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Keywords: weak conjugate function; the inequality; Robust abstract perturbational weak conjugate
duality; Robust strong duality
Mathematics Subject Classification: 90C46, 90C48

1. Introduction

Robust optimization problems [4, 5, 7, 8, 22, 23, 29–31] and robust dual
theory [3, 6, 10–13, 15, 16, 18, 19, 28] have attracted much attention of mathematical researchers.
Many of the works in this area were considered convex robust optimization problems, in [6,15] robust
Lagrangian strong duality was established in convex optimization and in [16] robust Lagrangian
strong duality theorem was given whenever the Lagrangian function is convex. Moreover, duality
theory which is based on conjugate function plays an important role in optimization. In convex
analysis, dual problem is constructed in terms of conjugate functions by using the well-known
Legendre-Fenchel transform. Robust classical conjugate duality was presented for convex
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optimization problem in [18]. Furthermore, in [13], characterizations of inequality below

p(x) = sup
v∈V

Fv(x, 0Y) ≥ l(x) (1.1)

in terms of robust abstract perturbational duality were established, where X, Y are locally convex
Hausdorff topological vector spaces, V , ∅ is an uncertainty set, FV : X × Y → R̄ = R∪ {±∞} for each
v ∈ V , l : X → R̄ is a lower semicontinuous proper convex function. The results were then applied to
robust DC and robust convex optimization problems, and strong Fenchel duality and strong Lagrangian
duality for these classes of robust problems were also obtained.

It is well known that dual problems constructed by using general augmented Lagrangian functions
or weak conjugate functions, and strong duality conditions for noncovex optimization problems were
comprehensively studied by researchers [1, 2, 13, 14, 17, 20, 21, 25, 27, 33]. In particular, the conjugate
function theory, developed by Azimov and Gasimov in [1], used superlinear functions of the form
〈x∗, x〉 − c‖x‖ instead of linear functions 〈x∗, x〉 used in convex analysis. They extended the usual
definition of the subdifferential, using this class of functions, and established duality relations in terms
of so-called weak subdifferentiability of the perturbation function associated with the problem under
consideration. By using weak conjugate function and weak subdifferential given in [1], Küçük ect.
in [17] constructed weak Fenchel conjugate dual problem and weak Fenchel-Lagrange conjugate dual
problem, presented necessary and sufficient conditions for the strong duality of the dual problems and
nonconvex scalar optimization problem; In [33], the duality scheme and strong duality theorems for
nonconvex optimization problem were presented, which are based on the weak conjugate function and
the weak subdifferential concept given in [1].

Nevertheless, there are few duality results on nonconvex robust optimization problem in the
literature, since it is not only very hard to verify the zero duality gap conditions formulated in terms of
perturbation and/or dualizing parameterization functions, but also to derive the conditions formulated
in terms of objective and constraint functions. Motivated by [13, 17, 33], the aim of this paper is to
formulate robust dual problems by using the weak conjugate function we introduced (see
Definition 2.1) and establish robust strong duality results for nonconvex uncertain optimization
problem. Characterization of general inequality (1.1) above with uncertainty is established according
to robust perturbational weak conjugate duality, where we only assume the right hand function l
in (1.1) is abstract convex [9, 24], which covers very broad classes on nonconvex functions. Then the
results are used as key tools to obtain the strong duality for the robust augmented Lagrange
dual (RDL), robust weak Fenchel dual (RDw

F) and the robust weak Fenchel-Lagrange dual problems
(RDw

LF) which are all defined by using the weak conjugate function, and are also applied to investigate
the optimality conditions for nonconvex robust optimization problem.

The paper is organized as follows. In section 2, we recall some notations and introduce some
preliminary results which will be used in the rest of paper. In section 3, we construct three types
of robust dual problems for the primal optimization problem by using the weak conjugate function
and obtain the strong duality respectively by establishing the inequality (1.1) via robust perturbation
weak conjugate duality. In section 4, we investigate the relations among the optimal objective values
of (RDL), (RDw

F), (RDw
LF) and the robust optimization (RP) of (UP). Finally, section 5, we present

necessary and sufficient optimality conditions for (RDL), (RDw
F), R(Dw

LF) and (RP).
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2. Preliminary results

In this section, we introduce the definitions of weak conjugate, weak biconjugate function, weak
subdifferentials and some basic theorems and lemmas about these notions.

Throughout this paper, let X, Y be two locally convex vector spaces with their topological dual
spaces X∗ and Y∗, endowed with the weak∗ topologies W(X∗, X) and W(Y∗,Y), respectively. Let D ⊂ Y
be a nonempty closed convex cone, the dual cone of D is defined by

D∗ = {y∗ ∈ Y∗ : 〈y∗, y〉 ≥ 0, ∀ y ∈ D},

where we use the notation 〈·, ·〉 for the value of the continuous linear function y∗ ∈ Y∗ and y ∈ Y . We
use the notation R+ = {x | x ∈ R, x ≥ 0}. We also recall the corresponding concepts and results on
(extended) real-valued functions. Let f : G → R̄, g : G → R̄ be functions defined on a set G ⊆ X, then
the inequality f ≤ g means that f (x) ≤ g(x) for all x ∈ G. The domain and the epigraph of f are

dom f = {x ∈ X : f (x) < +∞},

and
epi f = {(x, r) ∈ X × R : x ∈ dom f , f (x) ≤ r},

respectively. The strict epigraph of f : X → R̄ is the set

epis f = {(x, r) ∈ X × R : x ∈ dom f , f (x) < r}.

The function f is said to be proper if dom f , ∅ and f (x) , −∞. Let H be a set of functions h : G → R̄.
The set supp( f ,H) = {h ∈ H | h ≤ f } is called the support set of f with respect to H. The function
coH f : G → R̄ defined by coH f (x) = sup{h(x) | h ∈ supp( f ,H)} is called the H−convex hull of f . A
function f : G → R̄ is called abstract convex with respect to H (or H−convex) at a point x ∈ G if there
exist a set U ⊆ supp( f ,H) such that f (x) = sup{h(x) | h ∈ H}. It is clear that f is H−convex at x if and
only if f (x) = coH f (x). If f is H−convex at each point x ∈ G, then f is called H−convex on G.

Let L be a set of functions defined on a set G. Functions hl,r of the form hl,r = l(x) − r, x ∈ G, with
l ∈ L and r ∈ R are called L−affine. Denoted by HL the set of all L−affine functions. Denoted by ΓX

the union of the set of all functions f : G → R ∪ {+∞} and the function −∞, where −∞(x) = −∞ for
all x ∈ G.

We now introduce the definitions of new weak conjugate and weak biconjugate functions. First we
need to have a function σ for the above definitions. It is assumed that σ : Y → R+ is continuous
function with the following properties:

σ(0) = 0, σ(y) , 0 if y , 0. (2.1)

Definition 2.1. (a) A function f w : X∗ × R+ → R̄ defined by

f w(x∗, c) = sup
x∈X
{〈x∗, x〉 − cσ(x) − f (x)}

is called the weak conjugate function of f . This function is HX−convex;
(b) The function f ww : X → R̄ defined by

f ww(x) = sup
(x∗,c)∈X∗×R+

{〈x∗, x〉 − cσ(x) − f w(x∗, c)}
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is called the weak biconjugate function of f . This function is HX∗×R+
−convex. The classical result of

abstract convex analysis states that f ∈ HX is abstract convex with respect to HX∗×R+
at a point x if and

only if f (x) = f ww(x).

Remark 2.1. In the definition of weak biconjugate function if r = 0, then f w(x∗, 0) = f ∗(x∗) where
f ∗(x∗) is the classical conjugate function; if σ(x) = ‖x‖, then f w(x∗, c) reduces to the f w(0, x∗, c) in [1].

Definition 2.2. Let X be a locally convex vector space. Let f : X → R be a single valued function and
x0 ∈ X be a point with f (x0) is finite. A pair (x∗, c) ∈ X∗ × R+ is called weak subgradient of f at x0 if

f (x) − f (x0) ≥ 〈x∗, x − x0〉 − cσ(x − x0) for all x ∈ X.

The set ∂w f (x0) = {(x∗, c) ∈ X∗ × R+ | f (x) − f (x0) ≥ 〈x∗, x − x0〉 − cσ(x − x0), ∀ x ∈ X} of all weak
subgradients of f at x0 is called the weak subdifferential of f at x0. If ∂w f (x0) , ∅, then f is called
weakly subdifferentiable at x0.

Remark 2.2. If σ(x) = ‖x‖, then the definition of 2.2 reduces to the corresponding definition in [1].

Consider the following optimization problem with uncertain parameter in the constraint:

(UP) inf
x∈Q
{ f (x) | g(x, v) ∈ −D},

where f : X → R̄ and g : X × Z → Y are given functions, Z is another locally convex vector space,
Q ⊂ X is a nonempty closed set, v is uncertain parameter and belongs to V ⊆ Z.

For each v ∈ V , we denote
S v = {x ∈ Q | g(x, v) ∈ −D}.

In this paper, robust optimization approach is applied to (UP). Now, we associate with (UP) its robust
counterpart

(RP) inf
x∈Q
{ f (x) | g(x, v) ∈ −D, ∀ v ∈ V}.

We denote the feasible set of (RP) by

S = {x ∈ Q | g(x, v) ∈ −D, ∀ v ∈ V} =
⋂
v∈V

S v.

The problem (RP) is called the robust primal problem of (UP). The infimum for problem (RP) is
denoted by inf (RP) and every element x ∈ S such that f (x) = inf (RP) is called a robust solution of
(UP) (or a solution of (RP)).

The Lagrange perturbation function of (UP) is F : V × X × Y → R̄ define as follows:

Fv(x, y) =

{
f (x), g(x, v) + y ∈ −D, x ∈ Q
+∞, otherwise.

(2.2)

The weak conjugate function of Fv is Fw
v : X∗ × R+ × Y∗ × R+ → R̄ given by

Fw
v (x∗, c, y∗, d) = sup

(x,y)∈X×Y
{〈x∗, x〉 − cσ(x) + 〈y∗, y〉 − dσ(y) − Fv(x, y)}

= sup
x∈Q

sup
y∈−D−g(x,v)

{〈x∗, x〉 − cσ(x) + 〈y∗, y〉 − dσ(y) − f (x)} (2.3)

for all (x∗, c, y∗, d) ∈ X∗ × R+ × Y∗ × R+.
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Remark 2.3. It follows immediately from the definition of weak biconjugate function, we have

Fww
v (x, 0) = sup

(x∗,c,y∗,d)
{〈x∗, x〉 − cσ(x) + 〈y∗, 0〉 − dσ(0) − Fw

v (x∗, c, y∗, d)}

= sup
(x∗,c,y∗,d)

{〈x∗, x〉 − cσ(x) − sup
(x,y)
{〈x∗, x〉 − cσ(x) + 〈y∗, y〉 − dσ(y) − Fv(x, y)}}

≤ sup
(x∗,c,y∗,d)

{〈x∗, x〉 − cσ(x) − 〈x∗, x〉 + cσ(x) + Fv(x, 0)}

= Fv(x, 0).

Remark 2.4. Considering (1.1) and the definition of Fv(x, y), we can conclude that

p(x) =

{
f (x), x ∈ S ,
+∞, otherwise.

Let q : X∗ × R+ → R̄ be the function defined by

q(x∗, c) = inf
v∈V

inf
(y∗,d)∈Y∗×R+

Fw
v (x∗, c, y∗, d), ∀ (x∗, c) ∈ X∗ × R+.

Let the projection Π : (x∗, c, y∗, d, r) ∈ X∗ × R+ × Y∗ × R+ × R→ (x∗, c, r) ∈ X∗ × R+ × R, and let

Λ =
⋃
v∈V

Π(epiFw
v )

Lemma 2.1. Let pw : X∗ × R+ → R̄ be a weak conjugate function, then pw is lower semicontinuous
and convex on X∗ × R+.

Proof. By the definition of weak conjugate function, we have

pw(x∗, c) = sup
x∈X
{〈x∗, x〉 − cσ(x) − p(x)}

= sup
x∈X
{〈x∗, x〉 − (p + cσ)(x)}

= (p + cσ)∗(x∗),

where (ρ+cσ)(x) = ρ(x)+cσ(x), so pw is lower semicontinuous on X∗×R+. Since x∗ is linear function
and c is a constant, so convexity is easy to obtain. The proof is complete. �

The following lemmas generalize [ [13], Lemmas 2.1 and 2.2].

Lemma 2.2. One has
(i) qw = sup

v∈V
Fww

v (x, 0Y) ≤ p;

(ii) pw ≤ qww ≤ q;
(iii)epis p =

⋃
v∈V

Π(episF
w
v );

(iv)Λ ⊂ epiq ⊂ epipw and coΛ ⊂ epipw.

Proof. For any x ∈ X, from the definition of qw one has
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qw(x) = sup
(x∗,c)∈X∗×R+

{〈x∗, x〉 − cσ(x) − q(x∗, c)}

= sup
(x∗,c)∈X∗×R+

{〈x∗, x〉 − cσ(x) − inf
v∈V

inf
(y∗,d)∈Y∗×R+

Fw
v (x∗, c, y∗, d)}

= sup
v∈V

sup
(x∗,c)∈X∗×R+

(y∗,d)∈Y∗×R+

{〈x∗, x〉 − cσ(x) + 〈y∗, 0〉 − dσ(0) − Fw
v (x∗, c, y∗, d)}

= sup
v∈V

Fww
v (x, 0Y). (2.4)

Since Fww
v (x, 0Y) ≤ Fv(x, 0Y) ≤ p(x) for all v ∈ V and x ∈ X, (2.4) yields qw(x) ≤ p(x) and (i) holds,

while (ii) follows from (i).

Proof of (iii). Take (x∗, c, r) ∈ episq. Then

inf
v∈V

(y∗,d)∈Y∗×R+

Fw
v (x∗, c, y∗, d) < r,

which implies there exist v̄ ∈ V and (ȳ∗, d̄) ∈ Y∗ × R+ such that

Fw
v̄ (x∗, c, ȳ∗, d̄) < r,

so (x∗, c, ȳ∗, d̄, r) ∈ episF
w
v̄ and (x∗, c, r) = Π(episF

w
v̄ ) ⊂

⋃
v∈V

Π(episF
w
v̄ ), which mean

episq ⊂
⋃
v∈V

Π(episF
w
v ).

On the other hand, take (x∗, c, r) ∈
⋃
v∈V

Π(episF
w
v ), then there exist v̄ ∈ V such that (x∗, c, r) ∈

Π(episF
w
v̄ ). Since Π is surjective, there is (ȳ∗, d̄) ∈ Y∗ × R+ such that (x∗, c, ȳ∗, d̄, r) ∈ episF

w
v̄ , and so

(x∗, c, r) ∈ episq as

q(x∗, c) = inf
v∈V

inf
(y∗,d)∈Y∗×R+

Fw
v (x∗, c, y∗, d) ≤ Fw

v̄ (x∗, c, ȳ∗, d̄) < r,

for all (x∗, c) ∈ X∗ × R+. Thus, episq ⊃
⋃
v∈V

Π(episF
w
v ) which, together with the inclusion above, proves

that (iii) holds.

Proof of (iv). Since Π is surjective and

q(x∗, c) = inf
v∈V

inf
(y∗,d)∈Y∗×R+

Fw
v (x∗, c, y∗, d) ≤ Fw

v (x∗, c, ȳ∗, d̄)

for all v ∈ V , (ȳ∗, d̄) ∈ Y∗ × R+ and (x∗, c) ∈ X∗ × R+, it follows that Λ ⊂ epiq. By (ii), epiq ⊂ epipw, so
coΛ ⊂ epipw. �

Lemma 2.3. Assume that there exists x̄ ∈ X such that sup
v∈V

Fww
v (x, 0Y) < +∞. Then one has epiqww =

coΛ. Moreover, the following statements are equivalent:
(i) pww = sup

v∈V
Fww

v (·, 0Y);

(ii) epipw = coΛ.
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Proof. Observe that qw = sup
v∈V

Fww
v (·, 0Y), and so by assumption, one obtains domqw , ∅. According

to [34], epiqww = co(epiq) which, together with Lemma 2.1 (iii), implies

co(epiq) = co(episq) = co(
⋃
v∈V

ΠepisF
w
v ) = co(

⋃
v∈V

ΠepiFw
v ) = coΛ.

For the equivalence of (i) and (ii), note that in light of Lemma 2.1, (i) is equivalent to pww = qw, which
means also that qww = pw. The last equality and epiqww = coΛ show epipw = epiqww = coΛ, which
is (ii). The proof is complete. �

3. Robust strong duality for nonconvex uncertain optimization problem

The aim of this section is to construct three types of robust dual problems for (UP) by using weak
conjugate function: the robust augmented Lagrange dual, the robust weak Fenchel dual and the robust
weak Fenchel-Lagrange dual problem, to establish characterization of inequality (1.1) according to
robust abstract perturbational weak conjugate duality, and finally, by employing these results to obtain
robust strong duality results for (UP).

3.1. Robust augmented Lagrange duality

To define an augmented Lagrange function for (UP), we need augmented function σ to be a
continuous function with the properties (2.1). For each fixed v ∈ V , the uncertain augmented
Lagrange function associated with (UP) is given by

Lv(x, y∗, d) = inf
y∈Y
{Fv(x, y) − 〈y∗, y〉 + dσ(y)}

= inf
y∈Y

{
f (x) − 〈y∗, y〉 + dσ(y), g(x, v) + y ∈ −D, x ∈ Q
+∞, otherwise,

for x ∈ X, y ∈ Y , y∗ ∈ Y∗ and d ∈ R+, where function Fv(x, y) is defined in (2.2). By using the definition
of Fv(x, y), we can concretize the augmented Lagrange associated with (UP)

Lv(x, y∗, d) = inf
y∈−D−g(x,v)

{ f (x) − 〈y∗, y〉 + dσ(y)},

for x ∈ Q, y∗ ∈ Y∗ and d ∈ R+.
The uncertain dual function of (UP) is

φv(y∗, d) = inf
x∈Q

Lv(x, y∗, d), for (Y∗, d) ∈ Y∗ × R+.

Then uncertain augmented Lagrange dual problem of (UP) is defined as

(UDL) sup
(y∗,d)∈Y∗×R+

φv(λ, r).

The optimistic counterpart of the uncertain augmented Lagrange dual (UDL) is a deterministic
maximization problem given by
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(RDL) sup
(v,y∗,d)∈V×Y∗×R+

φv(y∗, d) = sup
(v,y∗,d)∈V×Y∗×R+

inf
x∈Q

Lv(x, y∗, d)

= sup
(v,y∗,d)∈V×Y∗×R+

inf
x∈Q

inf
y∈−D−g(x,v)

{ f (x) − 〈y∗, y〉 + dσ(y)}.

Now, when x∗ = 0X∗ and c = 0 in (2.3), the value of the function Fw
v (0, 0, y∗, d) simply denoted by

Fw
v (0, 0, y∗, d) = sup

x∈Q
sup

y∈−D−g(x,v)
{〈y∗, y〉 − dσ(y) − f (x)}.

Hence,
−Fw

v (0, 0, y∗, d) = inf
x∈Q

inf
y∈−D−g(x,v)

{ f (x) − 〈y∗, y〉 + dσ(y)}.

As a result, robust augmented Lagrange dual problem for (UP) with respect to Fv can be given by

(RDL) sup
(y∗,d)∈Y∗×R+

sup
v∈V
{−Fw

v (0, 0, y∗, d)}.

The supremum for problem (RDL) is denoted by sup(RDL) and any element (v, y∗, d) ∈ V × Y∗ × R+

such that −Fw
v (0, 0, y∗, d) = sup(RDL) is termed as a solution of (RDL).

Theorem 3.1. (Weak duality) sup(RDL) ≤ inf(RP).

Proof. For arbitrary (v, y∗, d) ∈ V × Y∗ × R+,

−Fw
v (0, 0, y∗, d) = − sup

x∈Q
sup

y∈−D−g(x,v)
{〈y∗, y〉 − dσ(y) − f (x)}

= inf
x∈Q

inf
y∈−D−g(x,v)

{ f (x) − 〈y∗, y〉 + dσ(y)}

≤ inf
x∈S V

f (x)

≤ inf
x∈S

f (x) = inf(RP),

so we conclude that sup(RDL) ≤ inf(RP) �

In the following sections we always assume Γ is a set of functions defined on X, H is a set of
functions and H , ∅, define ΓH(X) = {l ∈ Γ(x) | l(x) is H-convex on X}.

Theorem 3.2. (Robust abstract perturbational weak conjugate duality) Consider the following
statements:

(a1) epipw = Λ;
(b1) For any l ∈ ΓH(X), the following assertions are equivalent:
(b11) p(x) ≥ l(x);
(b12) for all (x∗, c) ∈ X∗ × R+,

there exist (v, y∗, d) ∈ V × Y∗ × R+ such that Fw
v (x∗, c, y∗, d) ≤ lw(x∗, c).

One has (a1)⇔ (b1).
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Proof. (a1) ⇒ (b1) Assume that (a1) holds. Let l ∈ ΓH(x). If (b1) holds, i.e., p ≥ l, then pw ≤ lw, and
hence for all (x∗, c) ∈ dom lw, (x∗, c, lw(x∗, c)) ∈ epipw. Since (a1) holds, there exist v ∈ V such that
(x∗, c, lw(x∗, c)) ∈ Π(epiFw

v ), and so there exist (y∗, d) ∈ Y∗ × R+ such that Fw
v (x∗, c, y∗, d) ≤ lw(x∗, c),

which implies that (b12) holds.
Conversely, if (b12) holds, then for any (x∗, c) ∈ dom lw, there exist (v, y∗, d) ∈ V × Y∗ × R+ such

that Fw
v (x∗, c, y∗, d) ≤ lw(x∗, c). Taking Lemma 2.1 (ii) into account, we get pw(x∗, c) ≤ q(x∗, c) ≤

Fw
v (x∗, c, y∗, d) ≤ lw(x∗, c), and hence l = lww ≤ pww ≤ p, the “ = ” above is from l being H-convex.

(b1) ⇒ (a1). Assume that (b1) holds, we will show that (a1) holds. To this aim, considering
Lemma 2.1 (iv) into account, it is sufficient to prove that

epipw ⊂ Λ.

Take every (x∗, c, r) ∈ epipw. Then 〈x∗, x〉 − cσ(x) − p(x) ≤ pw(x∗, c) ≤ r for all x ∈ X. Now set
l(x) = 〈x∗, x〉 − cσ(x) − r, then l ∈ ΓH(X) and l ≤ p, so by (b1), there exist (v, y∗, d) ∈ V × Y∗ × R+ such
that Fw

v (x∗, c, y∗, d) ≤ lw(x∗, c) ≤ r. This shows that (x∗, c, r) ∈ Π(epiFw
v ) and hence (x∗, c, r) ∈ Λ. �

Remark 3.1. Theorem 3.2 generalizes [ [13], Theorem 3.1]. In [13] the authors used the classical
conjugate function and assumed the right-side function l(x) of inequality (1.1) is convex lower
semicontinuous, whereas Theorem 3.2 in this paper, we employ the weak conjugate function and only
assume l(x) is abstract convex, which covers very broad classes on nonconvex function.

Theorem 3.3. (Strong duality) Let epipw = Λ, then there exist (v0, y∗0, d0) ∈ V × Y∗ × R+ such that
(v0, y∗0, d0) is a solution of (RDL) and sup(RDL) = inf(RP).

Proof. Let l(x) = inf
x∈X

p(x), then l(x) = inf(RP) for all x ∈ S . From assumption epipw = Λ and
considering x∗ = 0X∗ , c = 0 in Theorem 3.2, then there exist (v0, y∗0, d0) ∈ V × Y∗ × R+ such that

Fw
v0

(0, 0, y∗0, d0) ≤ lw(0, 0) = − inf(RP),

which is equivalent to
−Fw

v0
(0, 0, y∗0, d0) ≥ inf(RP),

considering weak duality of Theorem 3.1, we have

inf(RP) ≥ sup(RDL) ≥ −Fw
v0

(0, 0, y∗0, d0) ≥ inf(RP),

this yields (v0, y∗0, d0) is a solution of (RDL) and sup(RDL) = inf(RP). �

Theorem 3.4. Assume that domp , ∅ and pww = sup
v∈V

Fww
v (·, 0Y). Then the following statements are

equivalent:
( f1) Λ = coΛ;
(b1) For any ΓH(X), the following assertions are equivalent:
(b11) p(x) ≥ l(x);
(b12) for all (x∗, c) ∈ X∗ ×R+, there exist (v, y∗, d) ∈ V ×Y∗ ×R+ such that Fw

v (x∗, c, y∗, d) ≤ lw(x∗, c).

Proof. Since pww = sup
v∈V

Fww
v (·, 0Y), Lemma 2.3 and f1 give epipw = coΛ = Λ. The conclusion follows

from Theorem 3.2. �

AIMS Mathematics Volume 6, Issue 11, 12321–12338.



12330

Remark 3.2. Theorem 3.4 gives an equivalent condition that the set Λ is closed convex set.

Next we give a sufficient condition for pww = sup
v∈V

Fww
v (·, 0).

Proposition 3.1. Assume that for any (x∗, c) ∈ X∗ × R+, there exists v̄ ∈ V such that ∂yFv̄(·, 0Y) , ∅ on
S v̄ and sup

x∈S
{〈x∗, x〉 − cσ(x) − f (x)} = sup

x∈S v̄

{〈x∗, x〉 − cσ(x) − f (x)}, then pww = sup
v∈V

Fww
v (·, 0).

Proof. Since for any (x∗, c) ∈ X∗ × R+, there exists v̄ ∈ V such that ∂yFv̄(·, 0Y) , ∅, so there exist
(y∗, d) ∈ Y∗ × R+ such that (y∗, d) ∈ ∂yFv̄(·, 0Y), which implies

−Fv̄(x, 0) ≥ −Fv̄(x, y) + 〈y∗, y〉 − dσ(y), x ∈ S v̄, y ∈ Y,

that is
− Fv̄(x, 0) ≥ 〈y∗, y〉 − dσ(y) − Fv̄(x, y), x ∈ S v̄, y ∈ Y. (3.1)

Following from (3.1), we obtain

Fw
v̄ (x∗, c, y∗, d) = sup

(x,y)∈X×Y
{〈x∗, x〉 − cσ(x) + 〈y∗, y〉 − dσ(y) − Fv̄(x, y)} (3.2)

≤ sup
x∈X
{〈x∗, x〉 − cσ(x) − Fv̄(x, 0)}

= sup
x∈S v̄

{〈x∗, x〉 − cσ(x) − f (x)}

Since sup
x∈S
{〈x∗, x〉 − cσ(x) − f (x)} = sup

x∈S v̄

{〈x∗, x〉 − cσ(x) − f (x)}, together with (3.2), we get

Fw
v̄ (x∗, c, y∗, d) ≤ sup

x∈S
{〈x∗, x〉 − cσ(x) − f (x)}

= sup
x∈X
{〈x∗, x〉 − cσ(x) − P(x)}

= pw(x∗, c). (3.3)

The first equality above follows from Remark 2.1. Taking account into (3.3) and the definition of
pww(x), one has

pww(x) = sup
(x∗,c)∈X∗×R+

{〈x∗, x〉 − cσ(x) − pw(x∗, c)}

≤ sup
(x∗,c)∈X∗×R+

{〈x∗, x〉 − cσ(x) − Fw
v̄ (x∗, c, y∗, d)}

≤ sup
v∈V

sup
(x∗,c,y∗,d)∈X∗×R+×Y∗×R+

{〈x∗, x〉 − cσ(x) − Fw
v (x∗, c, y∗, d)}

= sup
v∈V

Fww
v (x, 0)

≤ pww(x).

Which implies pww = sup
v∈V

Fww
v (·, 0). The proof is complete. �

Remark 3.3. We note that ∂yFv̄(·, 0Y) , ∅ on S v̄ is a general assumption. In fact, we just need to
assume augmented function σ(y) satisfy σ(y) ≥ ‖y‖ for all y ∈ Y and take (y∗, d) ∈ Y∗ × R+ such that
‖y∗‖ ≤ d, then (3.1) holds from the definition of Fv̄(x, 0) and Fv̄(x, y) (see (2.2)), so we can conclude
that (y∗, d) ∈ ∂yFv̄(·, 0Y), which implies ∂yFv̄(·, 0Y) , ∅.
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Remark 3.4. In the proof of the strong duality theorem 3.3, our sufficient condition epipw = Λ is
different from the existed conditions. Duality Theorem 11.59 in [26], the condition was
supposed dualizing parameterization φ(x, y) is level-bounded in x locally uniformly in y, duality
theorems in [1, 32], conditions were assumed perturbation function h = inf

x
φ(x, y) is proper and

weakly subdifferential at the origin 0 ∈ Y. All these conditions were formulated in terms of
dualization parameterization or perturbation functions associated with the given problem.

We recall the assumption epipw = Λ in theorem 3.3, which employ the epigraph of function Fw
v

defined by (2.3), it is also related to dualization parameterization Fv(x, y), and we know that epipw =

coΛ is easy to satisfy from Lemma 2.3, Proposition 3.1 and Remark 3.1. Moreover, Theorem 3.4 gives
an equivalent condition that the set Λ is closed convex set, so it is worth further exploration to find the
sufficient conditions that can ensure the set Λ is not only a closed convex set but also only related to
the objective function and the constraint function.

3.2. Robust weak Fenchel conjugate duality

The Fenchel perturbation function of (UP) is F : V × X × X → R̄ defined as

Fv(x, u) =

{
f (x + u), g(x, v) ∈ −D, x ∈ Q,
+∞, otherwise.

The weak conjugate function of Fv is Fw
v : X∗ × R+ × X∗ × R→ R+ defined as

Fw
v (x∗, c, u∗, d) = sup

(x,u)∈X×X
{〈x∗, x〉 − cσ(x) + 〈u∗, u〉 − dσ(u) − Fv(x, u)}

= sup
x∈S v

sup
u∈X
{〈x∗, x〉 − cσ(x) + 〈u∗, u〉 − dσ(u) − f (x + u)}

= sup
x∈S v

sup
γ∈X
{〈x∗, x〉 − cσ(x) + 〈u∗, γ − x〉 − dσ(γ − x) − f (γ)},

for x∗, u∗ ∈ X∗ and c, d ∈ R+, where γ = x + u. By choosing x∗ = 0X∗ , c = 0, we have

Fw
v (0, 0, u∗, d) = sup

x∈S v

sup
γ∈X
{〈u∗, γ − x〉 − dσ(γ − x) − f (γ)}.

Hence, the robust Fenchel dual problem (RDw
F) with respect to Fv is defined as

(RDw
F) sup

(u∗,d)∈X∗×R+

sup
v∈V
{−Fw

v (0, 0, u∗, d)}

= sup
(u∗,d)∈X∗×R+

sup
v∈V

inf
x∈S v

inf
γ∈X
{ f (γ) − 〈u∗, γ − x〉 + dσ(γ − x)}

The supremum for problem (RDF) is denoted by sup(RDF) and any element (v, u∗, d) ∈ V × X∗ × R+

such that −Fw
v (0, 0, u∗, d) = sup(RDF) is termed as a solution of (RDF).

Remark 3.5. sup(RDw
F) ≤ inf(RP) follows immediately from the definition of Fw

v (0, 0, u∗, d).

Let the projection Π1 : (x∗, c, u∗, d, r) ∈ X∗ × R+ × X∗ × R+ × R→ (x∗, c, r) ∈ X∗ × R+ × R and let

Λ1 =
⋃
v∈V

Π1(epiFw
v )

Theorem 3.5. (Strong duality) Let epipw = Λ1, then there exists (v0, u∗0, d0) ∈ V × X∗ × R+ such that
(v0, u∗0, d0) is a solution of (RDF) and sup(RDF) = inf(RP)

Proof. The proof is similar to that of Theorem 3.3. �
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3.3. Fenchel-Lagrange weak conjugate duality

The Fenchel-Lagrange perturbation function of (UP) is F : V × X × X × Y → R̄ defined as

Fv(x, u, y) =

{
f (x + u), g(x, v) + y ∈ −D, x ∈ Q,

+∞, otherwise.

The weak conjugate function of Fv(x, u, y) is defined as Fw
v : X∗ × R+ × X∗ × R+ × Y∗ × R+ → R+:

Fw
v (x∗, c, u∗, d, y∗, e) = sup

(x,u,y)∈X×X×Y
{〈x∗, x〉 − cσ(x) + 〈u∗, u〉 − dσ(u) + 〈y∗, y〉 − eσ(y) − Fv(x, u, y)}

= sup
x∈Q
u∈X

sup
y∈−D−g(x,v)

{〈x∗, x〉 − cσ(x) + 〈u∗, u〉 − dσ(u) + 〈y∗, y〉 − eσ(y) − f (x + u)}

= sup
x∈Q
γ∈X

sup
y∈−D−g(x,v)

{〈x∗, x〉 − cσ(x) + 〈u∗, γ − x〉 − dσ(γ − x) + 〈y∗, y〉 − eσ(y) − f (γ)},

where γ = x + u. By choosing x∗ = 0X∗ , c = 0 and d = e, we have

Fw
v (0, 0, u∗, d, y∗, d) = sup

x∈Q
γ∈X

sup
y∈−D−g(x,v)

{〈u∗, γ − x〉 − dσ(γ − x) + 〈y∗, y〉 − dσ(y) − f (γ)}.

Hence, the robust Fenchel-Lagrange dual problem (RDw
FL) with respect to Fv is defined as

(RDw
FL) sup

(u∗,d)∈X∗×R+

(y∗,d)∈Y∗×R+

sup
v∈V

inf
x∈Q
γ∈X

inf
y∈−D−g(x,v)

{−Fw
v (0, 0, u∗, d, y∗, d)}

= sup
(u∗,d)∈X∗×R+

(y∗,d)∈Y∗×R+

sup
v∈V

inf
x∈Q
γ∈X

inf
y∈−D−g(x,v)

{ f (γ) − 〈u∗, γ − x〉 − 〈y∗, y〉 + dσ(γ − x) + dσ(y)}

The supremum for problem (RDw
FL) is denoted by sup(RDw

FL) and any element (v, u∗, d, y∗, d) ∈ V ×
X∗ × R+ × X∗ × R+ such that −Fw

v (0, 0, u∗, d) = sup(RDw
FL) is termed as a solution of (RDw

FL).

Theorem 3.6. (Weak duality) sup(RDw
FL) ≤ inf(RP).

Proof. For any (v, u∗, d, y∗, d) ∈ V × X∗ × R+ × Y∗ × R+,

−Fw
v (0, 0, (v, u∗, d, y∗, d)) = inf

x∈Q
γ∈X

inf
y∈−D−g(x,v)

{ f (γ) − 〈u∗, γ − x〉 − 〈y∗, y〉 + dσ(γ − x) + dσ(y)}

≤ inf
x∈Q

inf
y∈−D−g(x,v)

{ f (x) − 〈y∗, y〉 + dσ(y)}

≤ inf
x∈S V

f (x)

≤ inf
x∈S

f (x) = inf(RP),

so we conclude that sup(RDL) ≤ inf(RP) �

Let the projection Π2 : (x∗, c, u∗, d, y∗, e, r) ∈ X∗×R+×X∗×R+×Y∗×R+×R→ (x∗, c, r) ∈ X∗×R+×R
and let

Λ2 =
⋃
v∈V

Π2(epiFw
v ).

Theorem 3.7. (Strong duality) Let epipw = Λ2, then there exists (v, u∗, d, y∗, d) ∈ V ×X∗×R+×Y∗×R+

such that (v, u∗, d, y∗, d) is a solution of (RDw
FL) and inf(RP) = sup(RDw

FL).

Proof. The proof is similar to that of Theorem 3.3. �
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4. Relationships among the objective values of dual problems (RDL), (RDw
F) and (RDw

FL)

In this section, we examine the relations among the objective values of dual problems (RDL), (RDw
F)

and (RDw
FL).

Proposition 4.1. The inequality sup(Dw
FL) ≤ sup(RDL) holds.

Proof. Let (v, u∗, y∗, d) be an arbitrary element of V × X∗ × Y∗ × R+. It is known that

inf
x∈Q

inf
γ∈X

inf
y∈−D−g(x,v)

{ f (γ) − 〈u∗, γ − x〉 − 〈y∗, y〉 + dσ(γ − x) + dσ(y)}

≤ inf
x∈Q

inf
y∈−D−g(x,v)

{ f (x) − 〈y∗, y〉 + dσ(y)}

≤ sup
(v,y∗,d)∈V×Y∗×R+

inf
x∈Q

inf
y∈−D−g(x,v)

{ f (x) − 〈y∗, y〉 + dσ(y)}

= sup(RDL).

As (v, u∗, y∗, d) ∈ V × X∗ × Y∗ × R+ is arbitrary element, we get

sup(Dw
FL) = sup

(v,u∗,y∗,d)
inf
x∈Q

inf
γ∈X

inf
y∈−D−g(x,v)

{ f (γ) − 〈u∗, γ − x〉 − 〈y∗, y〉 + dσ(γ − x) + dσ(y)}

≤ sup(RDL).

�

Proposition 4.2. The inequality sup(RDw
FL) ≤ sup(RDw

F) holds.

Proof. Let (v, u∗, y∗, d) be an arbitrary element of V × X∗ × Y∗ × R+. It is known that 0 ∈ −D − g(x, v)
for all x ∈ S v, so we have

inf
x∈Q
γ∈X

inf
y∈−D−g(x,v)

{ f (γ) − 〈u∗, γ − x〉 − 〈y∗, y〉 + dσ(γ − x) + dσ(y)}

≤ inf
x∈S v
γ∈X

inf
y∈−D−g(x,v)

{ f (γ) − 〈u∗, γ − x〉 − 〈y∗, y〉 + dσ(γ − x) + dσ(y)}

≤ inf
x∈S v
γ∈X

{ f (γ) − 〈u∗, γ − x〉 + dσ(γ − x)}

≤ sup
(v,u∗,d)∈V×X∗×R+

inf
x∈S v
γ∈X

{ f (γ) − 〈u∗, γ − x〉 + dσ(γ − x)}

= sup(RDw
F).

Hence, taking the supremum in both sides over (v, u∗, y∗, d) ∈ V × X∗ × Y∗ × R+, we get

sup(RDw
FL) ≤ sup(RDw

F).

This completes the proof. �

Proposition 4.3. Let Λ2
⋂

({0X∗}×{0}×R+) = epipw⋂({0X∗}×{0}×R+), then sup(RDw
FL) = sup(RDw

F) =

sup(RDL) = inf(RP).
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Proof. Under these assumptions and considering Theorem 3.7, it is known that sup(RDw
FL) = inf(RP).

By Propositions 4.1 and 4.2, we obtain

sup(RDw
FL) = sup(RDw

F) = sup(RDL) = inf(RP).

�
Now, we present an example of robust optimization problem which prove the relationships between

the optimal values of the three proposed dual problems.

Example 1. Consider the following one-dimensional optimization with data uncertainty in constraint:

(UP) inf
x∈Q
{ f (x) | g(x, v) = vx ≤ 0},

where f : R→ R is defined as

f (x) =

{
−|x|, x ≤ 1
−1 , x > 1.

for all x ∈ R and Q = R, the data v ∈ [−1, 1] is uncertain.
In this example, we always assume function defined in (2.1) is σ(x) = |x|. Let us calculate the

weak conjugate function of Lagrange perturbation Fv(x, u) with x∗ = c = 0. If 0 < v ≤ 1, then
Fw

v (0, 0, y∗, d) = +∞, if −1 ≤ v ≤ 0,

Fw
v (0, 0, y∗, d) =

{
+∞, z∗ − d > 0 or z∗ + d < 0, or z∗ + d > 0 and 1 + (z∗ + d)v > 0
u∗ − c + 1, u∗ − c ≥ 0.

then we have sup(RDL) = −1.
Let us calculate the weak conjugate function of Fenchel perturbation Fv(x, u) with x∗ = c = 0. If

0 < v ≤ 1, then Fw
v (0, 0, u∗, d) = +∞, otherwise if −1 ≤ v ≤ 0,

Fw
v (0, 0, u∗, d) =

{
+∞, u∗ + c + 1 < 0 or u∗ > c
u∗ − c + 1, u∗ − c ≥ 0.

Then we obtain sup(RDw
F) = −1.

We also get sup(RDw
FL) = −∞. So we obtain −∞ = sup(RDw

FL) < sup(RDw
F) = sup(RDL) = −1.

Remark 4.1. Consider Example 1, let v ≤ 0, from [ [17], Example1], we know the classical conjugate
function of Fenchel perturbation Fv(x, y) with x∗ = 0 is F∗v(0, y∗) = +∞, so we can conclude that the
optimal value of robust Fenchel dual problem in classical sense (denoted by sup(RD∗F)) is

sup(RD∗F) = sup
v∈[−1,0]

sup
y∗∈Y∗
−F∗v(0, y∗) = −∞ < sup(RDw

F) = −1,

which shows that weak conjugate function is more likely to guarantee zero dual gaps than classical
conjugate function.
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5. Optimality conditions

In this section, we give optimality conditions for (RDw
F), (Dw

FL) and (RP).

Theorem 5.1. Let Λ1
⋂

({0X∗} × {0} × R+) = epipw⋂({0X∗} × {0} × R+).
(a) If x̄ is a solution of (RP), then there exists a solution (v0, u∗0, d0) ∈ V × X∗ × R+ such that

(i) f (x̄) = inf
x∈S v0

inf
γ∈X
{ f (γ) − 〈u∗0, γ − x〉 + d0σ(γ − x)},

(ii) (u∗0, d0) ∈ ∂w f (x̄).
(b) Conversely, if x̄ ∈ S and (v0, u∗0, d0) ∈ V×X∗×R+ satisfies conditions (i) and (ii), then x̄ is a solution
of (RP) and (v0, u∗0, d0) is a solution of (RDw

F).

Proof. (a) Let Λ1
⋂

({0X∗} × {0} × R+) = epipw⋂({0X∗} × {0} × R+). Theorem 3.5 ensures the existence
of an optimal solution (v0, u∗0, d0) ∈ V × X∗ ×R+ of (RDw

F) and sup(Dw
F) = inf(RP). Since x̄ is a solution

of (RP), so we get

f (x̄) = inf
x∈S v0

inf
γ∈X
{ f (γ) − 〈u∗0, γ − x〉 + d0σ(γ − x)},

which means condition (i) is satisfied.
From (i) we have

f (x̄) = inf
x∈S v0

inf
γ∈X
{ f (γ) − 〈u∗0, γ − x〉 + d0σ(γ − x)}

≤ f (γ) − 〈u∗0, γ − x̄〉 + d0σ(γ − x̄), ∀ γ ∈ X

which implies (u∗0, d0) ∈ ∂w f (x̄). Therefore, (ii) is satisfied.
(b) Let (i) be satisfied. Then

inf(RP) ≤ f (x̄)
= inf

x∈S v0

inf
γ∈X
{ f (γ) − 〈u∗0, γ − x〉 + d0σ(γ − x)}

≤ sup
(v,u∗,d)∈V×X∗×R+

inf
x∈S v0

inf
γ∈X
{ f (γ) − 〈u∗0, γ − x〉 + d0σ(γ − x)}

= sup(RDw
F).

Considering the above formula and weak duality, it is easy to get the following,

inf(RP) = sup(Dw
F) = f (x̄) = inf

x∈S v0

inf
γ∈X
{ f (r) − 〈u∗0, γ − x〉 + d0σ(γ − x)},

that is, x̄ and (v0, u∗0, d0) are solutions of (RP) and (RDw
F) respectively. �

Theorem 5.2. Let Λ2
⋂

({0X∗} × {0} × R+) = epipw⋂({0X∗} × {0} × R+).
(a) If x̄ is a solution of (RP), then there exist a solution (v0, u∗0, d0, y∗0, d0) ∈ V × X∗ ×R+ × Y∗ ×R+ such
that

(i) f (x̄) = inf
x∈S v0
γ∈X

inf
y∈−D−g(x,v0)

{ f (γ) − 〈u∗0, γ − x〉 − 〈y∗0, y〉 + d0σ(γ − x) + d0σ(y)};

(ii) (u∗0, d0) ∈ ∂w f (x̄);

AIMS Mathematics Volume 6, Issue 11, 12321–12338.



12336

(iii) inf
y∈−D−g(x̄,v0)

{d0σ(y) − 〈y∗0, y〉} = 0.

(b) Conversely, if x̄ ∈ S and (v0, u∗0, d0, y∗0, d0) ∈ V × X∗ × R+ × Y∗ × R+ satisfy conditions (i)–(iii), then
x̄ is solution of of (RP) and (v0, u∗0, d0, y∗0, d0) is solution of (Dw

FL).

Proof. (a) Let Λ2
⋂

({0X∗}
⋂
{0}×R+) = epipw⋂({0X∗}×{0}×R+). Theorem 3.7 guarantees the existence

of an optimal solution (v0, u∗0, d0, y∗0, d0) ∈ V × X∗ × R+ × Y∗ × R+ of (RDw
FL) and sup(Dw

FL) = inf(RP).
Since x̄ is a solution of (RP), then

f (x̄) = inf
x∈S v0
γ∈X

inf
y∈−D−g(x,v0)

{ f (γ) − 〈u∗0, γ − x〉 − 〈y∗0, y〉 + d0σ(γ − x) + d0σ(y)}.

Therefore, (i) is satisfied.
As x ∈ S v0 implies 0Y ∈ −D − g(x, v0), so inf

y∈−D−
⋃

x∈S v0

g(x,v0)
{d0σ(y) − 〈y∗0, y〉} ≤ 0, which means

f (x̄) = inf
x∈S v0
γ∈X

inf
y∈−D−g(x,v0)

{ f (γ) − 〈u∗0, γ − x〉 − 〈y∗0, y〉 + d0σ(γ − x) + dσ(y)}

≤ f (γ) − 〈u∗0, γ − x̄〉 + d0σ(γ − x̄), ∀ γ ∈ X,

this implies (u∗0, d0) ∈ ∂w f (x̄), that is (ii) holds.
Considering (i) we also have

f (x̄) = inf
x∈S v0
γ∈X

inf
y∈−D−g(x,v0)

{ f (γ) − 〈u∗0, γ − x〉 − 〈y∗0, y〉 + d0σ(γ − x) + d0σ(y)}

≤ f (x̄) + inf
y∈−D−g(x̄,v0)

{d0σ(y) − 〈y∗0, y〉},

which implies inf
y∈−D−g(x̄,v0)

{d0σ(y) − 〈y∗0, y〉} ≥ 0. It is obvious that inf
y∈−D−g(x̄,v0)

{d0σ(y) − 〈y∗0, y〉} ≤ 0 for

x̄ ∈ S v0 , so we get inf
y∈−D−g(x̄,v0)

{d0σ(y) − 〈y∗0, y〉} = 0, the relation (iii) is proved.

The proof of (b) is similar to that of Theorem 5.1 (b). �

6. Conclusions

This paper deals with the robust strong duality for nonconvex optimization problem with the data
uncertainty in constraint. We introduce a weak conjugate function and construct three kinds of robust
dual problems for primal problem by employing this weak conjugate function, then we establish the
robust strong duality between noncovex uncertain optimization problem and its robust dual problems.
In particular, we note that the optimal value of robust conjugate dual problem in classical sense is less
than that in weak conjugate sense (see Remark 4.1), which shows that weak conjugate function is more
likely to guarantee zero dual gaps than classical conjugate function.
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