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Abstract: In this paper, we derive the escape criteria for general complex polynomial f (x) =
∑p

i=0 aixi

with p ≥ 2, where ai ∈ C for i = 0, 1, 2, . . . , p to generate the fractals. Moreover, we study the
orbit of an implicit iteration (i.e., Jungck-Ishikawa iteration with s-convexity) and develop algorithms
for Mandelbrot set and Multi-corn or Multi-edge set. Moreover, we draw some complex graphs and
observe how the graph of Mandelbrot set and Multi-corn or Multi-edge set vary with the variation of
ai’s.
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1. Introduction

In recent years, fractal geometry plays an important role in software engineering. The word fractal
was first time used by Mandelbrot in 1970, when he visualized the complex graph for a function
f (z) = z2 + c [1]. The obtained image was self similar and he named it a fractal. Infact, he extended
the work by G. Julia and examined the properties of Julia sets [2]. He exhibited that Julia sets have
best extravagance of artistic patterns. After his work a progression of research have been done on
various types of fractals. For example, the generalized Mandelbrot set was studied in [3]. Some
rational, trigonometric, logarithmic and exponential functions were used to generate fractals in [4].
The quaternions, bi-complex and tri-complex function were used to generate fractals in [5,6] and in [7],
the authors produced some generalized fractals (for example Julia and Mandelbrot sets).

The fixed point theory picked up the most noteworthy focus when Rani et al. in [8] and [9] utilized
some fixed point iterative technique in the representation of fractals. They introduced some superior
fractals and examined their properties. After their exploration the fixed point theory turned into a
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typical part of mathematics and software engineering. The fractals generated by Picard, Mann,
Ishikawa, S, CR and SP were presented in [10–13] and [4]. The threshold escape radii for
Jungck-Mann, Jungck-Ishikawa and Jungck-Noor with the blend of s-convexity in the second sense
were demonstrated in [14,15]. Boundaries of Julia sets were presented in [16]. The organic took after
pictures were shown in [17] and Modified outcomes for Julia sets and Mandelbrot sets were built up
in [18].

This work present some fractals by implicit iterations. We derive the escape radius by extended
Jungck-Ishikawa iteration with s-convex combination for general complex polynomial. For derived
threshold escape radius, we establish algorithms to generate some kind of fractals in Jungck-Ishikawa
orbit with s-convex combination (JIO) (i.e., Mandelbrot set and Multi-corn or Multi-edge set). We
discuss the behavior of some complex polynomials in the form of some examples and demonstrate that
the fractal image also depends upon ai’s. Furthermore, we show that for p = 3 the Mandelbrot set is
not necessarily cubic, it may be quadratic also and same arguments for p > 3.

2. Preliminaries

Definition 2.1 (Julia set [19]). Consider fc : C → C a complex polynomial depends upon c ∈ C. The
filled Julia set, denoted by F fc for a function fc can be defined by

F fc = {z ∈ C :
∣∣∣ f p

c (z)
∣∣∣9 ∞ as p→ ∞}, (2.1)

where f p
c (z) is p-th iterate of function fc. Julia set B fc for complex polynomial fc can be defined as the

boundary of filled Julia set F fc , i.e., B fc = ∂F fc . (The boundary of filled Julia set is called the Julia set.)

Definition 2.2 (Mandelbrot set [20]). The mandelbrot set is defined as the collection of parameters
c for which the filled Julia set of fc : C → C is connected and the mandelbrot set is denoted by M.
Mathematically,

M = {c ∈ C : F fc is connected}, (2.2)

or mathematical definition of mandelbrot set can also be written as [21]:

M = {c ∈ C :
∣∣∣ f p

c (θ)
∣∣∣9 ∞ as p→ ∞}, (2.3)

f has only critical point θ (i.e., f ′(θ) = 0). So we choose θ as the initial point.

Definition 2.3 (Multi-corn or Multi-edge set [18]). Let Ac(z) = zp
+ c, where c ∈ C. The Multi-corn

setM∗ for Ac is defined as the collection of all c ∈ C for which the orbit of 0 under the action of Ac is
bounded, i.e.,

M∗ = {c ∈ C : |An
c(0)|9 ∞ as n→ ∞} (2.4)

Multi-corn or Multi-edge set for p = 2 is called the Tri-corn or Tri-edge set.

In past years researchers utilized various ways to deal with produce Julia sets. Some famous
algorithms to envision the Julia sets are, distance estimator, escape time and potential function
calculations. To create filled Julia sets, just Julia sets and Fatou spaces, we use escape time
calculations. The escape time calculation repeat the function upto the longing number of iterations.
The algorithm create two sets, one is comprises of focuses for which the JIO doesn’t disappear to
boundlessness (for example filled Julia set or limit of Julia set) and the subsequent set comprises of
focuses for which the JIO break to boundlessness (for example Fatou areas).
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Definition 2.4 (Jungck iteration [22]). Let P,Q : X → X be two maps such that P is one to one and Q
is differentiable of degree greater than and equal to 2. For any x0 ∈ X the Jungck iteration is defined
in the following way

P(xk+1) = Q(xk), (2.5)

where k = 0, 1, . . ..

Definition 2.5 (Jungck-Mann iteration [14]). Let P,Q : C → C be two complex maps such that Q is a
complex polynomial of degree greater than and equal to 2, also differentiable and P is injective. For
any x0 ∈ C the Jungck-Mann iteration defined as:

P(xk+1) = (1 − a)sP(xk) + asQ(xk), (2.6)

where a, s ∈ (0, 1], n = 0, 1, 2, . . ..

Definition 2.6 (Jungck-Mann iteration with s-convex combination in second sense [14]). Consider
P,Q : C→ C are two complex valued mapping where Q is a complex differentiable polynomial having
degree more than or equal to 2 and P is an injective map. For any x0 ∈ C the Jungck-Mann iteration
with s-convex combination in second sense can be defined as:

P(xk+1) = (1 − a)sQ(xk) + asP(xk), (2.7)

where a, s ∈ (0, 1], k = 0, 1, 2, . . ..

Remark 2.7. One can observe that iteration (2.6) becomes:

• Picard orbit when P(x) = x and a, s = 1,
• Mann orbit when P(x) = x and s = 1,
• Jungck Mann orbit when s = 1.

Definition 2.8 (Jungck-Ishikawa iteration [14]). Consider P,Q : C → C are two complex valued
mapping where Q is a complex differentiable polynomial having degree more than or equal to 2 and P
is an injective map. For any x0 ∈ C the Jungck-Ishikawa iteration is defined in the following wayP(xk+1) = (1 − a)P(xk) + aQ(yk),

P(yk) = (1 − b)P(xk) + bQ(xk),
(2.8)

where a, b ∈ (0, 1] and k = 0, 1, 2, . . ..

Along these lines, in proposed iteration we manage two distinct mappings, we break f into two
mappings P and Q so that f = Q − P and P is injective. This kind of arrangement of f restriction us
to receive P as injective mapping and Q as analytical mapping. In this manner we infer new threshold
escape radius and execute in our algorithms to imagine a fractals.

3. Escape criteria for general complex polynomial via Jungck-Ishikawa iteration with
s-convexity (JIO)

Right now, we demonstrate the threshold escape radius for Jungck-Ishikawa iteration with s-convex
mix in second sense for general complex polynomial. In this section we prove the threshold escape
radius for Jungck-Ishikawa iteration with s-convex combination in second sense for general complex
polynomial.
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Definition 3.1 (Jungck-Ishikawa iteration with s-convex combination [14]). Consider P,Q : C → C
are two complex valued mapping where Q is a complex differentiable polynomial having degree more
than or equal to 2 and P is an injective map. For any x0 ∈ C the Jungck-Ishikawa iteration with
s-convex combination in second sense is defined in the following wayP(xk+1) = (1 − a)sP(xk) + asQ(yk),

P(yk) = (1 − b)sP(xk) + bsQ(xk),
(3.1)

where s, a, b ∈ (0, 1] and k = 0, 1, 2, . . ..

Remark 3.2. We observed that the Jungck-Ishikawa Orbit with s-convexity change into:

• Picard orbit when P(x) = x, b = 0 and a, s = 1,
• Mann orbit when P(x) = x, b = 0 and s = 1,
• Ishikawa orbit when P(x) = x and s = 1,
• Jungck-Ishikawa orbit when s = 1.

We utilize Jungck-Ishikawa iteration with s-convex combination in second sense for proving that
the polynomial f (x) =

∑p
i=0 aixi where p ≥ 2, ai ∈ C for i = 0, 1, 2, . . . , p and

∣∣∣ap

∣∣∣ > ∑p−1
i=2 |ai| with

choice Q(z) =
∑p

i=2 aixi + a0 and P(z) = a1x to generate some kind of fractals:

Theorem 3.3. Suppose that |x| ≥ |a0| > η1 =
(

2(1+|a1 |)
sa(α−β)

) 1
p−1 and |x| ≥ |a0| > η2 =

(
2(1+|a1 |)
sb(α−β)

) 1
p−1 where

α =
∣∣∣ap

∣∣∣ , β =
p−1∑

2
|ai| also a, b, s ∈ (0, 1], then the sequence {xk}k∈N define as follows:P(xk+1) = (1 − a)sP(xk) + asQ(yk),

P(yk) = (1 − b)sP(xk) + bsQ(xk),
(3.2)

where s, a, b ∈ (0, 1] and k = 0, 1, 2, . . .. Then |xk| → ∞ as k → ∞.

Proof. Since f (x) =
∑p

i=0 aixi, where ai ∈ C for i = 0, 1, 2, . . . , p, x0 = x and y0 = y. Handling f as
f = Q − P with choice Q(x) =

∑p
i=2 aixi + a0 and P(x) = a1x, then

|P(y0)| = |(1 − b)sP(x) + bsQ(x)|

=

∣∣∣∣∣∣∣(1 − b)sa1x + (1 − (1 − b))s

 p∑
i=2

aixi + a0


∣∣∣∣∣∣∣ .

Now, using the fact that s ≤ 1 and expansion to degree 1 of b and 1 − b, we arrive at

|a1y0| ≥ (1 − s(1 − b))|
p∑

i=2

aixi + a0| − (1 − sb)|a1x|

≥ |(s − s(1 − b))(
p∑

i=2

aixi + a0) |−|(1 − sb)a1x| .

Since |x| ≥ |a0| and sb < 1 we have

|a1y0| ≥ sb

∣∣∣∣∣∣∣
p∑

i=2

aixi

∣∣∣∣∣∣∣ − sb |a0| − (1 − sb) |a1x|
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= sb

∣∣∣∣∣∣∣
p∑

i=2

aixi

∣∣∣∣∣∣∣ − sb |a0| − |a1x| + sb |a1x|

≥ sb

∣∣∣∣∣∣∣
p∑

i=2

aixi

∣∣∣∣∣∣∣ − |x| − |a1| |x|

= |x| (sb

∣∣∣∣∣∣∣
p∑

i=2

aixi−1

∣∣∣∣∣∣∣ − (1 + |a1|)).

This provides

|y0| ≥ |x|

 sb
∣∣∣∑p

i=2 aixi−1
∣∣∣

1 + |a1|
− 1


≥ |x|

 sb
∣∣∣xp−1

∣∣∣ (∣∣∣ap

∣∣∣ −∑p−1
i=2 |ai|

)
1 + |a1|

− 1


= |x|

 sb
∣∣∣xp−1

∣∣∣ (α − β)

1 + |a1|
− 1


|y0| ≥ sb |x| .

Because |x| ≥ |a0| >
(

2(1+|a1 |)
sb(α−β)

) 1
p−1 where α =

∣∣∣ap

∣∣∣ , β =
p−1∑

2
|ai|, this produced the situation

|x|
(
|x|p−1(sb(α−β))

1+|a1 |
− 1

)
> |x| ≥ sb|x|.

Now, in next iteration, we arrive at

|P(x1)| = |(1 − a)sP(x0) + asQ(y0)|

|a1x1| =

∣∣∣∣∣∣∣(1 − a)sa1x + as

 p∑
i=2

aiyi + a0


∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣(1 − sa)a1x + (1 − s(1 − a)

 p∑
i=2

aiyi + a0


∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣(1 − s(1 − a)

 p∑
i=2

aiyi + a0


∣∣∣∣∣∣∣ − |(1 − sa)a1x|

≥ sa

∣∣∣∣∣∣∣
p∑

i=2

aiyi

∣∣∣∣∣∣∣ − (1 + |a1|) |x|

≥ |x|

s2ab

∣∣∣∣∣∣∣
p∑

i=2

aixi

∣∣∣∣∣∣∣ − (1 + |a1|)

 .
≥ |x|

s2ab
∣∣∣xp−1

∣∣∣ ∣∣∣ap

∣∣∣ − p−1∑
i=2

|ai|

 − (1 + |a1|)

 .
Thus

|x1| ≥ |x|

 s2ab
∣∣∣xp−1

∣∣∣ (α − β)

1 + |a1|
− 1

 . (3.3)

AIMS Mathematics Volume 6, Issue 12, 13170–13186.



13175

Since |x| >
(

2(1+|a1 |)
sa(α−β)

) 1
p−1 and |x| >

(
2(1+|a1 |)
sb(α−β)

) 1
p−1 , then |x|p−1 >

(
2(1+|a1 |)

s2ab(α−β)

)
and this implies s2ab(α−β)|x|p−1

1+|a1 |
−

1 > 1. Therefore there exists λ > 0 such that s2ab(α−β)|x|p−1

1+|a1 |
− 1 > 1 + λ. Consequently |x1| > (1 + λ)|x|.

In particular |x1| > |x|. So we may iterate to find |xk| > (1 + λ)k|x|. Hence, the orbit of z tends to infinity
and this completes the proof. �

Corollary 3.4. Suppose that

|a0| > η1and |a0| > η2,

then the Jungck-Ishikawa orbit with s-convexity escapes to infinity.

Corollary 3.5. Suppose that a, b, s ∈ (0, 1] and

|x| > max {|a0|, η1, η2} ,

therefore there exists λ > 0 such that |xk| > (1 + λ)k|x| and |xk| → ∞ as k → ∞.

Corollary 3.6. Suppose that

|xm| > max {|a0|, η1, η2} ,

for some m ≥ 0. Therefore, we have some λ > 0 s.t |xm+k| > (1 + λ)k|xm| and |xk| → ∞ as k → ∞.

Now we prove the converse of Theorem 3.3.

Theorem 3.7. Suppose that {xk}k∈N be the sequence of points in Jungck-Ishikawa orbit with s-convexity
for complex polynomial f (x) =

∑p
i=0 aixi with p ≥ 2, where ai ∈ C for i = 0, 1, 2, . . . , p such that

|xk| → ∞ as k → ∞, then |x| ≥ |a0| > η1 =
(

2(1+|a1 |)
sa(α−β)

) 1
p−1 and |x| ≥ |a0| > η2 =

(
2(1+|a1 |)
sb(α−β)

) 1
p−1 where

α =
∣∣∣ap

∣∣∣ , β =
p−1∑

2
|ai| and a, b, s ∈ (0, 1].

Proof. Since {xk}k∈N is the sequence of points in Jungck-Ishikawa orbit with s-convexity for complex
polynomial f (x) =

∑p
i=0 aixi with p ≥ 2 such that |xk| → ∞ as k → ∞, therefore there exists λ > 0 such

that

|xk| > (1 + λ)k|x|.

For k = 1, we get

|x1| ≥ (1 + λ)|x|. (3.4)

Since f (x) =
∑p

i=0 aixi, where ai ∈ C for i = 0, 1, 2, . . . , p, x0 = x and y0 = y. We break down the
function f in such a way that: Q(x) =

∑p
i=2 aixi + a0 and P(x) = a1x, then

|P(y0)| = |(1 − b)sP(x) + bsQ(x)|

=

∣∣∣∣∣∣∣(1 − b)sa1x + (1 − (1 − b))s

 p∑
i=2

aixi + a0


∣∣∣∣∣∣∣ .
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Using the fact that s ≤ 1 and expansion upto degree 1 of b and 1 − b, we get

|a1y0| ≥ (1 − s(1 − b))|
p∑

i=2

aixi + a0| − (1 − sb)|a1x|

≥ |(s − s(1 − b))(
p∑

i=2

aixi + a0) |−|(1 − sb)a1x| .

Since for the generation of Mandelbrot sets it must be true |x| ≥ |a0| and sb < 1 we have

|a1y0| ≥ sb

∣∣∣∣∣∣∣
p∑

i=2

aixi

∣∣∣∣∣∣∣ − sb |a0| − (1 − sb) |a1x|

= sb

∣∣∣∣∣∣∣
p∑

i=2

aixi

∣∣∣∣∣∣∣ − sb |a0| − |a1x| + sb |a1x|

≥ sb

∣∣∣∣∣∣∣
p∑

i=2

aixi

∣∣∣∣∣∣∣ − |x| − |a1| |x|

= |x| (sb

∣∣∣∣∣∣∣
p∑

i=2

aixi−1

∣∣∣∣∣∣∣ − (1 + |a1|)).

This provides

|y0| ≥ |x|

 sb
∣∣∣∑p

i=2 aixi−1
∣∣∣

1 + |a1|
− 1


≥ |x|

 sb
∣∣∣xp−1

∣∣∣ (∣∣∣ap

∣∣∣ −∑p−1
i=2 |ai|

)
1 + |a1|

− 1


= |x|

 sb
∣∣∣xp−1

∣∣∣ (α − β)

1 + |a1|
− 1


|y0| ≥ sb |x| .

Because the Mandelbrot set is bounded therefore |x|
(

sb|xp−1|(α−β)
1+|a1 |

− 1
)
≥ 1.

In next step of iteration we have

|P(x1)| = |(1 − a)sP(x0) + asQ(y0)|

|a1x1| =

∣∣∣∣∣∣∣(1 − a)sa1x + as

 p∑
i=2

aiyi + a0


∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣(1 − sa)a1x + (1 − s(1 − a)

 p∑
i=2

aiyi + a0


∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣(1 − s(1 − a)

 p∑
i=2

aiyi + a0


∣∣∣∣∣∣∣ − |(1 − sa)a1x|
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≥ sa

∣∣∣∣∣∣∣
p∑

i=2

aiyi

∣∣∣∣∣∣∣ − (1 + |a1|) |x|

≥ |x|

s2ab

∣∣∣∣∣∣∣
p∑

i=2

aixi

∣∣∣∣∣∣∣ − (1 + |a1|)

 .
≥ |x|

s2ab
∣∣∣xp−1

∣∣∣ ∣∣∣ap

∣∣∣ − p−1∑
i=2

|ai|

 − (1 + |a1|)

 .
Thus

|x1| ≥ |x|

 s2ab
∣∣∣xp−1

∣∣∣ (α − β)

1 + |a1|
− 1

 . (3.5)

Comparing (3.4) and (3.5), we have

s2ab (α − β)
∣∣∣xp−1

∣∣∣
1 + |a1|

− 1 = 1 + λ

s2ab (α − β)
∣∣∣xp−1

∣∣∣
1 + |a1|

− 1 > 1,

because λ > 0. This implies

|x| >
(

2(1 + |a1|)
s2ab (α − β)

) 1
p−1

.

As a result, we obtain |x| >
(

2(1+|a1 |)
sa(α−β)

) 1
p−1 and |x| >

(
2(1+|a1 |)
sb(α−β)

) 1
p−1 where p ≥ 2 and a, b, s ∈ (0, 1].

To visualize complex fractal |x| ≥ |a0| must exist, because for any given point |x| < |a0|, we have to
compute the Jungck-Ishikawa orbit with s-convexity of x. If for some k, |xk| lies outside the circle of
radius max {|a0|, η1, η2}, we observed that Jungck-Ishikawa orbit with s-convexity escapes. Hence, x is
not in the Julia sets and also, is not in Mandelbrot sets. But if the sequence {xk}k∈N is bounded to obey
|x| ≥ |a0|, then by definition of complex fractals, the sequence {xk}k∈N lies in Jungck-Ishikawa orbit
with s-convexity. Hence the result. �

4. Applications of fractals via proposed iteration

This section consists of two subsection. In first subsection we demonstrate some graphical examples
of quadratic, cubic and quadric Mandelbrot sets in JIO and in second we present some graphs of Multi-
corn or Multi-edge sets in JIO.

4.1. Generation of Mandelbrot sets

Now we present some examples of Mandelbrot sets in Jungck-Ishikawa orbit with s-convex
combination (JIO). In each example we set the maximum of iteration at K = 25, a0 = x,
a = 0.9, b = 0.5 and s = 0.5. The algorithms run in Mathematica at Dell machine with spec. Intel(R)
Core(TM)i5-3320M CPU @ 2.60 GHz and 4GB RAM to visualize the Mandelbrot sets.
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Algorithm 1: Mandelbrot set generation
Input: fc =

∑p
i=0 aixi with p = 2 a complex polynomial, A-area for image, K-fixed number of

iterations, colourscale[0..h − 1] colour scale with h colours.
Output: Complex graph of Mandelbrot set in area A.

1 for a0 ∈ A do
2 R = max {|a0|, η1, η2}-threshold escape radius
3 k = 0
4 z0 = a0-initial guess for fc

5 while k ≤ K do
6 xk+1 = fc(xk)
7 if |xk+1| > R then
8 break

9 k = k + 1

10 i = b(h − 1) k
K c

11 colour a0 with colourmap[i]

In first example we generate the Mandelbrot sets of complex polynomial f (x) =
∑p

i=0 aixi with
p = 2 at different values of a1 and a2 and observe that the image changes with the change of a1 and a2.
The visualized images shown in Figures 1 and 2. The area occupied by images and values of a1 and a2

were given in Table 1.

Figure 1. Quadratic Mandelbrot set in JIO with escape time 30.201 sec.

Figure 2. Quadratic Mandelbrot set in JIO with escape time 30.639 sec.
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Table 1. Input parameters for quadratic Mandelbrot sets.

Figure a1 a2 Area
1 2 0.5 [−20, 8.5] × [−9, 9]
2 2 2i [−3.5, 3.5] × [−2, 5]

In second example we generate the Mandelbrot sets of complex polynomial f (x) =
∑p

i=0 aixi with
p = 3 at different values of a1, a2 and a3. From Figures 3–5, we notice that the image of cubic
Mandelbrot set changes with the change of a1, a2 and a3. At some values of a1, a2 and a3 the images
of cubic Mandelbrot set resembled with quadratic Mandelbrot set. The area occupied by images and
values of a1, a2 and a3 were given in Table 2.

Figure 3. Cubic Mandelbrot set in JIO with escape time 47.97 sec.

Figure 4. Cubic Mandelbrot set in JIO with escape time 57.096 sec.

Figure 5. Cubic Mandelbrot set in JIO with escape time 46.457 sec.
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Table 2. Input parameters for cubic Mandelbrot sets.

Figure a1 a2 a3 Area
3 2 20 30 [−1.5, 0.3] × [−0.3, 0.3]
4 1

20
1
2 1 [−0.028, 0.009] × [−0.008, 0.008]

5 1
2

1
2 50 [−0.05, 0.05] × [−0.09, 0.09]

In third example we generate the Mandelbrot sets of complex polynomial f (x) =
∑p

i=0 aixi with
p = 4 at different values of a1, a2, a3 and a4. From Figures 6–9, we notice that the image of quadric
Mandelbrot set also changes with the change of a1, a2, a3 and a4. At some values of a1, a2, a3 and a4

the images of quadric Mandelbrot set resembled with quadratic and cubic Mandelbrot sets. The area
occupied by images and the values of a1, a2, a3 and a4 were given in Table 3.

Figure 6. Quadric Mandelbrot set in JIO with escape time 67.408 sec.

Figure 7. Quadric Mandelbrot set in JIO with escape time 85.816 sec.

Figure 8. Quadric Mandelbrot set in JIO with escape time 104.458 sec.
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Figure 9. Quadric Mandelbrot set in JIO with escape time 59.093 sec.

Table 3. Input parameters for quadric Mandelbrot sets.

Figure a1 a2 a3 a4 Area
6 1

2 1 1 5 [−0.3, 0.3] × [−0.4, 0.4]
7 1

2
1
2 i 50 [−0.4, 0.4] × [−0.15, 0.15]

8 1
10 28 30 50 [−0.0009, 0.0004] × [−0.0004, 0.0004]

9 1 0 30 35 [−0.2, 0.2] × [−0.3, 0.3]

4.2. Generation of Multi-corn or Multi-edge sets

Here we present some examples of Multi-corn or Multi-edge sets in Jungck-Ishikawa orbit with
s-convex combination (JIO) for conjugate complex polynomial f (x) =

∑p
i=0 aixi with p = 2. In each

example we set the maximum of iteration at K = 25, a0 = x, a = 0.9, b = 0.5 and s = 0.5 as we set
in previous subsection. The algorithms run in Mathematica at same machine we used for Mandelbrot
sets.

Algorithm 2: Multi-corn set generation
Input: fc =

∑p
i=0 aixi with p = 2 a conjugate complex polynomial, A area for image, K fixed

number of iterations, colourscale[0..h − 1] colourscale with h colours.
Output: Complex graph of Multi-corn or Multi-edge set in area A.

1 for a0 ∈ A do
2 R = max {|a0|, η1, η2} threshold escape radius
3 k = 0
4 x0 = a0 initial guess for fc

5 while k ≤ K do
6 xk+1 = fc(xk)
7 if |xk+1| > R then
8 break

9 k = k + 1

10 i = b(h − 1) k
K c

11 colour a0 with colourmap[i]

In this example we visualize the Multi-corn sets for complex polynomial f (x) =
∑p

i=0 aixi with
p = 2 at different values of a1 and a2 these Multi-corn sets are actually the Tri-corn sets. Moreover
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we observe that the image of Multi-corn set also changes with the change of a1 and a2. The generated
images shown in Figures 10 and 11. The area occupied by images and values of a1 and a2 were given
in Table 4.

Figure 10. Tri-corn set in JIO with escape time 47.16 sec.

Figure 11. Tri-corn set in JIO with escape time 51.09 sec.

Table 4. Input parameters for Tri-corn sets.

Figure a1 a2 Area
10 2 0.5 [−20, 8.5] × [−9, 9]
11 2 2i [−3.5, 3.5] × [−2, 5]

In second last example we generate some cubic Multi-corn sets for complex polynomial f (x) =∑p
i=0 aixi with p = 3 at different values of a1, a2 and a3. The Figures 12–14 show that some images of

quadractic and cubic Multi-corn sets resembled with each other. Also we note that the Multi-corn set
changes with the change of a1, a2 and a3. The area occupied by images and values of a1 and a2 were
given in Table 5.

Figure 12. Multi-corn set in JIO with escape time 229.399 sec.
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Figure 13. Multi-corn set in JIO with escape time 103.881 sec.

Figure 14. Multi-corn set in JIO with escape time 57.216 sec.

Table 5. Input parameters for Multi-corn sets.

Figure a1 a2 a3 Area
12 2 20 30 [−1.3, 0.19] × [−0.28, 0.28]
13 1

20
1
2 1 [−0.028, 0.009] × [−0.008, 0.008]

14 1
2

1
2 50 [−0.05, 0.05] × [−0.09, 0.09]

In last example we present some Multi-corn sets for complex polynomial f (x) =
∑p

i=0 aixi with
p = 4 at different values of a1, a2, a3 and a4. The resulting Figures 15–18 demonstrate the image of
quadric Multi-corn set also changes with the change of a1, a2, a3 and a4. At some values of a1, a2, a3

and a4 the images resembled with quadratic and cubic Multi-corn sets. The area occupied by images
and values of a1 and a2 were given in Table 6.

Figure 15. Multi-corn set in JIOwith escape time 93.086 sec.
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Figure 16. Multi-corn set in JIO with escape time 97.376 sec.

Figure 17. Multi-corn set in JIO with escape time 59.093 sec.

Figure 18. Multi-corn set in JIO with escape time 53.805 sec.

Table 6. Input parameters for Multi-corn sets.

Figure a1 a2 a3 a4 Area
15 1

2 1 1 5 [−0.3, 0.3] × [−0.4, 0.4]
16 1

2
1
2 i 50 [−0.4, 0.4] × [−0.15, 0.15]

17 1
10 28 30 50 [−0.0009, 0.0004] × [−0.0004, 0.0004]

18 1 0 30 35 [−0.28, 0.28] × [−0.3, 0.3]

5. Conclusions

We studied implicit iteration as an application of fractal geometry. We derived the threshold radius
of Jungck-Ishikawa with s-convexity for general complex polynomial f (x) =

∑p
i=0 aixi with p ≥ 2,

where ai ∈ C for i = 0, 1, 2, . . . , p instead of f (x) = xp − ax + c to generate the fractals. We used
the established radius in algorithms to visualize Mandelbrot set and Multi-corn or Multi-edge set. We
showed in examples that the images of Mandelbrot sets and Multi-corn or Multi-edge sets vary with the
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variation in ai’s. For different values of ai’s in quadratic, cubic and quadric complex polynomials some
resembled and inspiring images obtained. Our next work will demonstrate the derivations of threshold
radii’s for general complex polynomial via all other Jungck type iterations with s-convex combination
in the first and second sense.
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