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Abstract: This paper studies the edge-fault-tolerant strong Menger edge connectivity of n-
dimensional bubble-sort graph Bn. We give the values of faulty edges that Bn can tolerant when Bn

is strongly Menger edge connected under two conditions. When there are (n− 3) faulty edges removed
from Bn, the Bn network is still working and it is strongly Menger edge connected. When the condition
of any vertex in Bn has at least two neighbors is imposed, the number of faulty edges that can removed
from Bn is (2n − 6) when Bn is also strongly Menger edge connected. And two special cases are used
to illustrate the correctness of the conclusions. The conclusions can help improve the reliability of the
interconnection networks.
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1. Introduction

Graph theory can be used to analyze the connections between things, arguably in the most general
sense, because it is based on set theory. Social networks, traffic networks, power networks, distributed
control systems, molecular structures, interconnection networks and so on, any system you can think
of that involves connections between things can be modeled using graphs. Faults are inevitable in
these application. Many researchers have done much works to improve the reliability of these systems,
see [1–4]. The stability of systems is only under very strict conditions. Maintain systems stability
in case of failure brings great challenges to theoretical research. And because of the complexity of
many systems in engineering applications. Many systems are modeling of interconnected systems for
security and reliability. Therefore, effective fault-tolerant control techniques are urgently needed. For
this purpose, two methods are commonly used. One method is the algorithm in the proof, various
algorithms are used in a lot of works, such as [5–11]. The other method is the discussion of whether
the connectivity condition is satisfied after removing some vertices or edges in the topology structure of
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the interconnection network, this method is used by a large number of researchers, such as [12–15]. In
this paper, we use the second method to discuss the application of graph theory to the interconnection
network. An interconnection network can be modeled as an undirected graph G. The edge connectivity
is one of the basic parameters to estimate the fault tolerance of the interconnection network. The edge-
disjoint paths relate closely with the edge connectivity. In this paper, we discuss the edge-fault-tolerant
strong Menger edge connectivity of a special graph.

Let G = (V(G), E(G)) be an undirected simple connected graph, where V(G) is the vertex set and
E(G) is the edge set. For any vertex u ∈ V(G), NG(u) denotes the set of neighbors of u and EG(u)
denotes the set of edges which are associated with u. dG(u) = |EG(u)| denotes the degree of u and
δ(G) = min{dG(u) : u ∈ V(G)} denotes the minimum degree of vertices in G. G is called k-regular
when dG(u) = k for each u ∈ V(G). Let F ⊆ V(G) be a vertex set, Fe ⊆ E(G) be an edge set, and
EG(F) be the set of edges with only one end in F. Let G − F be the subgraph of G whose vertex set
is V(G) − F and edge set is E(G) − {uv ∈ E(G) : {u, v} ∩ F , ∅}. Let G − Fe be the subgraph of G
whose vertex set is V(G) and edge set is E(G) − Fe. When G − F is disconnected or has only 1 vertex,
F is called a vertex cut of G. When G − Fe is disconnected, Fe is called an edge cut of G. The (vertex)
connectivity κ(G) of G is the minimal cardinality of F. The edge connectivity λ(G) of G is the minimal
cardinality of Fe. Pk = ux1x2 · · · xk−2v denotes a (u, v)-path on k distinct vertices u, x1, x2, · · · , xk−2, v.
Let P1 = ux1x2 · · · xkv and P2 = uy1y2 · · · ymv be two distinct (u, v)-paths of G. P1 and P2 are called
disjoint (u, v)-paths when V(P1) ∩ V(P2) = {u, v}. P1 and P2 are called edge-disjoint (u, v)-paths when
E(P1) ∩ E(P2) = ∅. If G − F has no (u, v)-path, then F ⊆ V(G) − {u, v} is a (u, v)-cut. If G − Fe has no
(u, v)-path, then Fe ⊆ E(G) is a (u, v)-edge-cut. Much attention has been paid to the vertex connectivity
and edge connectivity in recent years. Menger [16] proposed the local connectivity.

Theorem 1.1. [16] Let u, v ∈ V(G) be two distinct vertices. Then the minimal size of a (u, v)-edge-cut
is equal to the maximum number of edge-disjoint (u, v)-paths.

On the base of Menger’s Theorem, Oh et al. [10] proposed the strong Menger connectivity (the
maximal local-connectivity) and Qiao et al. [12] proposed the strong Menger edge connectivity.

Definition 1.2. [12] Let u, v ∈ V(G) be two distinct vertices. If there are min{dG(u), dG(v)} edge-
disjoint (u, v)-paths, then G is strongly Menger edge connected.

Since the vertices and edges may fault, the discussion of fault-tolerance of interconnection networks
is crucial. Oh et al. [10, 11] proposed the m-fault-tolerant strong Menger connectivity. Shih et al. [15]
proposed the m-conditional fault-tolerant strong Menger connectivity.

Definition 1.3. Let m ≥ 1 be an integer, Fe ⊆ E(G) be an edge set with |Fe| ≤ m.
(1) [17] If G − Fe is strongly Menger edge connected, then G is m-edge-fault-tolerant strongly

Menger edge connected.
(2) [12] If G − Fe is strongly Menger edge connected for any edge set Fe with δ(G − Fe) ≥ 2, then

G is m-conditional edge-fault-tolerant strongly Menger edge connected.

The fault-tolerant strong Menger edge connectivity is used in many topologies of interconnection
networks, such as the n-dimensional star graph S n, the hypercube-like network HLn, the augmented
cubes AQn, the bubble-sort star graph BS n, the folded hypercube FQn, the hypercube Qn and so on.
Table 1 is a summary of some recent researches.

The n-dimensional bubble-sort graph Bn is an attractive topology structure of interconnection
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networks. It is regular and bipartite [23]. And it has been studied by many researchers, see
[13, 14, 24–26]. From Table 2, we can see that S n, Bn and BS n have the same number of vertices,
but Bn has the largest diameter. The fault-tolerant strong Menger edge connectivity of Bn has not been
studied on Bn. In this paper, we discuss the number of faulty edges that Bn can tolerant without failure.
The main contributions are listed in the following:

(1) Discussing the minimum number of vertices in the biggest connected component of Bn when at
most (2n − 5) edges are removed from Bn.

(2) Proving that when Bn has (n − 3) faulty edges, Bn is edge-fault-tolerant strongly Menger edge
connected for n ≥ 3.

(3) Using the inductive hypothesis to discuss the minimum number of vertices in the biggest
connected component of Bn when at most (3n − 8) edges are removed from Bn.

(4) Proving under the condition that each vertex in Bn has at least two neighbors is imposed, when Bn

has (2n−6) faulty edges, Bn is (2n−6)-conditional edge-fault-tolerant strongly Menger edge connected
for n ≥ 5.

Table 1. The summary of recent researches.
Contributions Reference Topology structure

m-fault-tolerant strong Menger connectivity
[10, 11]
[15]
[18]

S n

HLn

AQn

m-fault-tolerant strong Menger edge connectivity [19] BS n

m-conditional fault-tolerant strong Menger connectivity
[20]
[15]

FQn

HLn

m-conditional edge-fault-tolerant strong Menger edge connectivity

[12]
[12]
[21]
[22]

Qn

FQn

HLn

BS n

Table 2. The comparison of S n, Bn and BS n.
Topology structure Regular degree The number of vertices Diameter Connectivity
S n n − 1 n! b

3(n−1)
2 c n − 1

Bn n − 1 n! n(n−1)
2 n − 1

BS n 2n − 3 n! b
3(n−1)

2 c 2n − 3

2. The n-dimensional bubble-sort graph Bn

We will give the definition and propositions of the n-dimensional bubble-sort graph.
Let [1, n] = {1, 2, · · · , n}. Let (i j) be a transposition with i, j ∈ [1, n]. We use k1k2 · · · kn to represent

the permutation
( 1 2 ··· n

k1 k2 ··· kn

)
. Then

( 1 2 ··· i··· j··· n
1 2 ··· i··· j··· n

)
(i j) =

( 1 2 ··· i··· j··· n
1 2 ··· j··· i··· n

)
(∗). In order to the convenience

of discussion, the equation of (∗) is written as (12 · · · i · · · j · · · n)(i j) = (12 · · · j · · · i · · · n).

Definition 2.1. [23] The n-dimensional bubble-sort graph Bn has the vertex set of the entire n!
permutations of [1, n] for n ≥ 2. Any two distinct vertices u, v ∈ V(Bn) are neighboring if and only if
u = v(i, i + 1) for 1 ≤ i ≤ n − 1. Each vertex u ∈ V(Bn) has the form of u = u1u2 · · · un.
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Figure 1. The illustration of B3 and B4.

By Definition 2.1, Bn has n! vertices and it is (n − 1)-regular. When n = 3 and n = 4, the graphs
are given in Figure 1. Obviously, when the last position of each vertex u = u1u2 · · · un ∈ V(Bn)
has a fixed integer i ∈ [1, n], Bn can be decomposed into n sub-bubble-sort graphs B1

n, B
2
n, · · · , B

n
n

along the last position. Then Bi
n � Bn−1 for i ∈ [1, n]. For distinct i, j ∈ [1, n], when u ∈ V(Bi

n),
u′ = u(n− 1, n) ∈ V(B j

n) is the outside neighbor of u, Ei j(Bn) = {uu′ ∈ E(Bn) : u ∈ V(Bi
n), u′ ∈ V(B j

n)} is
the cross-edge set of Bn. Let F1 and F2 be two distinct vertex sets of Bn, EBn(F1, F2) be the set of edges
between F1 and F2. Let Fe ⊆ E(Bn), F i

e = Fe ∩ E(Bi
n), F0

e = Fe −∪
n
i=1F i

e. Let F[t,s]
e = F t

e ∪ F t+1
e · · · ∪ F s

e

be an edge set, and B[t,s]
n = Bn[V(Bt

n) ∪ V(Bt+1
n ) ∪ · · · ∪ V(Bs

n)] be the subgraph of Bn induced by
Bt

n, B
t+1
n , · · · , Bs

n, B[t,s]
n − F[t,s]

e = Bn[V(Bt
n − F t

e) ∪ V(Bt+1
n − F t+1

e ) ∪ · · · ∪ V(Bs
n − F s

e)] be the subgraph of
Bn induced by Bt

n − F t
e, B

t+1
n − F t+1

e , · · · , Bs
n − F s

e for t, s ∈ [1, n] and t < s.
Some useful propositions are given in the following.

Proposition 2.2. [25] Any vertex u ∈ V(Bi
n) has only one outside neighbor for all i ∈ [1, n].

Proposition 2.3. [25] |Ei j(Bn)| = (n − 2)! for distinct i, j ∈ [1, n].

Proposition 2.4. [25] Any two distinct vertices u, v ∈ V(Bi
n) have different outside neighbors for all

i ∈ [1, n].

Proposition 2.5. [27] κ(Bn) = λ(Bn) = n − 1 for n ≥ 2.

3. The edge-fault-tolerant strong Menger edge connectivity of Bn

In this part, we will discuss the edge-fault-tolerant strong Menger edge connectivity of Bn, firstly,
one necessary conclusion is proved.

Lemma 3.1. Let Fe ⊆ E(Bn) with |Fe| ≤ 2n−5 for n ≥ 3. There is a connected component C of Bn−Fe

with |V(C)| ≥ n! − 1.

Proof. We prove this conclusion by induction on n. Let C be the largest connected component of
Bn − Fe.

When n = 3, |Fe| ≤ 2×3−5 = 1, see from Figure 1, B3−Fe is connected. Then there is a connected
component C of B3 − Fe with |V(C)| = |V(B3)| = 3! > 3! − 1 = 5. When n = 4, |Fe| ≤ 2 × 4 − 5 = 3,
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see from Figure 1, there is at most 1 vertex can be isolated. Then there is a connected component C of
B4 − Fe with |V(C)| ≥ 4! − 1 = 23. Assume that the conclusion holds for n − 1, n ≥ 5, we will prove
that the conclusion holds for n. Without loss of generality, let |F1

e | = max{|F i
e| : 1 ≤ i ≤ n}. Let Ci be

the largest connected component of Bi
n − F i

e for all i ∈ [1, n].
Claim 1. For distinct i, j ∈ [1, n], if |F i

e| ≤ n − 3 and |F j
e | ≤ n − 3, then Bn[V(Bi

n − F i
e)∪ V(B j

n − F j
e)]

is connected.
By Proposition 2.5, λ(Bi

n) = n− 2. Since |F i
e| ≤ n− 3 and |F j

e | ≤ n− 3, both Bi
n − F i

e and B j
n − F j

e are
connected. Note that |F0

e | ≤ |Fe| ≤ 2n− 5 < (n− 2)! = |Ei j(Bn)| for n ≥ 5, Bn[V(Bi
n − F i

e)∪ V(B j
n − F j

e)]
is connected by Proposition 2.3. The proof of Claim 1 is complete.

Case 1. |F1
e | ≤ n − 3.

Since |F1
e | = max{|F i

e| : 1 ≤ i ≤ n}, |F i
e| ≤ n − 3 and |F0

e | ≤ |Fe| ≤ 2n − 5 for all i ∈ [1, n]. By Claim
1, Bn − Fe is connected. So |V(C)| = |V(Bn)| = n! > n! − 1.

Case 2. n − 2 ≤ |F1
e | ≤ 2n − 7.

Since |Fe| ≤ 2n−5, |F[2,n]
e | ≤ |Fe|−|F1

e | ≤ (2n−5)−(n−2) = n−3 and |F0
e | ≤ |Fe|−|F1

e | ≤ n−3. So |F j
e | ≤

n − 3 < n − 2 = λ(Bn−1) for all j ∈ [2, n]. By Claim 1, B[2,n]
n − F[2,n]

e is connected. By the assumption,
there is an isolated vertex and a connected component C1 in B1

n−F1
e with |V(C1)| ≥ (n−1)!−1. Note that

|EBn(V(C1),V(B2
n))−Fe| ≥ |E12(Bn)|−|V(B1

n)−V(C1)|−|F0
e | ≥ (n−2)!−[(n−1)!−((n−1)!−1)]−(n−3) ≥

(n − 2)! − n + 2 > 0 for n ≥ 5. By Proposition 2.2, Bn[V(C1) ∪ V(B[2,n]
n − F[2,n]

e )] is connected and it is
C. So |V(C)| ≥ |V(C1)| + |V(B[2,n]

n − F[2,n]
e )| ≥ n! − 1.

Case 3. 2n − 6 ≤ |F1
e | ≤ 2n − 5.

In this case, |F[2,n]
e | ≤ |Fe| − |F1

e | ≤ (2n − 5) − (2n − 6) = 1. |F0
e | ≤ |Fe| − |F1

e | ≤ 1. So |F j
e | ≤ 1 <

n− 2 = λ(Bn−1) for all j ∈ [2, n] and n ≥ 5. By Claim 1, B[2,n]
n − F[2,n]

e is connected. By Proposition 2.2,
each vertex u ∈ V(B1

n) has 1 outside neighbor in B[2,n]
n , combining this with |F0

e | ≤ 1, there is at most
one vertex in B1

n can be isolated from the component C. So |V(C)| ≥ n! − 1.
By Case 1–3, When Bn − Fe is disconnected, there is a largest connected component C of Bn − Fe

with |V(C)| ≥ n! − 1 when |Fe| ≤ 2n − 5. �

Remark 3.2. The conclusion of Lemma 3.1 is optimal in that there is an edge set Fe ⊆ E(Bn) with
|Fe| = 2n − 4 such that Bn − Fe has a connected component C with |V(C)| ≤ n! − 2 for n ≥ 4.

Let F = {u, v} be a vertex set of Bn with uv ∈ E(Bn). Then |EBn(F)| = 2n− 4 by Proposition 2.5. Let
Fe = EBn(F) ⊆ E(Bn). Then uv is isolated in Bn − F. So |V(C)| ≤ n! − 2.

Theorem 3.3. Bn is (n − 3)-edge-fault-tolerant strongly Menger edge connected for n ≥ 3.

Proof. Let S e ⊆ E(Bn) be a faulty edge set with |S e| ≤ n−3. By Proposition 2.5, we have λ(Bn) = n−1
for n ≥ 2. Since n − 3 < n − 1, Bn − S e is connected. Let two distinct vertices u, v ∈ V(Bn),
a = min{dBn−S e(u), dBn−S e(v)} and E f ⊆ E(Bn)− S e with |E f | ≤ a− 1. By Definition 1.3, if Bn is (n− 3)-
edge-fault-tolerant strongly Menger edge connected, then there should be a edge-disjoint fault-free
(u, v)-paths connect u and v. We prove this by contradiction, suppose that u and v are disconnected in
Bn − S e by removing an edge set E f . That means u and v are disconnected in Bn − S e − E f . Since
a = min{dBn−S e(u), dBn−S e(v)} ≤ κ(Bn) = n − 1 and |E f | ≤ a − 1, we have |E f | ≤ n − 2. Note that
dBn−S e(u) ≤ n − 1, dBn−S e(v) ≤ n − 1 and |E f | ≤ n − 2. Then |S e ∪ E f | ≤ (n − 3) + (n − 2) = 2n − 5.
By Lemma 3.1, Bn − S e − E f has a connected component C with |V(C)| ≥ n! − 1. Since |V(Bn)| = n!,
combining this with u and v are disconnected in Bn−S e−E f , we have |V(C)| = n!−1 and only one vertex
can be isolated. Without loss of generality, we suppose that v is the isolated vertex. Then u ∈ V(C) and
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v < V(C). Moreover, the edges which are attached to v belonging to E f , that is EBn({v},NBn−S e(v)) ⊆ E f .
This means |E f | ≥ dBn−S e(v), which contradicts with |E f | ≤ a − 1 ≤ dBn−S e(v) − 1. Hence Bn is (n − 3)-
edge-fault-tolerant strongly Menger edge connected. �

4. The m-conditional edge-fault-tolerant strong Menger edge connectivity of Bn

In this part, we will discuss the m-conditional edge-fault-tolerant strong Menger edge connectivity
of Bn, firstly, two necessary conclusions are proved.

Lemma 4.1. Let Fe ⊆ E(B5) with |Fe| ≤ 7. There is a connected component C of B5 − Fe with
|V(C)| ≥ 5! − 2.

Proof. Let |F1
e | = max{|F i

e| : 1 ≤ i ≤ 5}. Let Ci be the largest connected component of Bi
5 − F i

e for all
i ∈ [1, 5].

Claim 1. If |F i
e| ≤ 2, |F j

e | ≤ 2 and |Ei j(B5)| > |F0
e |, then B5[V(Bi

5 − F i
e) ∪ V(B j

5 − F j
e)] is connected

for distinct i, j ∈ [1, 5].
By Proposition 2.5, λ(B5) = 3, then both Bi

5 − F i
e and B j

5 − F j
e are connected for distinct i, j ∈ [1, 5].

Since |Ei j(B5)| = (5 − 2)! = 6 > |F0
e | for distinct i, j ∈ [1, 5], B5[V(Bi

5 − F i
e) ∪ V(B j

5 − F j
e)] is connected

by Proposition 2.3. The proof of claim 1 is complete.
Case 1. |F1

e | ≤ 2.
In this case, |F0

e | ≤ |Fe| − |F1
e | ≤ 7 and |F i

e| ≤ 7 for all i ∈ [1, 5]. By Proposition 2.5, Bi
5 − F i

e is
connected for i ∈ [1, 5]. Since |Ei j(B5)| = (5 − 2)! = 6 by Proposition 2.3 for distinct i, j ∈ [1, 5] and
|F0

e | ≤ 7, at most one Ei j(B5) − Fe = ∅ for distinct i, j ∈ [1, 5]. Without loss of generality, we suppose
that E12(B5) − Fe = ∅. Then only B1

5 − F1
e is not connected to B2

5 − F2
e , but both B1

5 − F1
e and B2

5 − F2
e

are connected to Bs
5 − F s

e for all s ∈ [3, 5]. So B5 − Fe is connected and |V(C)| = |V(B5)| = 5! > 5! − 2.
Case 2. 3 ≤ |F1

e | ≤ 7.
In this case, |F0

e | ≤ |Fe| − |F1
e | ≤ 7 − 3 = 4 and |F[2,5]

e | ≤ |Fe| − |F1
e | ≤ 4.

Subcase 2.1. |F j
e | ≤ 2, for all j ∈ [2, 5].

In this subcase, B j
5−F j

e is connected by Proposition 2.5 for all j ∈ [2, 5]. Since |Est(B5)| = (5−2)! =

6 > 4 ≥ |F0
e | for distinct s, t ∈ [2, 5], B[2,5]

5 − F[2,5]
e is connected by Claim 1. If B1

5 − F1
e is connected,

this is similar to Case 1, we have B5 − Fe is connected and |V(C)| = |V(B5)| = 5! > 5! − 2. If
B1

5 − F1
e is disconnected, we assume on the contrary that |V(C)| ≤ 5! − 3, then there are at least three

distinct vertices u1, u2, u3 ∈ V(B1
5 − F1

e ) but u1, u2, u3 < V(C). By Propositions 2.2 and 2.4, there
are three distinct vertices u′1, u

′
2, u

′
3 ∈ V(B[2,5]

5 ) ⊆ V(C) and {u1u′1, u2u′2, u3u′3} ⊆ E(B5). Furthermore,
{u1u′1, u2u′2, u3u′3} ⊆ F0

e . At this moment, |F0
e | ≥ 3, |F1

e | ≤ |Fe| − |F0
e | ≤ 7 − 3 = 4. Combining this with

|F0
e | ≤ 4, we have 3 ≤ |F0

e | ≤ 4 and 3 ≤ |F1
e | ≤ 4. When |F1

e | = 3, there is only one vertex can be isolated
in B1

5 − F1
e (Figure 1), which contradicts with the assumption. When |F1

e | = 4, we have |F0
e | = 3, a K2

or a 4-cycle can be isolated in B1
5 − F1

e (Figure 1.), but only the 4-cycle can satisfy the assumption. By
Propositions 2.2 and 2.4, each vertex of the 4-cycle has an outside neighbor in B[2,5]

5 and the outside
neighbors are distinct, then |F0

e | ≥ 4, which contradicts with |F0
e | = 3. So the assumption does not hold.

Therefore, |V(C)| ≥ 5! − 2.
Subcase 2.2. |F j

e | ≥ 3, for some j ∈ [2, 5].
Note that |Fe| ≤ 7 and |F1

e | ≥ 3. There is only one F j
e can satisfy |F j

e | ≥ 3 for all j ∈ [2, 5].
Otherwise, if there are two F j

e’s satisfy |F j
e | ≥ 3, then |Fe| ≥ 3 × 3 = 9 > 7, a contradiction. Without
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loss of generality, we suppose that |F2
e | ≥ 3. Since |F1

e | = max{|F i
e| : 1 ≤ i ≤ 5}, we have |F2

e | = 3.
Otherwise, if |F2

e | = 4, then |Fe| ≥ 2 × 4 = 8 > 7, a contradiction. Then 3 ≤ |F1
e | ≤ 4, |F[3,5]

e | ≤ 1 and
|F0

e | ≤ 1. Note that |F s
e | ≤ 1 and |Est(B5)| = (5− 2)! = 6 > 1 ≥ |F0

e | for distinct s, t ∈ [3, 5], B[3,5]
5 − F[3,5]

e

is connected by Claim 1.
Subcase 2.2.1. Bi

5 − F i
e is connected for all i ∈ [1, 2].

In this subcase, both B1
5 − F1

e and B2
5 − F2

e are connected. Since |Ei3(B5)| = 6 > 1 ≥ |F0
e | for all

i ∈ [1, 2], B5 − Fe is connected. So |V(C)| = |V(B5)| = 5! > 5! − 2.
Subcase 2.2.2. Only B1

5 − F1
e is disconnected.

In this subcase, B2
5 − F2

e is connected. Since |E23(B5)| = 6 > 1 ≥ |F0
e |, B[2,5]

5 − F[2,5]
e is connected by

Proposition 2.3. This is similar to Case 2.1, we have |V(C)| ≥ 5! − 2.
Subcase 2.2.3. Only B2

5 − F2
e is disconnected.

In this subcase, B1
5 − F1

e is connected. Note that |F2
e | = 3 = 2 × 4 − 5. There is a connected

component C2 of B2
5 − F2

e with |V(C2)| ≥ 4! − 1 by Lemma 3.1. Since |E13(B5)| = 6 > 1 ≥ |F0
e |,

B5[V(B1
5 − F1

e ) ∪ V(B[3,5]
5 − F[3,5]

e )] is connected by Proposition 2.3. Since |EB5(V(C2),V(B3
5)) − Fe| ≥

|E23(B5)| − |V(B2
5) − V(C2)| − |F0

e | ≥ (5 − 2)! − [4! − (4! − 1)] − 1 = 4 > 0, B5[V(C2) ∪ V(B1
5 − F1

e ) ∪
V(B[3,5]

5 − F[3,5]
e )] is connected and it is C. So |V(C)| ≥ 5! − 1 > 5! − 2.

Subcase 2.2.4. Bi
5 − F i

e is disconnected for all i ∈ [1, 2].
In this subcase, B1

5 − F1
e is disconnected and B2

5 − F2
e is disconnected. Since |V(C2)| ≥ 4! − 1 by

Lemma 3.1, there is at most one isolated vertex u2 ∈ V(B2
5 − F2

e − V(C2)). Note that 3 ≤ |F1
e | ≤ 4 and

B1
5 − F1

e is disconnected. Then B1
5 − F1

e − V(C1) can only be one isolated vertex u1 with 3 ≤ |F1
e | ≤ 4, a

K2 = u1v1 with |F1
e | = 4 or a 4-cycle with |F1

e | = 4. When B1
5−F1

e −V(C1) is a K2 or a 4-cycle, |F1
e | = 4,

this moment, |F0
e | = |Fe| − |F1

e | − |F
2
e | = 7 − 4 − 3 = 0. |EB5(V(Ci),V(B3

5)) − Fe| ≥ |E13(B5)| − |V(Bi
5) −

V(Ci)| − |F0
e | ≥ (5 − 2)! − [4! − (4! − 4)] − 1 = 1 > 0 for all i ∈ [1, 2], B5[V(Ci) ∪ V(B[3,5]

5 − F[3,5]
e )]

is connected by Proposition 2.3. Then B5[V(C1) ∪ V(C2) ∪ V(B[3,5]
5 − F[3,5])

e )] is connected and it is
C. By Proposition 2.2 and Proposition 2.4, each vertex in B1

5 − F1
e − V(C1) has an outside neighbor

and the outside neighbors are distinct, combining this with B2
5 − F2

e − V(C2) has only 1 isolated vertex
u2, B5 − Fe is connected. So |V(C)| = |V(B5)| = 5! > 5! − 2. When B1

5 − F1
e − V(C1) is an isolated

vertex u1, |V(C1)| ≥ 4! − 1. Since |EB5(V(Ci),V(B3
5)) − Fe| ≥ |E13(B5)| − |V(Bi

5) − V(Ci)| − |F0
e | ≥

(5 − 2)! − [4! − (4! − 1)] − 1 = 4 > 0 for all i ∈ [1, 2], B5[V(Ci) ∪ V(B[3,5]
5 − F[3,5]

e )] is connected
by Proposition 2.3. Then B5[V(C1) ∪ V(C2) ∪ V(B[3,5]

5 − F[3,5])
e )] is connected and it is C. There is an

isolated vertex in Bi
5 − F i

e − V(Ci) for all i ∈ [1, 2], so |V(C)| ≥ 5! − 2. �

Lemma 4.2. Let Fe ⊆ E(Bn) with |Fe| ≤ 3n−8 for n ≥ 5. There is a connected component C of Bn−Fe

with |V(C)| ≥ n! − 2.

Proof. We prove this conclusion by induction on n. When n = 5, the conclusion holds by Lemma 4.1.
Assume that the conclusion holds for n − 1 with n ≥ 6, we will prove that the conclusion holds for n.
Let |F1

e | = max{|F i
e| : 1 ≤ i ≤ n}. Let Ci be the largest connected component of Bi

n −F i
e for all i ∈ [1, n].

Claim 1. If |F i
e| ≤ n − 3, |F j

e | ≤ n − 3 and |Ei j(Bn)| > |F0
e |, then Bn[V(Bi

n − F i
e) ∪ V(B j

n − F j
e)] is

connected for distinct i, j ∈ [1, n] and n ≥ 6.
By Proposition 2.5, λ(Bi

n) = n− 2. Since |F i
e| ≤ n− 3 and |F j

e | ≤ n− 3, both Bi
n − F i

e and B j
n − F j

e are
connected for distinct i, j ∈ [1, n]. Since |Ei j(Bn)| = (n − 2)! > |F0

e | for distinct i, j ∈ [1, n] and n ≥ 6,
Bn[V(Bi

n − F i
e) ∪ V(B j

n − F j
e)] is connected by Proposition 2.3. The proof of claim 1 is complete.

Case 1. |F1
e | ≤ n − 3.
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Since |F1
e | ≤ n − 3, |F i

e| ≤ n − 3 for all i ∈ [1, n] and |F0
e | ≤ |Fe| − |F1

e | ≤ 3n − 8. Note that
|Ei j(Bn)| = (n − 2)! > 3n − 8 ≥ |F0

e | for n ≥ 6. We have Bn − Fe is connected by Claim 1. Thus,
|V(C)| = |V(Bn)| = n! > n! − 2.

Case 2. n − 2 ≤ |F1
e | ≤ 2n − 7.

In this case, |F0
e | ≤ |Fe| − |F1

e | ≤ (3n − 8) − (n − 2) = 2n − 6 and |F[2,n]
e | ≤ |Fe| − |F1

e | ≤ 2n − 6.
Subcase 2.1. |F j

e | ≤ n − 3, for all j ∈ [2, n].
Since |Est(Bn)| = (n−2)! > 2n−6 ≥ |F0

e | for distinct s, t ∈ [2, n] and n ≥ 6, Bn[V(Bs
n−F s

e)∪V(Bt
n−F t

e)]
is connected by Claim 1. Then B[2,n]

n −F[2,n]
e is connected and it is a subgraph of C. Since n−2 ≤ |F1

e | ≤

2n − 7, we have |V(C1)| ≥ (n − 1)! − 1 by Lemma 3.1. Since |EBn(V(C1),V(B[2,3]
n )) − Fe| ≥ |E12(Bn)| +

|E13(Bn)|−2|V(B1
n)−V(C1)|−|F0

e | ≥ 2(n−2)!−2[(n−1)!−((n−1)!−1)]−(2n−6) = 2(n−2)!−2n+4 > 0
for n ≥ 6, we have Bn[V(C1) ∪ V(B[2,n]

n − F[2,n]
e )] is connected and it is C. So |V(C)| ≥ n! − 1 > n! − 2.

Subcase 2.2. n − 2 ≤ |F j
e | ≤ 2n − 7, for some j ∈ [2, n].

Since |Fe| ≤ 3n − 8, there is at most one F j
e can satisfy n − 2 ≤ |F j

e | ≤ 2n − 7 for some j ∈ [2, n].
Otherwise, if there are two F j

e’s satisfy n − 2 ≤ |F j
e | ≤ 2n − 7 for some j ∈ [2, n], then |Fe| ≥ 3(n − 2) =

3n−6 > 3n−8, a contradiction. Without loss of generality, we suppose that n−2 ≤ |F2
e | ≤ 2n−7, then

|F0
e | ≤ |Fe|−2|F1

e | ≤ (3n−8)−2(n−2) = n−4, |F s
e | ≤ |Fe|−2|F1

e | ≤ n−4 < n−3 and |F t
e| ≤ n−3 for distinct

s, t ∈ [3, n] and n ≥ 6. Since |Est(Bn)| = (n − 2)! > n − 4 ≥ |F0
e |, we have Bn[V(Bs

n − F s
e) ∪ V(Bt

n − F t
e)]

is connected by Claim 1 for distinct s, t ∈ [3, n] and n ≥ 6. Then B[3,n]
n − F[3,n]

e is connected and it is
a subgraph of C. There is only 1 isolated vertex ui ∈ V(Bi

n − F i
e − V(Ci)) and |V(Ci)| ≥ (n − 1)! − 1

when Bi
n − F i

e is disconnected by Lemma 3.1 for all i ∈ [1, 2]. Since |EBn(V(Ci),V(B3
n)) − Fe| ≥

|Ei3(Bn)| − |V(Bi
n) − V(Ci)| − |F0

e | ≥ (n − 2)! − [(n − 1)! − ((n − 1)! − 1)] − (n − 4) = (n − 2)! − n + 3 > 0
for n ≥ 6, Bn[V(Ci) ∪ V(B[3,n]

n − F[3,n]
e )] is connected by Proposition 2.3 for all i ∈ [1, 2]. Then

Bn[V(C1) ∪ V(C2) ∪ V(B[3,n]
n − F[3,n]

e )] is connected.
Subcase 2.2.1. Bi

n − F i
e is connected for all i ∈ [1, 2].

In this subcase, both B1
n − F1

e and B2
n − F2

e are connected. since |F0
e | ≤ n − 4 < (n − 2)! = |Ei3(Bn)|

for all i ∈ [1, 2], Bn − Fe is connected by Proposition 2.3, |V(C)| = |V(Bn)| = n! > n! − 2.
Subcase 2.2.2. Only one of B1

n − F1
e and B2

n − F2
e is disconnected.

Note that n−2 ≤ |F1
e | ≤ 2n−7 and n−2 ≤ |F2

e | ≤ 2n−7. Without loss of generality, we suppose that
B1

n − F1
e is disconnected and B2

n − F2
e is connected. Then there is an isolated vertex in B1

n − F1
e − V(C1)

and Bn[V(C1)∪ V(B[2,n]
n − F[2,n]

e )] is connected by the above. So |V(C)| ≥ |V(Bn)| − 1 ≥ n! − 1 > n! − 2.
Subcase 2.2.3. Bi

n − F i
e is disconnected for all i ∈ [1, 2].

In this subcase, B1
n − F1

e is disconnected and B2
n − F2

e is disconnected, Bn[V(C1)∪V(C2)∪V(B[3,n]
n −

F[3,n]
e )] is connected by the above, there are at most two vertices can not be contained in C. So |V(C)| ≥
|V(Bn)| − 2 ≥ n! − 2.

Case 3. 2n − 6 ≤ |F1
e | ≤ 3n − 11.

In this case, |F0
e | ≤ |Fe| − |F1

e | ≤ (3n − 8) − (2n − 6) ≤ n − 2 and |F[2,n]
e | ≤ |Fe| − |F1

e | ≤ n − 2.
Subcase 3.1. |F j

e | ≤ n − 3, for all j ∈ [2, n].
Since |F s

e | ≤ n − 3, |F t
e| ≤ n − 3, |Est(Bn)| = (n − 2)! > n − 2 ≥ |F0

e | for distinct s, t ∈ [2, n] and
n ≥ 6, we have B[2,n]

n − F[2,n]
e is connected by Claim 1. Then B[2,n]

n − F[2,n]
e is a subgraph of C. Note that

2n−6 ≤ |F1
e | ≤ 3n−11 and Bn � Bn−1 for n ≥ 6. By the assumption, there is a connected component of

B1
n−F1

e with |V(C1)| ≥ (n−1)!−2. Since |EBn(V(C1),V(B2
n))−Fe| ≥ |E12(Bn)|− |V(B1

n)−V(C1)|− |F0
e | ≥

(n− 2)!− [(n− 1)!− ((n− 1)!− 2)]− (n− 2) = (n− 2)!− n > 0 for n ≥ 6, Bn[V(C1)∪ V(B[2,n]
n − F[2,n]

e )]
is connected and it is C. So |V(C)| ≥ n! − 2.
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Subcase 3.2. n − 2 ≤ |F j
e | ≤ 2n − 7, for some j ∈ [2, n].

Note that |Fe| ≤ 3n − 8 and |F[2,n]
e | ≤ n − 2. There is only one F j

e can satisfy |F j
e | = n − 2 for all

j ∈ [2, n]. Without loss of generality, we suppose that |F2
e | = n − 2. This moment, |F1

e | = |Fe| − |F2
e | =

(3n − 8) − (n − 2) = 2n − 6. Then |F s
e | = 0 for all s ∈ [3, n] and |F0

e | = 0. Bn[V(Bs
n − F s

e) ∪ V(Bt
n − F t

e)]
is connected by Claim 1. Then B[3,n]

n − F[3,n]
e is connected and it is a subgraph of C.

Subcase 3.2.1. Bi
n − F i

e is connected for all i ∈ [1, 2].
In this subcase, both B1

n−F1
e and B2

n−F2
e are connected. Since |F0

e | = 0, we have Bn−Fe is connected
by Proposition 2.3, |V(C)| = |V(Bn)| = n! > n! − 2.

Subcase 3.2.2. Only B1
n − F1

e is disconnected.
In this subcase, B2

n − F2
e is connected. Note that |F1

e | = 2n − 6 < 2n − 5. There is a connected
component C1 of B1

n − F1
e with |V(C1)| ≥ n! − 1 by Lemma 3.1. |E23(Bn)| = (n − 2)! > 0 = |F0

e |, we
have B[2,n]

n − F[2,n]
e is connected. Since |EBn(V(C1),V(B3

n)) − Fe| ≥ |E13(Bn)| − |V(B1
n) − V(C1)| − |F0

e | ≥

(n−2)!− [(n−1)!− ((n−1)!−1)]−0 = (n−2)!−1 > 0 for n ≥ 6, we have Bn[V(C1)∪V(B[2,n]
n −F[2,n]

e )]
is connected and it is C. So |V(C)| ≥ n! − 1 > n! − 2.

Subcase 3.2.3. Only B2
n − F2

e is disconnected.
In this subcase, B1

n − F1
e is connected. Since |F2

e | = n − 2 < 2n − 5 for n ≥ 6, there is a connected
component C2 of B2

n − F2
e with |V(C2)| ≥ n! − 1 by Lemma 3.1. By Proposition 2.3 and |F0

e | = 0,
Bn[V(B1

n − F1
e ) ∪ V(B[3,n]

n − F[3,n]
e )] is connected. Since |EBn(V(C2),V(B3

n)) − Fe| ≥ |E23(Bn)| − |V(B2
n) −

V(C2)| − |F0
e | ≥ (n − 2)! − [(n − 1)! − ((n − 1)! − 1)] − 0 = (n − 2)! − 1 > 0 for n ≥ 6, we have

Bn[V(B1
n − F1

e ) ∪ V(C2) ∪ V(B[3,n]
n − F[3,n]

e )] is connected and it is C. So |V(C)| ≥ n! − 1 > n! − 2.
Subcase 3.2.4. Bi

n − F i
e is disconnected for all i ∈ [1, 2].

In this subcase, B1
n−F1

e is disconnected and B2
n−F2

e is disconnected. By Subcase 3.2.2 and Subcase
3.2.3, we have |V(C1)| ≥ n!−1, |V(C2)| ≥ n!−1. Moreover, we have Bn[V(C1)∪V(C2)∪V(B[3,n]

n −F[3,n]
e )]

is connected and it is C. So |V(C)| ≥ n! − 2.
Case 4. 3n − 10 ≤ |F1

e | ≤ 3n − 8.
In this case, |F0

e | ≤ |Fe| − |F1
e | ≤ (3n − 8) − (3n − 10) = 2 and |F[2,n]

e | ≤ |Fe| − |F1
e | = 2. Since

|Ei j(Bn)| = (n − 2)! > 2 ≥ |F0
e | for distinct i, j ∈ [2, n] and n ≥ 6, B[2,n]

n − F[2,n]
e is connected by Claim 1.

If B1
n−F1

e is connected, then Bn−Fe is connected by Proposition 2.3 and |V(C)| = |V(Bn)| = n! > n!−2.
If B1

n − F1
e is disconnected, note that |F0

e | ≤ 2, then at most two vertices in B1
n cannot be contained in C,

thus, |V(C)| ≥ n! − 2.
By Case 1-4, When Bn − Fe is disconnected, there is a largest connected component C of Bn − Fe

with |V(C)| ≥ n! − 2 when |Fe| ≤ 3n − 8. �

Remark 4.3. Lemma 4.2 does not hold for n = 4. When n = 4, |Fe| = 3×4−8 = 4. See from Figure 1,
B4−Fe has a 4-cycle as its component except the largest connected component C. Then |V(C)| = 4!−4.

Remark 4.4. The conclusion of Lemma 4.2 is optimal in that there is an edge set Fe ⊆ E(Bn) with
|Fe| = 3n − 7 such that Bn − Fe has a connected component C with |V(C)| ≤ n! − 3 for n ≥ 6.

Let a 2-path be uvw with the vertices in this order and F = {u, v,w} be the vertex set of the 2-path.
Then |EBn(F)| = 3n − 7 by Proposition 2.5. Let Fe = EBn(F) ⊆ E(Bn). Then uvw is a component of
Bn − Fe except C. So |V(C)| ≤ n! − 3.

Theorem 4.5. Bn is (2n−6)-conditional edge-fault-tolerant strongly Menger edge connected for n ≥ 5.

Proof. Let S e ⊆ E(Bn) be an faulty edge set with |S e| ≤ 2n − 6 and δ(Bn − S e) ≥ 2. Let two distinct
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vertices u, v ∈ V(Bn), a = min{dBn−S e(u), dBn−S e(v)} and E f ⊆ E(Bn)−S e with |E f | ≤ a−1. By Theorem
1.1, Definition 1.2 and Definition 1.3, it is sufficient to prove that u is connected to v in Bn−S e−E f . We
prove this by contradiction, assume that u and v are disconnected in Bn − S e − E f for E f ⊆ E(Bn) − S e

with |E f | ≤ a−1. Note that dBn−S e(u) ≤ n−1, dBn−S e(v) ≤ n−1 and |E f | ≤ n−2 by Proposition 2.5. Then
|Fe| = |S e ∪ E f | ≤ (2n− 6) + (n− 2) = 3n− 8. By Lemma 4.2, Bn − S e − E f has a connected component
C with |V(C)| ≥ n!− 2. Note that u and v are disconnected in Bn − S e − E f , |{u, v} ∩V(C)| ≤ 1. Without
loss of generality, we suppose that u ∈ V(C) and v < V(C).

Case 1. |V(C)| = n! − 1.
In this case, v is the isolated vertex of Bn − S e − E f . Then EBn({v},NBn−S e(v)) ⊆ E f . This means

|E f | ≥ dBn−S e(v), which contradicts with |E f | ≤ a − 1 ≤ dBn−S e(v) − 1. The assumption does not hold.
Case 2. |V(C)| = n! − 2.
In this case, there is another vertex w ∈ V(Bn − S e − E f ) and w < V(C). If v and w are connected,

then K2 = vw and EBn−S e({vw}) ⊆ E f . Since δ(Bn − S e) ≥ 2, v has at least one degree in E f . Then
|E f | ≥ dBn−S e(v) − 1 + 1 = dBn−S e(v), which contradicts with |E f | ≤ a − 1 ≤ dBn−S e(v) − 1. If v and w
are disconnected, then EBn({v},NBn−S e(v)) ⊆ E f . This means |E f | ≥ dBn−S e(v), which contradicts with
|E f | ≤ a − 1 ≤ dBn−S e(v) − 1. The assumption does not hold.

Hence, Bn is (2n−6)-conditional edge-fault-tolerant strongly Menger edge connected for n ≥ 5. �

5. Results discussion

The edge connectivity is one of the basic parameters to estimate the fault tolerance of the
interconnection network. We show that Bn is (n − 3)-edge-fault-tolerant strongly Menger edge
connected for n ≥ 3 and (2n − 6)-conditional edge-fault-tolerant strongly Menger edge connected
for n ≥ 5. There are some problems need further discussion.

(1) The fault tolerance of an interconnected network is the maximum number of vertices or edges
allowed to fail without affecting the communication of other fault-free vertices or edges. Let Fe be
the set of faulty edges in Bn. We show that when Bn has (n − 3) (|Fe| = n − 3) edges fault, there are
min{dBn−Fe(u), dBn−Fe(v)} edge-disjoint paths that can connect any two distinct vertices in Bn. This
conclusion can ensure that Bn can work normally even with (n − 3) faulty edge and improve the
reliability of the system. When the condition of any vertex in Bn has at least two neighbors is imposed,
the conclusion can ensure that Bn can work normally even with (2n − 6) faulty edges and improve the
reliability of the system.

(2) In fact, we don’t have a counter example to show that Bn is not edge-fault-tolerant strongly
Menger edge connected for larger |Fe|, the researchers can explore the more general |Fe|.

(3) In this paper, we discuss under the condition that each vertex or edge in Bn has a uniform and
independent failure probability. But actually, vertex or edge may have different failure probabilities. In
addition, vertices or edges may be related and fail at the same time, so that vertices or edges failures
may not be independent. These need to be discussed furthermore.

Acknowledgments

This work is supported by the National Science Foundation of China (61772010) and the Graduate
Quality Curriculum Construction Project of Henan Normal University(5101019500604).

AIMS Mathematics Volume 6, Issue 12, 13210–13221.



13220

Conflict of interest

All authors declare no conflict of interest in this paper.

References

1. Z. Wang, Y. Zou, Y. Liu, Z. Meng, Distributed control algorithm for leader-follower formation
tracking of multiple quadrotors: theory and experiment, IEEE-ASME T. Mech., 26 (2020), 1095–
1105.

2. Y. Zou, L. Wang, Z. Meng, Distributed localization and circumnavigation algorithms for a
multiagent system with persistent and intermittent bearing measurements, IEEE Trans. Contr. Syst.
T., 29 (2021), 2092–2101.

3. B. N. Alhasnawi, B. H. Jasim, B. E. Sedhom, Distributed secondary consensus fault tolerant control
method for voltage and frequency restoration and power sharing control in multi-agent microgrid,
Int. J. Elec. Power, 133 (2021), 107251.

4. Y. Wang, S. Wang, The 3-good-neighbor connectivity of modified bubble-sort graphs, Math. Probl.
Eng., 2020 (2020), 7845987.

5. B. N. Alhasnawi, B. H. Jasim, P. Siano, J. M. Guerrero, A novel real-time electricity scheduling
for home energy management system using the internet of energy, Energies, 14 (2021), 1–29.

6. B. N. Alhasnawi, B. H. Jasim, SCADA controlled smart home using Raspberry Pi3, 2018
International Conference on Advance of Sustainable Engineering and its Application (ICASEA).
IEEE, 2018.

7. B. N. Alhasnawi, B. H. Jasim, M. D. Esteban, A new robust energy management and control
strategy for a hybrid microgrid system based on green energy, Sustainability, 12 (2020), 1–28.

8. B. N. Alhasnawi, B. H. Jasim, B. A. Issa, Internet of things (IoT) for smart precision agriculture,
IJEEE, 16 (2020), 28–38.

9. B. N. Alhasnawi, B. H. Jasim, B. E. Sedhom, E. Hossain, J. M. Guerrero, A new decentralized
control strategy of microgrids in the internet of energy paradigm, Energies, 14 (2021), 1–34.

10. E. Oh, J. Chen, On strong Menger-connectivity of star graphs, Discret. Appl. Math., 129 (2003),
499–511.

11. E. Oh, J. Chen, Strong fault tolerance: Parallel routing in star networks with faults, J. Interconnect.
Netw., 4 (2003), 113–126.

12. Y. Qiao, W. Yang, Edge disjoint paths in hypercubes and folded hypercubes with conditonal faults,
Appl. Math. Comput., 294 (2017), 96–101.

13. S. Li, J. Tu, C. Yu, The generalized 3-connectivity of star graphs and bubble-sort graphs, Appl.
Math. Comput., 271 (2016), 41–46.

14. W. Yang, H. Li, J. Meng, Conditional connectivity of Cayley graphs generated by transposition
trees, Inform. Process. Lett., 110 (2010), 1027–1030.

15. L. M. Shih, C. F. Chiang, L. H. Hsu, J. J. M. Tan, Strong Menger connectivity with conditional
faults on the class of hypercube-like networks, Inform. Process. Lett., 106 (2008), 64–69.

AIMS Mathematics Volume 6, Issue 12, 13210–13221.



13221

16. K. Menger, Zur allgemeinen kurventheorie, Fund. Math., 10 (1927), 96–115.

17. P. Li, M. Xu. Fault-tolerant strong Menger (edge) connectivity and 3-extra edge-connectivity of
balanced hypercubes, Theoret. Comput. Sci., 707 (2018), 56–68.

18. Y. C. Chen, M. H. Chen, J. J. M. Tan, Maximally local connectivity and connected components of
augmented cubes, Inform. Sci., 273 (2014), 387–392.

19. H. Cai, H. Liu, M. Lu, Fault-tolerant maximal local-connectivity on bubble-sort star graphs,
Discret. Appl. Math., 181 (2015), 33–40.

20. W. Yang, S. Zhao, S. Zhang, Strong Menger connectivity with conditional faults of folded
hypercubes, Inform. Process. Lett., 125 (2017), 30–34.

21. P. Li, M. Xu, Edge-fault-tolerant strong Menger edge connectivity on the class of hypercube-like
networks, Discret. Appl. Math., 259 (2019), 145–152.

22. J. Guo, M. Li, Edge-fault-tolerant strong Menger edge connectivity of bubble-sort star graphs,
Discret. Appl. Math., 297 (2021), 109–119.

23. S. B. Akers, B. Krishnamurthy, A group-theoretic model for symmetric interconnection networks,
IEEE Trans. Comput., 38 (1989), 555–566.

24. H. Shi, P. Niu, J. Lu, One conjecture of bubble-sort graphs, Inform. Process. Lett., 111 (2011),
926–929.

25. E. Cheng, L. Lipták, Linearly many faults in Cayley graphs generated by transposition trees,
Inform. Sci., 177 (2007), 4877–4882.

26. E. Cheng, L. Lipták, N. Shawash, Orienting Cayley graphs generated by transposition trees,
Comput. Math. Appl., 55 (2008), 2662–2672.

27. M. Xu, The connectivity and super connectivity of bubble-sort graph, Acta Math. Appl. Sin., 35
(2012), 789–794.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 12, 13210–13221.

http://creativecommons.org/licenses/by/4.0

	Introduction
	The n-dimensional bubble-sort graph Bn
	The edge-fault-tolerant strong Menger edge connectivity of Bn
	The m-conditional edge-fault-tolerant strong Menger edge connectivity of Bn
	Results discussion

