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Abstract: This paper deals with the sum of reciprocal Fibonacci numbers. Let f0 = 0, f1 = 1 and

fn+1 = fn + fn−1 for any n ∈ N. In this paper, we prove new estimates on
∞∑

k=n

1
fmk−`

, where m ∈ N and

0 ≤ ` ≤ m − 1. As a consequence of some inequalities, we prove

lim
n→∞


 ∞∑

k=n

1
fmk−`

−1

− ( fmn−` − fm(n−1)−`)

 = 0.

And we also compute the explicit value of


 ∞∑

k=n

1
fmk−`

−1. The interesting observation is that the value

depends on m(n + 1) + `.
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1. Introduction

Recently many interesting formulas of the floor function for tails of infinite convergent series have
been obtained. The motivation of such research comes from the sum of reciprocal Fibonacci numbers.
Let f0 = 0, f1 = 1 and fn+1 = fn + fn−1 for all n ∈ N. The Fibonacci numbers fn can be written as the
closed form by Binet’s formula [9]

fn =
αn − βn

α − β
,
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where α and β are two solutions of x2− x−1 = 0. No closed form for the reciprocal Fibonacci constant

∞∑
k=1

1
fk
≈ 3.359885666243 . . .

is known, but this number has been proved irrational by André-Jeannin [1] in 1989.
Problem A. Let

∑∞
k=1 ak be a convergent series. Find the value of

 ∞∑
k=n

ak

−1 ,
where bxc denotes the greatest integer ≤ x.

In 2008, Ohtsuka and Nakamura [7] proved
 ∞∑

k=n

1
fk

−1 =

 fn−2, n ≥ 2 is even;
fn−2 − 1, n ≥ 1 is odd.

(1.1)

The similar results have been obtained for some generalized Fibonacci numbers in [3]. In [10, 12, 13],
the reciprocal sums of some linear subsequences of Fibonacci numbers or Pell numbers have been
obtained as following. 

 ∞∑
k=n

1
f2k

−1 = f2n−1 − 1,


 ∞∑

k=n

1
f2k−1

−1 = f2n−2, (1.2)

and 
 ∞∑

k=n

1
f3k

−1 =

 f3n−1 + f3n−4, n ≥ 2 is even;
f3n−1 + f3n−4 − 1, n ≥ 3 is odd.

(1.3)

Also similar results for Fibonacci polynomials have been proved in [2,11]. It is surprising that the floor
function for tails of convergent series leads to such a simple formula. However, the above result does
not give any information on the convergence of the decimal part of tails of convergent series.

Now we suggest the following new question on the convergence of the reciprocal sum.
Problem B.∗ Let

∑∞
k=1 ak be a convergent series. Find a simple form of a function gn (if it exists) such

that

lim
n→∞


 ∞∑

k=n

ak

−1

− gn

 = 0. (1.5)

∗In [8], one can see the similar problem of finding gn satisfying ∞∑
k=n

ak

−1

∼ gn, (1.4)

where un ∼ vn means that un/vn tends to 1 as n→ ∞. Since (1.5) implies (1.4) and the converse is not true, our main theorems are quite
stronger results than Theorem 1 in [8].
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For the proof of Problem B, we need sharper inequality than one in Problem A. Recently, there are some
results [5, 6] to the above question for the Hurwitz function and the reciprocal sum of two products of
Fibonacci numbers by the authors of this paper.

The main results of this paper are that we give the complete answers to Problem A and Problem B
when ak = 1

fmk−`
for any m ∈ N and 0 ≤ ` ≤ m − 1, where ak is the reciprocal of the most general form

of the linear subsequences of Fibonacci numbers. More precisely, we prove that gn has the form of

gn := gn,m,` = fmn−` − fm(n−1)−`.

In Section 2, we prove the inequalities sharper than in [7] and as a consequence, we obtain the
following.

Theorem 1.1. It holds that

lim
n→∞


 ∞∑

k=n

1
fk

−1

− fn−2

 = 0.

In fact, (
∑∞

k=n
1
fk

)−1 is increasing to fn−2 when n is odd, and decreasing to fn−2 when n is even. See
the inequalities in Proposition 2.4.

In Sections 3 and 4, we prove new inequalities for all linear subsequential Fibonacci numbers
(
∑∞

k=n
1

fmk−`
)−1. The estimates are sharp enough to solve Problems A and B. More precisely, we prove

the following.

Theorem 1.2. For any m ∈ N and 0 ≤ ` ≤ m − 1, we have
 ∞∑

k=n

1
fmk−`

−1 =

 fmn−` − fm(n−1)−` − 1, m(n + 1) + ` is even,

fmn−` − fm(n−1)−`, m(n + 1) + ` is odd.

The formula in [3] does not imply Theorems 1.2. For the proof of Theorem 1.2, we prove some
inequalities in Theorem 3.6 and 4.4.

The main contribution of this paper is the answer to Problem B in the case ak = 1/ fmk−`.

Theorem 1.3. For any m ∈ N and 0 ≤ ` ≤ m − 1, we have

lim
n→∞


 ∞∑

k=n

1
fmk−`

−1

− ( fmn−` − fm(n−1)−`)

 = 0. (1.6)

It is interesting that the limit fmn−` − fm(n−1)−` in (1.6) is an integer. In general, it is not guaranteed
that the limit in (1.6) is an integer. In fact, in other case, the limit is not an integer in [5, 6].

Remark 1.4. It is hard to compute the form of
∑∞

k=n
1

fmk−`
using the Binet’s formula. The advantage

of this paper is to prove (1.6) without use of explicit forms. Moreover, our results imply all known
formulas.

(i) If m = 1 and ` = 0, then gn = fn − fn−1 = fn−2 in (1.1).
(ii) If m = 2 and ` = 0, then gn = f2n − f2n−2 = f2n−1 in (1.2). If m = 2 and ` = 1, then gn =

f2n−1 − f2n−3 = f2n−2 in (1.2).
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(iii) If m = 3 and ` = 0, then gn = f3n − f3n−3 = f3n−1 + f3n−4 in (1.3).

And also we can construct infinitely many different formulas of various types. For example,
Theorem 1.2 provides the new formula

 ∞∑
k=n

1
f8k−5

−1 = f8n−5 − f8n−13.

Remark 1.5. We need to explain the main contributions of this paper.

(i) For Problem A, there are many similar results for various series of Fibonacci numbers as (1.1)–
(1.3). Theorem 1.2 covers all previously known results for all linear subsequences of Fibonacci
numbers. Here the term m(n + 1) + ` is a new observation in Theorem 1.2.

(ii) Problem B is a quite new problem suggested by the authors of this paper. For the proof of
Problem B, we need sharper inequality. (For example, see Propositions 2.3 and 2.4.) Thus
Problem B is a harder task than Problem A. So far, there is no general theory for Problem B.

2. Proof of Theorem 1.1

The following lemma plays an important role in proving the essential inequalities.

Lemma 2.1. [7] Let {an}
∞
n=1 and {bn}

∞
n=1 be sequences of positive real numbers with lim

n→∞
an = 0.

(i) If an < bn + an+1 holds for any n ∈ N, then an <

∞∑
k=n

bk holds for any n ∈ N.

(ii) If an < (bn + bn+1) + an+2 holds for any even (or odd, respectively) integer n, then an <

∞∑
k=n

bk

holds for any even (or odd, respectively) integer n.

Proof. (i) If we apply the inequality repeatedly, we obtain

an < bn + an+1 < bn + (bn+1 + an+2) < · · · <
n+∑̀
k=n

bk + an+`+1

for any ` ∈ N. As ` → ∞, the proof is done. (ii) Use the inequality

an <

n+2`−1∑
k=n

bk + an+2`

for any ` ∈ N. �

The following property is powerful for computing the Fibonacci numbers.

Lemma 2.2 (Catalan’s identity). [9] For all n, k ∈ N with n > k, we have

f 2
n = fn−k fn+k + (−1)n+k f 2

k .
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In [7], Ohtsuka and Nakamura proved the following inequalities in order to obtain the formula for
 ∞∑

k=n

1
fk

−1.
Proposition 2.3. [7] For all n ≥ 1, we have

(i) fn−2 − 1 <

 ∞∑
k=n

1
fk

−1

< fn−2, when n is odd;

(ii) fn−2 <

 ∞∑
k=n

1
fk

−1

< fn−2 + 1, when n is even.

In fact, one can see that the difference

∣∣∣∣∣∣∣
 ∞∑

k=n

1
fk

−1

− fn−2

∣∣∣∣∣∣∣ gets smaller as n is large (See Table 1).

Table 1. Difference between

 ∞∑
k=n

1
fk

−1

and fn−2.

n

 ∞∑
k=n

1
fk

−1

fn−2 n

 ∞∑
k=n

1
fk

−1

fn−2

5 1.8991 · · · 2 6 3.0622 · · · 3
11 33.9943 · · · 34 12 55.0034 · · · 55
17 609.9996 · · · 610 18 987.0001 · · · 987
23 10945.9999 · · · 10946 24 17711.0000 · · · 17711

Motivated by the above investigation, we refine the inequalities in Proposition 2.3 as follows.

Proposition 2.4. For any positive integers n, we have

(i) fn−2 − cn <

 ∞∑
k=n

1
fk

−1

< fn−2, when n is odd;

(ii) fn−2 <

 ∞∑
k=n

1
fk

−1

< fn−2 + cn, when n is even,

where cn = 1
fn

is the reciprocal of Fibonacci numbers.

Proof. At first we need to compare the values of

1
fn−2 + (−1)ncn

−
1

fn + (−1)ncn+2
and

1
fn

+
1

fn+1
.

Note that
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1
fn−2 + (−1)ncn

−
1

fn + (−1)ncn+2
−

(
1
fn

+
1

fn+1

)
=

fn−1 − (−1)n(cn − cn+2)
( fn−2 + (−1)ncn)( fn + (−1)ncn+2)

−
fn+2

fn fn+1

=
A

( fn−2 + (−1)ncn)( fn + (−1)ncn+2) fn fn+1
,

where

A := fn( fn−1 fn+1 − fn−2 fn+2) − cncn+2 fn+2

− (−1)n{(cn − cn+2) fn fn+1 + cn fn fn+2 + cn+2 fn+2 fn−2}.

By Lemma 2.2, we have

fn−1 fn+1 − fn−2 fn+2 = ( f 2
n − (−1)n−1) − ( f 2

n − (−1)n) = 2 · (−1)n.

It follows that

A =(−1)n{2 fn − cn fn fn+2 − cn+2 fn+2 fn−2 − (cn − cn+2) fn fn+1} − cncn+2 fn+2

=(−1)n

{
2 fn − fn+2 − fn−2 −

(
1
fn
−

1
fn+2

)
fn fn+1

}
−

1
fn
.

Since 2 fn − fn+2 − fn−2 = − fn, we have

A = (−1)n

(
− fn −

f 2
n+1

fn+2

)
−

1
fn
.

Now we will show that A > 0 if n is odd and A < 0 if n is even.
(i) If n is odd, then

A = fn +
f 2
n+1

fn+2
−

1
fn
> fn −

1
fn
≥ 0.

It follows that

1
fn−2 − cn

>

(
1
fn

+
1

fn+1

)
+

1
fn − cn+2

(2.1)

for all odd integers n. If we apply Lemma 2.1 (ii) to the inequality (2.1), we obtain

1
fn−2 − cn

>

∞∑
k=n

1
fk
, so that fn−2 − cn <

 ∞∑
k=n

1
fk

−1

.

(ii) If n is even, then

A = − fn −
f 2
n+1

fn+2
−

1
fn
< 0.

Similarly as the proof of (i), we can prove (ii) using Lemma 2.1 (ii). �
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Since cn = 1
fn
→ 0 as n→ ∞, Proposition 2.4 implies the following consequence.

Theorem 2.5 (Theorem 1.1, again). It holds that

lim
n→∞


 ∞∑

k=n

1
fk

−1

− fn−2

 = 0.

3. Estimates of enne
 ∞∑

k=n

1
fmk−`

−1

when m is even

Throughout this paper, we write

cn =
1
fn
, gn = fmn−` − fm(n−1)−`, 0 ≤ ` ≤ m − 1.

For simplicity, we assume that n ≥ 2. Then gn is well-defined, since m(n − 1) − ` ≥ m − ` ≥ 1. In fact,
it is enough to consider the case when n is sufficiently large.

We begin this section with the elementary and important properties of Fibonacci numbers.

Lemma 3.1. [4, 9] For any positive integers m, n, we have

(i) fm+n = fm−1 fn + fm fn+1,
(ii) fm+n ≥ fm+1 fn and equality holds only if n = 1.

Proof. We only prove (ii). By (i), we have

fm+n = fm−1 fn + fm fn+1≥ fm−1 fn + fm fn = fm+1 fn

for any positive integers m, n. �

Lemma 3.2. Define gn := fmn−` − fm(n−1)−`. Then for all m ∈ N, we have

(gn+1 − gn) fmn−` − gngn+1 = (−1)m(n−1)−`+1 f 2
m.

Proof. By Lemma 2.2, we have

(gn+1 − gn) fmn−` − gngn+1 =( fm(n+1)−` − 2 fmn−` + fm(n−1)−`) fmn−`

− ( fmn−` − fm(n−1)−`)( fm(n+1)−` − fmn−`)
= fm(n−1)−` fm(n+1)−` − f 2

mn−`

=(−1)m(n−1)−`+1 f 2
m.

�

Proposition 3.3. Let m ∈ N be even. Then for any n ∈ N, we have

(i)

 ∞∑
k=n

1
fmk−`

−1

< gn, when ` is even;
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(ii)

 ∞∑
k=n

1
fmk−`

−1

> gn, when ` is odd.

Proof. By Lemma 3.2, we have

1
gn
−

1
gn+1

−
1

fmn−`
=

gn+1 − gn

gngn+1
−

1
fmn−`

=
(gn+1 − gn) fmn−` − gngn+1

gngn+1 fmn−`

=
(−1)`+1 f 2

m

gngn+1 fmn−`
,

since (−1)m(n−1)−`+1 = (−1)`+1 for any even positive integer m.

(i) If ` is even, then

1
gn

<
1

fmn−`
+

1
gn+1

.

By Lemma 2.1 (i), it completes the proof.

(ii) If ` is odd, then we can prove (ii) in a similar way. �

Lemma 3.4. For any positive integers m, n, we have

fm+2n − fm =

n∑
k=1

fm+2k−1.

Proof. It is easily checked that

fm + ( fm+1 + fm+3 + · · · + fm+2n−1)
= fm+2 + ( fm+3 + fm+5 + · · · + fm+2n−1)
= · · ·

= fm+2n−2 + fm+2n−1

= fm+2n.

�

Proposition 3.5. Let m ∈ N be even and let cn = 1
fn

. Then for any n ≥ 2, we have

(i)

 ∞∑
k=n

1
fmk−`

−1

> gn − cn, when ` is even;

(ii)

 ∞∑
k=n

1
fmk−`

−1

< gn + cn, when ` is odd.
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Proof. (i) If ` is even, then we will prove that

1
gn − cn

>
1

fmn−`
+

1
gn+1 − cn+1

. (3.1)

Note that

1
gn − cn

−
1

gn+1 − cn+1
−

1
fmn−`

=
gn+1 − gn + (cn − cn+1)
(gn − cn)(gn+1 − cn+1)

−
1

fmn−`

>
gn+1 − gn

(gn − cn)(gn+1 − cn+1)
−

1
fmn−`

=
fmn−`(gn+1 − gn) − (gn − cn)(gn+1 − cn+1)

(gn − cn)(gn+1 − cn+1) fmn−`
.

By Lemma 3.2, we have

fmn−`(gn+1 − gn) − (gn − cn)(gn+1 − cn+1)
={ fmn−`(gn+1 − gn) − gngn+1} + cngn+1 + cn+1gn − cncn+1

> − f 2
m + cngn+1 − cncn+1

> − f 2
m + cngn+1 − 1.

(3.2)

Note that for any n ≥ 2, by Lemmas 3.1 (i) and 3.4,

cngn+1 =
fn(m+1)−` − fmn−`

fn

=
fn(m+1)−`−1 + fn(m+1)−`−3 + · · · + fmn−`+1

fn

>
fn(m+1)−`−1 + fn(m+1)−`−3

fn

> fm(n+1)−`−n + fm(n+1)−`−n−2

> fm fmn−`−n+1 + 1
≥ f 2

m fmn−`−n−m+2 + 1.

Since mn − ` − n − m + 2 ≥ (m − 1)(n − 2) + 1 ≥ 1 for n ≥ 2 and ` ≤ m − 1, we have

cngn+1 ≥ f 2
m + 1. (3.3)

By (3.2) and (3.3), we obtain the inequality

fmn−`(gn+1 − gn) − (gn − cn)(gn+1 − cn+1) > 0,

which implies (3.1). By Lemma 2.1 (i), it completes the proof.

(ii) If ` is odd, then we will show that

1
gn + cn

<
1

fmn−`
+

1
gn+1 + cn+1

. (3.4)
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Note that

1
gn + cn

−
1

gn+1 + cn+1
−

1
fmn−`

=
gn+1 − gn − (cn − cn+1)
(gn + cn)(gn+1 + cn+1)

−
1

fmn−`

<
gn+1 − gn

(gn + cn)(gn+1 + cn+1)
−

1
fmn−`

=
fmn−`(gn+1 − gn) − (gn − cn)(gn+1 − cn+1)

(gn + cn)(gn+1 + cn+1) fmn−`
.

By Lemma 3.2 and (3.3), we have

fmn−`(gn+1 − gn) − (gn − cn)(gn+1 − cn+1) = f 2
m − cngn+1 − cn+1gn − cncn+1

< f 2
m − cngn+1 < 0.

By Lemma 2.1 (i), it completes the proof. �

Combining Propositions 3.3 and 3.5, we obtain the following.

Theorem 3.6. Let cn = 1
fn

. If m is even, then

(i) gn − cn <

 ∞∑
k=n

1
fmk−`

−1

< gn, when ` is even;

(ii) gn <

 ∞∑
k=n

1
fmk−`

−1

< gn + cn, when ` is odd.

Example 3.7. Table 2 shows some examples for m = 4, 6.

Table 2. Examples for Theorem 3.6.

n

 ∞∑
k=n

1
f4k−3

−1

f4n−3 − f4n−7 n

 ∞∑
k=n

1
f6k−2

−1

f6n−2 − f6n−8

5 1364.0008 · · · 1364 3 931.9963 · · · 932
6 9349.0001 · · · 9349 4 16723.9997 · · · 16724

4. Estimates of
 ∞∑

k=n

1
fmk−`

−1

when m is odd

Recall that gn = fmn−` − fm(n−1)−` for n ≥ 2 and 0 ≤ ` ≤ m − 1. We already proved when m = 1 in
Proposition 2.4. Throughout this section, we assume that m ≥ 3 is an odd integer.

Lemma 4.1. If m ∈ N is odd, then we have

(i) (gn+2 − gn) fmn−` fm(n+1)−` − gngn+2( fmn−` + fm(n+1)−`) = (−1)n+` f 2
m( fm(n+2)−` − fm(n−1)−`),

(ii) gn+2( fmn−` + fm(n+1)−`) = −(−1)n+` f 2
m + fm(n+1)−`( fm(n+2)−` − fmn−`),

AIMS Mathematics Volume 6, Issue 11, 12379–12394.
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(iii) gn( fmn−` + fm(n+1)−`) = −(−1)n+` f 2
m + fmn−`( fm(n+1)−` − fm(n−1)−`).

Proof. Note that

(gn+2 − gn) fmn−` fm(n+1)−` − gngn+2( fmn−` + fm(n+1)−`)
=( fm(n+2)−` − fm(n+1)−` − fmn−` + fm(n−1)−`) fmn−` fm(n+1)−`

− ( fmn−` − fm(n−1)−`)( fm(n+2)−` − fm(n+1)−`)( fmn−` + fm(n+1)−`)
= − fm(n+2)−`( f 2

mn−` − fm(n−1)−` fm(n+1)−`)
− fm(n−1)−`( f 2

m(n+1)−` − fmn−` fm(n+2)−`).

By Lemma 2.2, we have

(gn+2 − gn) fmn−` fm(n+1)−` − gngn+2( fmn−` + fm(n+1)−`)
= −(−1)m(n+1)−` f 2

m fm(n+2)−` − (−1)mn−` f 2
m fm(n−1)−`.

If m is odd, then (−1)m(n+1)−` = −(−1)n+`. It completes the proof of (i). Note that

gn+2( fmn−` + fm(n+1)−`)
=( fm(n+2)−` − fm(n+1)−`)( fmn−` + fm(n+1)−`)
= − ( f 2

m(n+1)−` − fmn−` fm(n+2)−`) + fm(n+1)−`( fm(n+2)−` − fmn−`).

By Lemma 2.2 (i), we obtain (ii). Similarly, we also obtain (iii). �

The previous lemma shows that we need to split the cases when n + ` is odd or even.

Proposition 4.2. Let m ∈ N be odd. Then for any n ≥ 2, we have

(i)

 ∞∑
k=n

1
fmk−`

−1

< gn, when n + ` is odd;

(ii)

 ∞∑
k=n

1
fmk−`

−1

> gn, when n + ` is even.

Proof. Since m is odd, by Lemma 4.1 (i), we have

1
gn
−

1
gn+2

−

(
1

fmn−`
+

1
fm(n+1)−`

)
=

gn+2 − gn

gngn+2
−

fmn−` + fm(n+1)−`

fmn−` fm(n+1)−`

=
(−1)n+` f 2

m( fm(n+2)−` − fm(n−1)−`)
gngn+2 fmn−` fm(n+1)−`

.

(i) If n + ` is odd, then

1
gn

<
1

fmn−`
+

1
fm(n+1)−`

+
1

gn+2
. (4.1)

By Lemma 2.1 (ii), it completes the proof.
(ii) If n + ` is even, the proof is similar. �
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Proposition 4.3. Let m ∈ N be odd and let cn = 1
fn

. Then for any n ≥ 4, we have

(i)

 ∞∑
k=n

1
fmk−`

−1

> gn − cn, when n + ` is odd;

(ii)

 ∞∑
k=n

1
fmk−`

−1

< gn + cn, when n + ` is even.

Proof. Note that

1
gn + (−1)n+`cn

−
1

gn+2 + (−1)n+`cn+2
−

(
1

fmn−`
+

1
fm(n+1)−`

)
=

gn+2 − gn − (−1)n+`(cn − cn+2)
(gn + (−1)n+`cn)(gn+2 + (−1)n+`cn+2)

−
fmn−` + fm(n+1)−`

fmn−` fm(n+1)−`

=
A

(gn + (−1)n+`cn)(gn+2 + (−1)n+`cn+2) fmn−` fm(n+1)−`
,

where

A ={gn+2 − gn − (−1)n+`(cn − cn+2)} fmn−` fm(n+1)−`

− (gn + (−1)n+`cn)(gn+2 + (−1)n+`cn+2)( fmn−` + fm(n+1)−`).

By Lemma 4.1, we have

A ={(gn+2 − gn) fmn−` fm(n+1)−` − gngn+2( fmn−` + fm(n+1)−`)} + · · ·
=(−1)n+` f 2

m( fm(n+2)−` − fm(n−1)−`) + · · · ,

where · · · means the terms which contain cn or cn+2. Thus we have

A =(−1)n+` f 2
m( fm(n+2)−` − fm(n−1)−`)

− (−1)n+`{cngn+2( fmn−` + fm(n+1)−`) + cn+2gn( fmn−` + fm(n+1)−`)}
− (−1)n+`(cn − cn+2) fmn−` fm(n+1)−`

− cncn+2( fmn−` + fm(n+1)−`).

For simplicity, we write

A1 = f 2
m( fm(n+2)−` − fm(n−1)−`).

By Lemma 4.1 (ii) and (iii), we write

A2 :=cngn+2( fmn−` + fm(n+1)−`)
= − (−1)n+`cn f 2

m + cn fm(n+1)−`( fm(n+2)−` − fmn−`),
A3 :=cn+2gn( fmn−` + fm(n+1)−`)

= − (−1)n+`cn+2 f 2
m + cn+2 fmn−`( fm(n+1)−` − fm(n−1)−`)
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and

A4 := (cn − cn+2) fmn−` fm(n+1)−`,

A5 := cncn+2( fmn−` + fm(n+1)−`).

It follows that

A = (−1)n+`(A1 − A2 − A3 − A4) − A5.

Note that by Lemma 3.1 (ii), we have

cn fm(n+1)−` =
fm(n+1)−`

fn
> fmn+m−`−n+1 > f 2

m fmn−m−n−`+3 ≥ f 2
m,

since mn − m − n − ` + 3 ≥ (m − 1)(n − 2) + 2 ≥ 2 for any n ≥ 2. Similarly we have

cn+2 fmn−` =
fmn−`

fn+2
> fmn−`−n−1 > f 2

m fmn−`−n−2m+1 ≥ f 2
m,

since mn − ` − n − 2m + 1 ≥ (m − 1)(n − 3) − 1 ≥ 1 for any n ≥ 4. Thus we have

A2 > −(−1)n+`cn f 2
m + f 2

m( fm(n+2)−` − fmn−`),
A3 > −(−1)n+`cn+2 f 2

m + f 2
m( fm(n+1)−` − fm(n−1)−`).

It follows that

−A1 + A2 + A3 > f 2
m( fm(n+1)−` − fmn−`) − (−1)n+`(cn + cn+2) f 2

m. (4.2)

Now we must show that A > 0 if n + ` is odd and A < 0 if n + ` is even.

Case (1) : Assume that n + ` is odd. Then

A = −A1 + A2 + A3 + A4 − A5

> (−A1 + A2 + A3) − A5

> f 2
m( fm(n+1)−` − fmn−`) − cncn+2( fmn−` + fm(n+1)−`)

≥ 4( fm(n+1)−` − fmn−`) −
1
2

( fmn−` + fm(n+1)−`)

=
1
2
{7 fm(n+1)−` − 9 fmn−`}

>
1
2
{7 fm fmn−`+1 − 9 fmn−`} > 0.

Case (2) : Assume that n + ` is even. Then

A = A1 − A2 − A3 − A4 − A5

< A1 − A2 − A3

< (cn + cn+2) f 2
m − ( fm(n+1)−` − fmn−`) f 2

m

< −( fm(n+1)−` − fmn−` − 2) f 2
m < 0,

since fm(n+1)−` − fmn−` ≥ fm+1 − fm ≥ f4 − f1 ≥ 2 for m ≥ 3 and n ≥ 1. �
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Combining Propositions 4.2 and 4.3, we obtain the following.

Theorem 4.4. Let cn = 1
fn

. If m is odd, then

(i) gn − cn <

 ∞∑
k=n

1
fmk−`

−1

< gn, when n + ` is odd;

(ii) gn <

 ∞∑
k=n

1
fmk−`

−1

< gn + cn, when n + ` is even.

Example 4.5. Table 3 shows some examples for m = 3, 5.

Table 3. Examples for Theorem 4.4.

n

 ∞∑
k=n

1
f3k−2

−1

f3n−2 − f3n−5 n

 ∞∑
k=n

1
f5k−3

−1

f5n−3 − f5n−8

5 177.9959 · · · 178 4 1452.9985 · · · 1453
6 754.0009 · · · 754 5 16114.0001 · · · 16114

5. Proof of main theorems and concluding remarks

At first, we summarize the inequalities proved in Sections 3 and 4.

Theorem 5.1 (Theorem 3.6, again). Let cn = 1
fn

. If m is even, then

(i) gn − cn <

 ∞∑
k=n

1
fmk−`

−1

< gn, when ` is even;

(ii) gn <

 ∞∑
k=n

1
fmk−`

−1

< gn + cn, when ` is odd.

Theorem 5.2 (Theorem 4.4, again). Let cn = 1
fn

. If m is odd, then

(i) gn − cn <

 ∞∑
k=n

1
fmk−`

−1

< gn, when n + ` is odd;

(ii) gn <

 ∞∑
k=n

1
fmk−`

−1

< gn + cn, when n + ` is even.

Combining the above two theorems, we obtain the following.

Theorem 5.3. Let cn = 1
fn

. For any m ∈ N and 0 ≤ ` ≤ m − 1, we have

(i) gn − cn <

 ∞∑
k=n

1
fmk−`

−1

< gn, when m(n + 1) + ` is even;

(ii) gn <

 ∞∑
k=n

1
fmk−`

−1

< gn + cn, when m(n + 1) + ` is odd.
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Now we can prove Theorems 1.2 and 1.3 simultaneously from Theorem 5.3. Since gn ∈ N and
0 < cn ≤ 1 for all n ∈ N, we can give an answer to the Problem A as following.

Theorem 5.4 (Theorem 1.2, again). For any m ∈ N and 0 ≤ ` ≤ m − 1, we have
 ∞∑

k=n

1
fmk−`

−1 =

 fmn−` − fm(n−1)−` − 1, m(n + 1) + ` is even;
fmn−` − fm(n−1)−`, m(n + 1) + ` is odd.

Since cn = 1
fn
→ 0 as n→ ∞, by Theorem 5.3, we finally obtain the following theorem. This is the

answer to the Problem B.

Theorem 5.5 (Theorem 1.3, again). For any m ∈ N and 0 ≤ ` ≤ m − 1, we have

lim
n→∞


 ∞∑

k=n

1
fmk−`

−1

− ( fmn−` − fm(n−1)−`)

 = 0.

6. Conclusions

So far, the researches on the reciprocal sum have been concentrated to Problem A, which is the
question on finding the floor function. Problem A does not give any information on the decimal or the
convergence of the reciprocal sum. Thus Problem B is more natural than Problem A. But, so far there
is no general theory for Problem B. We found the behavior of the tails of the reciprocal sums for the
linear subsequential Fibonacci numbers. Our theorem covers all previous results and we can obtain
many formulas of various types.
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