t1) +

∫ t

t1
x′i(s)ds

∣∣∣∣∣ ≤ K +

∫ T

0
|x′i(s)|ds. (3.7)

Multiplying both sides of (3.4) by (Aixi)(t) and integrating them over [0,T ], combining with (3.7) and
assumption (H1), we have∫ T

0
|(Aixi)′(t)|2dt ≤ (1 + c0)T |xi|0

(
bi|xi|0 +

n∑
j=1

(ci j + di j)p j + |Ii|0

)
= k1,i|xi|

2
0 + k2,i|xi|0

≤ k1,i

(
K +

∫ T

0
|x′i(t)|dt

)2

+ k2,i

∫ T

0
|x′i(t)|dt + Kk2,i

= k1,i

(∫ T

0
|x′i(t)|dt

)2

+ (2k1,iK + k2,i)
∫ T

0
|x′i(t)|dt + k1,iK2 + Kk2,i.

(3.8)
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From [Aixi](t) = xi(t) − ci(t)xi(t − τ), we have

(Aix′i)(t) = (Aixi)′(t) + c′i(t)xi(t − τ),

then from Lemma 2.1 and (3.8), if c0,i <
1
2 we have∫ T

0
|x′i(t)|dt =

∫ T

0
|(A−1

i Aix′i)(t)|dt
≤

∫ T

0
|(Ai x′i )(t)|

1−c0,i
dt

=
∫ T

0
|(Ai xi)′(t)+c′i (t)xi(t−τ)|

1−c0,i
dt

≤
∫ T

0
|(Ai xi)′(t)|

1−c0,i
dt + c1T

1−c0,i

(
K +

∫ T

0
|x′i(t)|dt

)
≤ T

1
2

1−c0,i
(
∫ T

0
|(Aixi)′(t)|2dt)

1
2 +

c1,iT
1−c0,i

(
K +

∫ T

0
|x′i(t)|dt

)
≤ T

1
2

1−c0,i

(
k1,i

(∫ T

0
|x′i(t)|dt

)2
+ (2k1,iK + k2,i)

∫ T

0
|x′i(t)|dt + k1,iK2 + Kk2,i

) 1
2

+
c1,iT
1−c0,i

∫ T

0
|x′i(t)|dt +

c1,iT K
1−c0,i

.

In view of
T

1
2 k

1
2
1,i

1−c0,i
+

c1,iT
1−c0,i

< 1, there exists a constant M1 > 0 which is independent of λ such that∫ T

0
|x′i(t)|dt ≤ M1. (3.9)

Similarly, for σ0,i > 1, by
T

1
2 k

1
2
1,i

σ0,i−1 +
c1,iT
σ0,i−1 < 1, there exists a constant M2 > 0 which is independent of λ

such that ∫ T

0
|x′i(t)|dt ≤ M2. (3.10)

Combining (3.7) with the last two inequalities (3.9) and (3.10), we get

|xi|0 ≤ K + max{M1,M2} := M.

Thus, ||x|| ≤
√

nM and condition (1) of Lemma 2.2 holds. Take Ω1 = {x|x ∈ KerL, Nx ∈ ImL},∀x ∈
Ω1, then xi(t) = a0ϕi(t), a0 ∈ R, i ∈ I satisfies∫ T

0
bia0ϕi(t)dt −

∫ T

0

n∑
j=1

ci j f j(a0ϕ j(t))dt −
∫ T

0

n∑
j=1

di j f j(a0ϕ j(t))dt = 0. (3.11)

When c0,i <
1
2 , we have

ϕi(t) = A−1
i (1) = 1 +

∞∑
q=1

q∏
p=1

ci(t − (p − 1)τ)

≥ 1 −
∞∑

q=1

q∏
p=1

c0,i

= 1 − c0,i

1−c0,i

=
1−2c0,i

1−c0,i
:= δ > 0.

AIMS Mathematics Volume 6, Issue 12, 13580–13591.



13586

We claim that
a0 ≤

K
δ
.

Otherwise, ∀t ∈ [0,T ], a0ϕi(t) > K, from assumption (H2), we have

f (a0ϕi(t)) < 0,

which is contradiction to (3.11). When σ0,i > 1, similar to the above proof, a0 is also bounded. Hence
Ω1 is a bounded set and condition (2) of Lemma 2.2 holds. Let Ω = {x ∈ CT : ||x|| ≤

√
nM + 1}. Take

the homotopy
H(x, µ) = µx − (1 − µ)QNx, µ ∈ [0, 1],

where H(x, µ) = (H1(x1, µ), · · · ,Hn(xn, µ))T , QNx = (Q1N1x1, · · · ,QnNnxn)T . For x ∈ ∂Ω ∩ KerL and
µ ∈ [0, 1], we have xiH(xi, µ) , 0, i ∈ I. So we have

deg {QN,Ω ∩ KerL, 0} = deg {H(·, 0),Ω ∩ KerL, 0}
= deg {H(·, 1),Ω ∩ KerL, 0} = 1 , 0.

Applying Lemma 2.2, we reach the conclusion.
By standard discussions for functional differential equation, we have the following theorem for the

unique existence of periodic solution to system (1.1).
Theorem 3.2. Suppose all the conditions of Theorem 3.1 and assumption (H3) hold. Then system (1.1)
has unique T−periodic solution.
Remark 3.1. The dynamic behaviours of INNs have been widely studied, see e.g. [4–6,13]. However,
there exist few results for the existence of periodic solutions to neutral-type INNs. In this paper, we
obtain the existence of periodic solutions for system (1.1) by using coincidence degree theory and
Lemma 2.1, see Theorems 3.1 and 3.2.

4. Asymptotic behaviours of periodic solution

For obtaining the asymptotic stability of periodic solution to system (1.1), we change system (1.1)
into a first-order system. Let

yi(t) = (Aixi)′(t) + ξixi(t), i ∈ I,

where ξi > 0 is a constant. Then system (1.1) is changed into the following system:
(Aixi)′(t) = −ξixi(t) + yi(t),
y′i(t) = −(ai − ξi)A−1

i [yi(t) − ξixi(t) + c′i(t)xi(t − τ)] − bixi(t)
+

∑n
j=1 ci j f j(x j(t)) +

∑n
j=1 di j f j(x j(t − τ j(t))) + Ii(t),

(4.1)

where t ≥ 0, with initial conditions

xi(s) = φx
i (s), yi(s) = (Aiψ

x
i )(s) + c′i(s)φx

i (s − τ) = φ
y
i (s), s ∈ [−τ, 0], i ∈ I.

Definition 4.1. If w∗(t) = (x∗1(t), · · · , x∗n(t), y∗1(t), · · · , y∗n(t))> is a periodic solution of system (4.1) and
w(t) = (x1(t), · · · , xn(t), y1(t), · · · , yn(t))> is any solution of system (4.1) satisfying

lim
t→+∞

n∑
i=1

[
|xi(t) − x∗i (t)| + |yi(t) − y∗i (t)|

]
= 0.

AIMS Mathematics Volume 6, Issue 12, 13580–13591.
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We say w∗(t) is globally asymptotic stable.
Theorem 4.1. Under the conditions of Theorem 3.2, assume further that let ιi > 0, κi > 0,

where

ιi = lim
t→+∞

inf
[
2ξi(1 + ci(t)) − 1 − |ci(t)| −

|(ai − ξi)c′i(t)|
|1 + ci(t)|

− bi − nl̂(ĉ + d̂)
]
, i ∈ I, (4.2)

κi = lim
t→+∞

inf
[2(ai − ξi)

1 + ci(t)
− 1 − |ci(t)| −

|(ai − ξi)c′i(t)|
|1 + ci(t)|

− bi − nl̂(ĉ + d̂)
]
, i ∈ I, (4.3)

where l̂ = maxi∈I li, ĉ = maxi, j∈I ci j, d̂ = maxi, j∈I di j. Then system (4.1) has unique T−periodic solution
w∗(t) = (x∗1(t), · · · , x∗n(t), y∗1(t), · · · , y∗n(t))> which is globally asymptotic stable.
Proof. Based on Theorem 3.2, system (4.1) has unique T−periodic solution w∗(t). Assume that w(t) is
any solution of system (4.1). Let

Vi(t) = (Aixi(t) − Aix∗i (t))2 + (yi(t) − y∗i (t))2, i ∈ I, t ≥ 0. (4.4)

Derivation of (4.4) along the solution of (4.1) gives

V ′i (t) ≤ −2ξi(1 + ci(t))(xi(t) − x∗i (t))2 + 2(xi(t) − x∗i (t))(yi(t) − y∗i (t))

+ 2ci(t)(xi(t) − x∗i (t)(yi(t) − y∗i (t)) −
2(ai − ξi)
1 + ci(t)

(yi(t) − y∗i (t))2

+
2(ai − ξi)c′i(t)

1 + ci(t)
(xi(t) − x∗i (t))(yi(t) − y∗i (t)) − 2bi(xi(t) − x∗i (t))(yi(t) − y∗i (t))

+

n∑
i=1

li(c ji + d ji)(xi(t) − x∗i (t))2 +

n∑
j=1

l j(ci j + di j)(yi(t) − y∗i (t))2

≤ −

[
2ξi(1 + ci(t)) − 1 − |ci(t)| −

|(ai − ξi)c′i(t)|
|1 + ci(t)|

− bi − nl̂(ĉ + d̂)
]
(xi(t) − x∗i )2

−

[2(ai − ξi)
1 + ci(t)

− 1 − |ci(t)| −
|(ai − ξi)c′i(t)|
|1 + ci(t)|

− bi − nl̂(ĉ + d̂)
]
(yi(t) − y∗i )2.

(4.5)

In view of (4.2) and (4.3), for any ε > 0 with ιi − ε > 0 and κi − ε > 0, there exists a positive constant
T (enough large) such that

2ξi(1 + ci(t)) − 1 − |ci(t)| −
|(ai − ξi)c′i(t)|
|1 + ci(t)|

− bi − nl̂(ĉ + d̂) ≥ ιi − ε for t > T, i ∈ I (4.6)

and
2(ai − ξi)
1 + ci(t)

− 1 − |ci(t)| −
|(ai − ξi)c′i(t)|
|1 + ci(t)|

− bi − nl̂(ĉ + d̂) ≥ κi − ε for t > T, i ∈ I. (4.7)

From (4.5)–(4.7), we have

V ′i (t) ≤ −(ιi − ε)(xi(t) − x∗i )2 − (κi − ε)(yi(t) − y∗i )2, for t > T, i ∈ I. (4.8)

Construct the following Lyapunov functional for system (4.1):

V(t) =

n∑
i=1

Vi(t), t ∈ R.
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Differentiating it along the solution of system (4.1) which together with (4.8), we have

V ′(t) ≤ −
n∑

i=1

[
(ιi − ε)(xi(t) − x∗i )2 + (κi − ε)(yi(t) − y∗i )2

]
< 0 for t > T. (4.9)

Integrate both sides of (4.9) on [T,∞), then

V(t) +

∫ +∞

T

n∑
i=1

[
(ιi − ε)(xi(t) − x∗i )2 + (κi − ε)(yi(t) − y∗i )2

]
≤ V(0).

Using Barbalat’s Lemma [26], we have

lim
t→+∞

n∑
i=1

[
|xi(t) − x∗i | + |yi(t) − y∗i |

]
= 0.

Hence, the periodic solution w∗(t) of (4.1) is globally asymptotic stable.
Remark 4.1. When |ci(t)| = 1 in system (1.1), there are no results for the existence and stability of
periodic solutions. In [27], the authors obtained the properties of neutral operator in critical case. After
that, Du, Lu and Liu [28] studied periodic solution for neutral-type neural networks in the critical case.
We will study system (1.1) in the case of |ci(t)| = 1 in the future work.
Remark 4.2. In this paper, using Mawhin’s continuation theorem and Lemma 2.1, we obtain the
existence of periodic solution to system (1.1). Furthermore, using Lyapunov method and the properties
of D−operator, we obtain asymptotic stability of periodic solution to system (1.1). We first use
Lemma 2.1 for studying neutral-type INNs, our methods are different from ones of [20, 21, 24].

5. A numerical example

For i, j = 1 and n = 1, consider the following system of model (1.1):

(A1x1(t))′′ = −a1x′1(t) − b1x1(t) + c11 f1(x1(t)) + d11 f1(x1(t − τ1(t))) + I1(t). (5.1)

Let y1(t) = (A1x1)′(t) + ξ1x1(t), then (5.1) is changed into
(A1x1)′(t) = −ξ1x1(t) + y1(t),
y′1(t) = −(a1 − ξ1)A−1

1 [y1(t) − ξ1x1(t) + c′1(t)x1(t − τ)] − b1x1(t)
+c11 f1(x1(t)) + d11 f1(x1(t − τ1(t))) + I1(t),

(5.2)

where
t ≥ 0, A1x1 = x1(t) − c1(t)x1(t −

π

2
), c1(t) = 0.01 sin 10t, a1 = 5, b1 = 0.1,

f1(u) =
−0.2u
1 + u2 , τ1(t) =

π

2
cos10t, c11 = d11 = 0.1, I1(t) = 0.

Obviously, (x1, y1)T = (0, 0)T is a solution of system (5.2). After a simple calculation, then T = π
5 , l1 =

0.2, c0,1 = 0.01, c1,1 = 0.1, k1,1 = (1 + c0,1)Tb1 ≈ 0.06. Obviously, assumptions (H1)–(H3) hold. Now,
we check the following conditions in Theorem 3.1:

T
1
2 k

1
2
1,1

1 − c0,1
+

c1,1T
1 − c0,1

≈ 0.1525 < 1.
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Finally, we check conditions (4.2) and (4.3) hold:

ι1 = lim
t→+∞

inf
[
2ξ1(1 + c1(t)) − 1 − |c1(t)| −

|(a1 − ξ1)c′1(t)|
|1 + c1(t)|

− b1 − l̂(ĉ + d̂)
]
≈ 4.556 > 0,

κ1 = lim
t→+∞

inf
[2(a1 − ξ1)

1 + c1(t)
− 1 − |c1(t)| −

|(a1 − ξ1)c′1(t)|
|1 + c1(t)|

− b1 − l̂(ĉ + d̂)
]
≈ 2.562 > 0.

Hence, all assumptions of Theorems 3.1, 3.2 and 4.1 hold. It follows from Theorem 4.1 that the
solution (0, 0)T of system (5.2) is globally asymptotic stable. The corresponding numerical simulations
are presented in Figure 1.

0 10 20 30 40 50 60 70 80
−1.5

−1

−0.5

0

0.5

1

1.5

t

(x
1(t

),
y 1(t

))
T

x1(t)

y1(t)

Figure 1. Asymptotically stable periodic curves (x1(t), y1(t))T in (5.2).

6. Conclusions

In this paper, we discussed the existence and asymptotic stability of the periodic solution for a
neutral-type inertial neural networks. First, the sufficient conditions that ensure the existence of
periodic solution were obtained by using Mawhin’s continuation theorem and Lemma 2.1. Then,
Lyapunov method was used to establish the criteria for the globally asymptotic stability of the periodic
solution. It should be pointed out that Lemma 2.1 is important for estimating the range of solutions.
Finally, a numerical test has been given to illustrate the effectiveness of the proposed criterion.

The proposed methods in this article can also be used to study other types of neural networks, such
as impulse neural networks, stochastic neural networks and so on. The above problems are our future
research directions.
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