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1. Introduction

In this work, we are concerned with the oscillation of solutions of the second-order neutral
differential equation

(
r (l) (u (l) + p (l) u (τ (l)))′

)′
+

∫ b

a
q (l, s) f (u (η (l, s))) ds = 0, l ≥ l0. (1.1)

Throughout this work, we assume:

(S 1) p, r ∈ C1 ([l0,∞)) , r (l) > 0, r′ (l) ≥ 0, 0 ≤ p (l) < 1 and infl≥l0 p (l) , 0, p, q do not vanish
identically on any half-line of form [l0,∞);
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(S 2) q ∈ C ([l0,∞) × (a, b) , [0,∞)) , q (l, s) ≥ 0 and∫ ∞

l0

1
r (s)

ds < ∞; (1.2)

(S 3) f ∈ C (R,R) , and there exists a positive constant k such that f (l, u) /uα ≥ k for u , 0, α is a
quotient of odd positive integers and α > 1;

(S 4) τ ∈ C ([l0,∞) , (0,∞)) , τ (l) ≤ l and liml→∞ τ (l) = ∞;
(S 5) η ∈ C ([l0,∞) × (a, b) , (0,∞)) , η (l, s) ≥ l, η has nonnegative partial derivatives and

liml→∞ η (l, s) = ∞.

By a solution of (1.1) we mean a function u ∈ C1[lu,∞), lu ≥ l0,which has the property r (l) (z′ (l)) ∈
C1[lu,∞), and satisfies (1.1) on [lu,∞). We consider only those solutions u of (1.1) which satisfy
α sup{|u (l)| : l ≥ L} > 0 for all L ≥ lu. A solution u of (1.1) is said to be non-oscillatory if it is positive
or negative, ultimately; otherwise, it is said to be oscillatory. Equation (1.1) itself is called oscillatory
if all its solutions are oscillatory.

The neutral differential equations find a wide range of applications in certain high-tech fields, such
as control theory, mechanical engineering, physics, population dynamics, economics, and so on, see
[1, 2]. Thus, we can see that investigating the oscillatory and asymptotic behavior of solutions of
neutral differential equations is of great importance. During the past period, many papers appeared
on the oscillatory behavior of differential equations of neutral and delay type, see [3–16], and the
references mentioned therein.

Second-order differential equations are derived from nuclear physics, fluid mechanics, gas
dynamics, and astrophysics applications. Wong [17] established the oscillation criteria for equation

u′′ (l) + r (l) |u (l)|α sgnu (l) = 0

in the super-linear case. After that, many researchers developed several criteria for oscillation for
second-order differential equations, see for example [18–33] and the references mentioned therein.

Wang et al. [21] considered the oscillation behavior of solutions of the second-order neutral
differential equations of the form

(
r (l) (u (l) + p (l) u (l − τ))′

)′
+

∫ b

a
q (l, s) uα (η (l, s)) dσ (s) = 0, (1.3)

where α = 1.
Baculikova and Dzurina [34] studied the asymptotic and oscillation behavior of the solutions of

second-order delay differential equation(
r (l)

(
u′ (l)

)α)′
+ p (l) uα (τ (l)) = 0,

where ∫ l

l0
r−1/α (s) ds→ ∞ as l→ ∞.

The main purpose of this work is to establish new criteria for oscillation of (1.1). New criteria
ensure that all solutions are oscillatory, which is an extension and expansion of previous results. An
example was provided to illustrate the results.
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2. Main results

In this section, we will mention our main results.
To prove our results, we will need the following notation:

z (l) := u (l) + p (l) u (τ (l)) ,

π (l) =

∫ ∞

l

1
r (s)

ds.

Lemma 2.1. Assume that (1.2) holds and∫ ∞

l2

∫ b

a
q (v, s) dsdv = ∞. (2.1)

Moreover, assume that (1.1) has a positive solution u(l) on [l1,∞), where l1 ∈ [l0,∞) is sufficiently
large. Then,

z (l) > 0, z′ (l) < 0 and
(
r (l) z′ (l)

)′
≤ 0, l ≥ l1. (2.2)

Furthermore, (
z (l)
π (l)

)′
≥ 0, l ≥ l1. (2.3)

Proof. Suppose that u(l) is a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that u(l) > 0, u (τ (l)) > 0 and u (η (l, s)) > 0 for l ≥ l1 ≥ l0. From (1.1), we have

(
r (l) z′ (l)

)′
= −

∫ b

a
q (l, s) f (u (η (l, s))) ds

≤ −k
∫ b

a
q (l, s) uα (η (l, s)) ds ≤ 0, l ≥ l1. (2.4)

Therefore, z′ (l) is either eventually negative or eventually positive. Assume on the contrary that there
exists l2 ≥ l1 such that z′ (l) > 0. Then,

u (l) = z (l) − p (l) u (τ (l)) ≥ z (l) − p (l) z (τ (l)) ≥ z (l) (1 − p (l)) , l ≥ l2,

and so,
u (η (l, s)) ≥ z (η (l, s)) (1 − p (η (l, s))) , l ≥ l2, (2.5)

which together with (2.4) implies that

(
r (l) z′ (l)

)′
≤ −k

∫ b

a
q (l, s) zα (η (l, s)) (1 − p (η (l, s)))α ds.

Since η (l, s) is nondecreasing with respect to s, we get η (l, s) ≥ η (l, a) for s ∈ (a, b), and so

(
r (l) z′ (l)

)′
≤ −kzα (η (l, a))

∫ b

a
q (l, s) (1 − p (η (l, s)))α ds. (2.6)
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Define the Riccati function by

ω (l) =
r (l) z′ (l)

zα (η (l, a))
> 0.

Differentiating and using (1.1) and (2.5), we arrive at

ω′ (l) =
(r (l) z′ (l))′

zα (η (l, a))
−
αr (l) z′ (l) z′ (η (l, a)) η′ (l, a)

zα+1 (η (l, a))

≤ −k
∫ b

a
q (l, s) (1 − p (η (l, s)))α ds −

αr (l) z′ (l) z′ (η (l, a)) η′ (l, a)
zα+1 (η (l, a))

≤ −k
∫ b

a
q (l, s) (1 − p (η (l, s)))α ds −

αz′ (η (l, a)) η′ (l, a)
z (η (l, a))

ω (l)

≤ −k
∫ b

a
q (l, s) (1 − p (η (l, s)))α ds. (2.7)

Integrating (2.7) from l2 to l, we obtain

ω (l) ≤ ω (l2) − k
∫ l

l2

∫ b

a
q (v, s) (1 − p (η (v, s)))α dsdv

≤ ω (l2) − k inf
l≥l2

(1 − p (η (l, b)))α
∫ l

l2

∫ b

a
q (v, s) dsdv. (2.8)

From (2.1), we find that (2.8) comes to contradiction with the positivity of ω (l). Hence, the case
z′ (l) > 0 is impossible. Thus, z (l) satisfies (2.2) for l ≥ l1. Now, it follows from the monotonicity of
r (l) z′ (l) that

z (l) ≥ −
∫ ∞

l

r (s) z′ (s)
r (s)

ds ≥ −r (l) z′ (l) π (l) , (2.9)

that is
z (l) + r (l) z′ (l) π (l) ≥ 0, l ≥ l1. (2.10)

Now (
z (l)
π (l)

)′
=
π (l) z′ (l) − z (l) π′ (l)

π2 (l)
. (2.11)

Using (2.10) and (2.11), we conclude that(
z (l)
π (l)

)′
=

r (l) π (l) z′ (l) + z (l)
r (l) π2 (l)

≥ 0, l ≥ l1.

This completes the proof. �

Theorem 2.1. Assume that (1.2) holds. If

0 < 1 − p (l)
π (τ (l))
π (l)

< 1, inf
l≥l1

(
1 − p (l)

π (τ (l))
π (l)

)
> 0 (2.12)

and ∫ ∞

l0

1
r (κ)

∫ κ

l0

∫ b

a
q (v, s) πα (η (v, s)) dsdvdκ = ∞, (2.13)

then, (1.1) is oscillatory.
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Proof. Suppose that u(l) is a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that u(l) > 0, u (τ (l)) > 0 and u (η (l, s)) > 0 for l ≥ l1 ≥ l0. By comparing (2.1) with (2.13), we
find that (2.1) is necessary for (2.13) to be correct. In fact, since the function∫ ∞

l0

∫ b

a
q (v, s) πα (η (v, s)) dsdv

is unbounded due to (1.2) and π′ (l) < 0, (2.1) must hold. Thus, by Lemma 2.1, z (l) satisfies (2.2). It
follows from (2.3) that there is c > 0 such that

z (l)
π (l)

≥ c (2.14)

and

u (l) = z (l) − p (l) u (τ (l)) ≥ z (l) − p (l) z (τ (l))

≥ z (l) − p (l)
π (τ (l)) z (l)

π (l)
= z (l)

(
1 − p (l)

π (τ (l))
π (l)

)
. (2.15)

Using (2.14) and (2.15) in (1.1), we have

(
r (l) z′ (l)

)′
≤ −k

∫ b

a
q (l, s) zα (η (l, s))

(
1 − p (η (l, s))

π (τ (η (l, s)))
π (η (l, s))

)α
ds (2.16)

≤ −k
∫ b

a
q (l, s)

(
1 − p (η (l, s))

π (τ (η (l, s)))
π (η (l, s))

)α
cαπα (η (l, s)) ds. (2.17)

Integrating (2.17) from l1 to l, we have

r (l) z′ (l) − r (l1) z′ (l1) ≤ −kcα
∫ l

l1

∫ b

a
q (v, s)

(
1 − p (η (v, s))

π (τ (η (v, s)))
π (η (v, s))

)α
πα (η (v, s)) dsdv,

that is,

z′ (l) ≤ −
kcα

r (l)

∫ l

l1

∫ b

a
q (v, s)

(
1 − p (η (v, s))

π (τ (η (v, s)))
π (η (v, s))

)α
πα (η (v, s)) dsdv. (2.18)

Integrating (2.18) from l1 to l and taking (2.12) and (2.13) into account, we get

z (l) ≤ z (l1) −
∫ l

l1

kcα

r (κ)

∫ κ

l1

∫ b

a
q (v, s)

(
1 − p (η (v, s))

π (τ (η (v, s)))
π (η (v, s))

)α
πα (η (v, s)) dsdvdκ

≤ z (l1) − kcα inf
l≥l1

(
1 − p (η (l, b))

π (τ (η (l, b)))
π (η (l, b))

)α ∫ l

l1

1
r (κ)

∫ κ

l1

∫ b

a
q (v, s) πα (η (v, s)) dsdvdκ,

which is a contradiction. This completes the proof. �

Theorem 2.2. Assume that (1.2) and (2.1) hold. If

0 < 1 − p (l)
π (τ (l))
π (l)

< 1 (2.19)
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and

W ′ (l) ≥
(
k
∫ b

a
q (l, s) Mα (η (l, s))

(
1 − p (η (l, s))

π (τ (η (l, s)))
π (η (l, s))

)α
ds

)
Wα2

(η (l, a)) (2.20)

is oscillatory, where

M (l) = k
∫ ∞

l
π (v)

∫ b

a
q (v, s) πα (η (v, s))

(
1 − p (η (v, s))

π (τ (η (v, s)))
π (η (v, s))

)α
dsdv,

then, (1.1) is oscillatory.

Proof. Suppose that u(l) is a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that u(l) > 0, u (τ (l)) > 0 and u (η (l, s)) > 0 for l ≥ l1 ≥ l0. Since (2.1) holds, we can conclude
that z (l) satisfies (2.2) for l ≥ l1.

Considering the following(
z (l) + r (l) z′ (l) π (l)

)′
= z′ (l) +

(
r (l) z′ (l)

)′ π (l) + r (l) z′ (l) π′ (l) =
(
r (l) z′ (l)

)′ π (l) , (2.21)

from (1.1) and (2.15), (2.21) becomes

(
z (l) + r (l) z′ (l) π (l)

)′
≤ −kπ (l)

∫ b

a
q (l, s) uα (η (l, s)) ds

≤ −kπ (l)
∫ b

a
q (l, s) zα (η (l, s))

(
1 − p (η (l, s))

π (τ (η (l, s)))
π (η (l, s))

)α
ds ≤ 0. (2.22)

Thus, we find Θ (l) = z (l) + r (l) z′ (l) π (l) ≥ 0 is nonincreasing. Integrating (2.22) from l to ∞ and
using (2.10), we have

Θ (l) ≥ Θ (∞) +

∫ ∞

l
kπ (v)

∫ b

a
q (v, s) zα (η (v, s))

(
1 − p (η (v, s))

π (τ (η (v, s)))
π (η (v, s))

)α
dsdv

≥ k
∫ ∞

l
π (v)

∫ b

a
q (v, s)

(
−r (η (v, s)) z′ (η (v, s))

)α πα (η (v, s))
(
1 − p (η (v, s))

π (τ (η (v, s)))
π (η (v, s))

)α
dsdv

≥ k
∫ ∞

l
π (v)

∫ b

a
q (v, s)

(
−r (v) z′ (v)

)α πα (η (v, s))
(
1 − p (η (v, s))

π (τ (η (v, s)))
π (η (v, s))

)α
dsdv

≥
(
−r (l) z′ (l)

)α k
∫ ∞

l
π (v)

∫ b

a
q (v, s) πα (η (v, s))

(
1 − p (η (v, s))

π (τ (η (v, s)))
π (η (v, s))

)α
dsdv,

since r (l) z′ (l) π (l) < 0, we get

z (l) ≥
(
−r (l) z′ (l)

)α k
∫ ∞

l
π (v)

∫ b

a
q (v, s) πα (η (v, s))

(
1 − p (η (v, s))

π (τ (η (v, s)))
π (η (v, s))

)α
dsdv

≥ M (l)
(
−r (l) z′ (l)

)α . (2.23)

Substituting (2.23) in (2.16), we see that W (l) = −r (l) z′ (l) is a positive solution of the following
inequality

W ′ (l) ≥ k
∫ b

a
q (l, s) Mα (η (l, s))

(
1 − p (η (l, s))

π (τ (η (l, s)))
π (η (l, s))

)α
Wα2

(η (l, s)) ds.
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Using increasing property of W (l), we get

W ′ (l) ≥ kWα2
(η (l, a))

∫ b

a
q (l, s) Mα (η (l, s))

(
1 − p (η (l, s))

π (τ (η (l, s)))
π (η (l, s))

)α
ds,

that is,

W ′ (l) ≥
(
k
∫ b

a
q (l, s) Mα (η (l, s))

(
1 − p (η (l, s))

π (τ (η (l, s)))
π (η (l, s))

)α
ds

)
Wα2

(η (l, a)) ,

which is a contradiction. This completes the proof. �

3. Example

In this section, we will present example to illustrate the results.

Example 3.1. Consider the second-order neutral differential equation(
l4

(
u (l) +

(
l−3

3 (l − 1)−3

)
u (l − 1)

)′)′
+

∫ 1

1/2
3α4 (l + s + 1)3α l3uα (l + s + 1) ds = 0, (3.1)

where α > 1, l0 = 0. Note that r (l) = l4, p (l) = l−3/3 (l − 1)−3 , q (l, s) = 3α4 (l + s + 1)3α l3, τ (l) =

l − 1, η (l, s) = l + s + 1, a = 1/2, b = 1 and f (u) = uα.
Now, we find

π (l) =

∫ ∞

l

1
r (s)

ds =
1

3l3 .

By using Theorem 2.1, we see that

0 < 1 − p (l)
π (τ (l))
π (l)

=
2
3
< 1

and the condition (2.13) is satisfied, where∫ ∞

l0

1
r (κ)

∫ κ

l0

∫ b

a
q (v, s) πα (η (v, s)) dsdvdκ =

∫ ∞

0

1
2

dκ = ∞.

Then (3.1) is oscillatory.

4. Conclusions

This article presents an interesting outcome by studying a class of second-order neutral functional
differential equations. By explicitly taking advantage of proposing new criteria, we ensure that all
solutions are oscillatory. The obtained results can provide theoretical support and empower the
oscillation study for a class of second-order neutral differential equations. An illustrated example is
presented to verify our results. For researchers interested in this field, and as part of our future
research, we seek to find new results for the oscillation of the differential equation(

r (l) (u (l) + p (l) u (τ (l)))(n−1)
)′

+

∫ b

a
q (l, s) f (u (η (l, s))) ds = 0

under condition ∫ ∞

l0

1
r (s)

ds < ∞.
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