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1. Introduction

It is widely know that the spread of infectious diseases still poses a great threat to human life. For
example, the H5N1 and H7N9 avian influenza viruses occasionally infect cells in the human upper
respiratory tract and have the potential to transform into pandemic causing strains of influenza [1, 2].
The outbreak of SARS (severe acute respiratory syndrom) virus in China, sent the human society into
a panic [3, 4]. The outbreak of COVID-19 has been announced as a Public Health Emergency of
International Concern [5], which brought great losses to the society and people [6–8].

As an important tool to analyze and control the spread of infectious diseases, mathematical
modeling is used to predict how the disease will spread in the future, taking into account the factors
that affect the spread of the disease, which is very important in the early stages of an epidemic, when
no treatment or vaccination programme has been developed and therefore drug interventions are often
not possible [9]. Mathematical models address the need for understanding the transmission dynamics
and other significant factors of the disease that would aid policymakers to make accurate decisions and
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reduce the rate of transmission of the disease. Many authors have developed mathematical models to
study the spread of COVID-19. In [8], Rahim ud Din et al. used an SEIR epidemic model to describe
the dynamics of COVID-19 under convex incidence rate. In [10], Isys F. Mello et al. employed a spin
S = 1/2 Ising-like model and a (logistic) Fermi-Dirac-like function to describe the spread of COVID-
19. Especially, Hafeez Aderinsayo Adekola et al. [11] examined various forms of mathematical models
that are relevant for the containment, risk analysis and features of COVID-19.

When a disease breaks out in a human population, people’s response to the threat of the disease
depends on their perception of the risk, and this perception is influenced by public and private
information that is widely disseminated by the media [12–14]. Media coverage of outbreaks allows
people to understand the extent of the risk and the prevention needs in the areas at risk, and encourages
the public to take preventive measures such as wearing masks, avoiding public places, avoiding travel
when sick and washing hands frequently. Extensive news coverage and the rapid flow of information
can have a profound psychological impact on public health [15]. Media coverage can lower the rate of
human exposure and the probability of transmission, Many researchers have used mathematical models
to study the influence of media coverage [16, 17].

In particular, novel coronavirus, which has the highest proportion of the asymptomatic among all
epidemic diseases, therefore, in addition to the symptomatic, COVID-19 is likely to excrete a large
amount of virus and carry out hidden transmission during the asymptomatic phase. Individuals testing
positive in serological tests or blood tests for disease without symptoms is referred to as asymptomatic
[11]. A simple SEIAR model was used to explain the transmission dynamics of the swine flu outbreak
in 2009 at a residential school in Maharashtra, India [18]. Therefore, the recessive transmission of
asymptomatic may be one of the main factors in the spread of the epidemic disease.

Besides, quarantine is essential measure in the spread of epidemic diseases. There are various
forms of quarantine, such as home quarantine, quarantine of suspected infected persons and quarantine
of infected persons. SARS is a good example, which effectively controlled the outbreak through
quarantine [3, 4]. The key role played by the quarantine to block the spread of COVID-19 in terms of
an interacting parameter between people. In [10], Isys F. Mello et al. presented the key role played by
the quarantine to block the spread of COVID-19 in terms of an interacting parameter between people.
Therefore, we will establish an SQEIAR model considering media coverage, the asymptomatic and
quarantine.

The emergence of new epidemics always imposes a certain financial burden on society, which
has been widespread concerned in society. Therefore, it is of great significance to prevent and
control infectious diseases at the minimum cost successfully. In this paper, we further consider the
role of media coverage and quarantine in the spread of infectious diseases and establish an optimal
control model. We will discuss the media coverage strategy and quarantine strategy for the optimal
control problems with quadratic cost functions by applying Pontrygin maximum principle [19,20] and
Hamilton-Jacobi-Bellman equation.

The paper is organized as follows. In the next section, an SQEIAR model is proposed and its basic
properties are described. The the local and global stability of the disease-free equilibrium, as well as
the local stability and uniform persistence of the endemic equilibrium are discussed in Section 3. In
Section 4, threshold analysis is presented. In Section 5, the model is simulated numerically. In Section
6, the optimal control system is analyzed and simulated numerically. Lastly, the model is summarized
and discussed.
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2. Model formulation and basic properties

In epidemic disease models, the incidence function is extremely important as it determines the
epidemic trend of the disease [21]. In many epidemiological models, the bilinear incidence rate βS I
and standard rates βS I/N are the most commonly used to characterize the incidence of infectious
diseases, where β represents the transmission rate of the disease. Considering the media coverage, Cui
and Zhu [16, 22] adopted function β(I) = βe−mI to describe the media impact factors and proposed a
new transmission rate function. Liu established the EIH model proposed in [12], the transmission
coefficient was assumed to be βe−(α1E+α2I+α3H). In [23], Sahu established the epidemic model and
took βe−

m1 I+m2H
N

S (I+ηH)
N as the transmission term of the disease. In this paper, the total population at

time t, denoted by N(t), which has been sub-divided into six mutually exclusive compartments of the
susceptible S (t), the quarantined Q(t), the exposed E(t), the infectious I(t), the asymptomatic A(t) and
the recovered R(t), so that N(t)= S (t) + Q(t) + E(t) + I(t) + A(t) + R(t). The susceptible transforms
into the quarantined, at the same time part of the quarantined backs into the susceptible, some of
the susceptible gets into the exposed, at the same time part of the exposed is divided into two major
categories of the symptomatic and the asymptomatic, finally some of the two classes of the infected
get into the recovered. The population recruitment rate is Λ, population in all compartments decreases
at rate µ due to nature death. Inspired by the literature above, in consideration of the media coverage,
we adopt βe−

m1 I+m2A
N

S (I+θA)
N as the transmission rate function to conduct research, where parameter m1

and m2 represent vector coverage coefficients for symptomatic and asymptomatic infected persons,
respectively. The schematic diagram of SQEIAR is shown as following.

The following model is established based on the above assumptions

dS
dt

= −βe−
m1 I+m2A

N
S (I + θA)

N
− pS + λQ + Λ − µS ,

dQ
dt

= pS − λQ − µQ,
dE
dt

= βe−
m1 I+m2A

N
S (I + θA)

N
− σE − µE,

dI
dt

= σρE − γI I − µI I − µI,
dA
dt

= σ(1 − ρ)E − γAA − µA,
dR
dt

= γI I + γAA − µR.

(2.1)
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The initial conditions of system (2.1) is: S (0) = S 0 > 0, Q(0) = Q0 > 0, E(0) = E0 > 0,
I(0) = I0 > 0, A(0) = A0 > 0, R(0) = R0 > 0. The description of all the parameters is summarized in
Table 1. Note that

dN
dt

= Λ − µN − µI I.

We only consider the solutions with initial conditions in the feasible region

Γ = {(S ,Q, E, I, A,R) ∈ <6
+ : S ,Q, E, I, A,R ≥ 0, S + Q + E + I + A + R ≤

Λ

µ
}.

In the feasible region, the existence and uniqueness of the general solution and the continuation result
are all valid. It can be proved that the feasible region Γ is a positive invariant for (2.1).

Table 1. Description of parameters for the system (2.1).

Parameter Description Unit
Λ Recruitment rate day−1

µ Natural death rate day−1

β The effective contact rate day−1

θ Modification parameter for reduction in the symptomatic of
the asymptomatic

m1 Coefficients of media coverage corresponding to I
m2 Coefficients of media coverage corresponding to A
p Progression rate from susceptible to quarantined class day−1

σ Progression rate from exposed to infectious class day−1

ρ Progression rate from infectious to symptomatic infectious class day−1

λ Progression rate from quarantine to susceptible class day−1

µI Disease-induced death rate for symptomatic infectious individuals day−1

µA Disease-induced death rate for asymptomatic infectious individuals day−1

γI Recovery rate for symptomatic infectious individuals day−1

γA Recovery rate for asymptomatic infectious individuals day−1

Proposition 2.1. All the solution trajectories of system (2.1) initiating inside Γ approach enter or stay
within the interior of Γ.
Proof. Let <6

+ = {(S ,Q, E, I, A,R) ∈ <6 : S ≥ 0,Q ≥ 0, E ≥ 0, I ≥ 0, A ≥ 0,R ≥ 0} denote the
non-negative cone in six-dimensional Euclidean space. From the system (2.1), we observe that

dS
dt

∣∣∣∣∣
S =0

= Λ + λQ > 0,
dQ
dt

∣∣∣∣∣
Q=0

= pS ≥ 0,
dE
dt

∣∣∣∣∣
E=0

= βe−
m1 I+m2A

N > 0,

dI
dt

∣∣∣∣∣
I=0

= σρE ≥ 0,
dA
dt

∣∣∣∣∣
A=0

= σ(1 − ρ)E ≥ 0,
dR
dt

∣∣∣∣∣
R=0

= rI I + rAA ≥ 0.

Since S (t), Q(t), E(t), I(t), A(t), R(t) are continuous with respect to t, and the vector field on each
bounding hyperplane of<6

+ is pointing inward direction of<6
+, so all the solution trajectories initiating

in<6
+ will remain inside<6

+ for all the time. Thus, the fact that<6
+ is positively invariant for the system
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(2.1) is established. And the total population N(t) satisfies dN
dt = Λ − µN − µI I. Then, dN

dt ≤ Λ − µN.
Applying Birkhoff’s and Rota’s theorems on differential inequality [24, 25], as t → ∞, we have 0 ≤
N(t) ≤ Λ

µ
= N0. Hence the solution of system (2.1) is bounded and any solution of the system which

originated from Γ remains in Γ. Thus we can find that the solution of system (2.1) is bounded and
independent of the initial condition. So the feasible region Γ is an invariant set.

Note that, Γ is a biologically significant region for COVID-19 or other models of the same type of
infectious disease. For COVID-19, as S ≥ 0,Q ≥ 0, E ≥ 0, I ≥ 0, A ≥ 0,R ≥ 0, i.e., the feasible region
Γ is non-negative and bounded.

Reduce the system (2.1) into non-dimensional form by using

S̃ =
S
N
, Q̃ =

Q
N
, Ẽ =

E
N
, Ĩ =

I
N
, Ã =

A
N
, R̃ =

R
N
, Ñ =

N
N0 ,N

0 =
Λ

µ
, t̃ = µt.

Since S̃ = 1 − Q̃ − Ẽ − Ĩ − Ã − R̃, then

dS̃
dt̃

= −β̃e−m1 Ĩ−m2ÃS̃ (Ĩ + θÃ) − p̃S̃ +
1
Ñ
− S̃ −

S̃
Ñ

dÑ
dt̃
.

The system (2.1) can be transformed the equivalent non-dimensional system

dQ̃
dt̃

= p̃S̃ − λ̃Q̃ − Q̃ −
Q̃
Ñ

dÑ
dt̃

:= f1,

dẼ
dt̃

= β̃e−m1 Ĩ−m2ÃS̃ (Ĩ + θÃ) − σ̃Ẽ − Ẽ −
Ẽ
Ñ

dÑ
dt̃

:= f2,

dĨ
dt̃

= σ̃ρ̃Ẽ − γ̃I Ĩ − µ̃I Ĩ − Ĩ −
Ĩ
Ñ

dÑ
dt̃

:= f3,

dÃ
dt̃

= σ̃(1 − ρ̃)Ẽ − γ̃AÃ − Ã −
Ã
Ñ

dÑ
dt̃

:= f4,

dR̃
dt̃

= γ̃I Ĩ + γ̃AÃ − R̃ −
R̃
Ñ

dÑ
dt̃

:= f5,

dÑ
dt̃

= 1 − (1 + µ̃I Ĩ)Ñ := f6

(2.2)

with the initial conditions:

Q̃(0) = Q̃0 > 0, Ẽ(0) = Ẽ0 > 0, Ĩ(0) = Ĩ0 > 0, Ã(0) = Ã0 > 0, R̃(0) = R̃0 > 0, Ñ(0) = Ñ0 > 0, (2.3)

where
β̃ =

β

µ
, λ̃ =

λ

µ
, σ̃ =

σ

µ
, ρ̃ =

ρ

µ
, µ̃I =

µI

µ
, γ̃A =

rA

µ
, γ̃I =

rI

µ
, p̃ =

p
µ
.

In the next sections, we will study the dynamic behavior of the system (2.2) with the initial condition
(2.3).

3. The extinction and persistence of the diseases

In this section, we calculate the basic reproduction number of the system and all feasible equilibrium
states. Observe that the feasible region for the non-dimensional system (2.2) is

Ω = {(Q̃, Ẽ, Ĩ, Ã, R̃, Ñ) : 0 ≤ Q̃, Ẽ, Ĩ, Ã, R̃, Ñ ≤ 1}.
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For the system (2.2), Ω is positively invariant. We only consider the solution of the system (2.2) with
initial conditions inside the feasible region Ω.

3.1. Local stability of disease-free equilibrium

The disease-free equilibrium of the system (2.2) is E0 = (0, 0, 0, 0, 0, 1). The local stability of the
disease-free equilibrium E0 will be explored by using the basic reproduction number RC. The non-
negative matrix F of the new infection terms, and the matrix V of the remaining terms are given by
the following formula

F =


p̃S̃

β̃e−m1 Ĩ−m2ÃS̃ (Ĩ + θÃ)
0
0


and

V =


Q̃(−1 + 1

Ñ − µ̃I Ĩ) + Q̃(λ̃ + 1)
Ẽ(−1 + 1

Ñ − µ̃I Ĩ) + Ẽ(σ̃ + 1)
−σ̃ρ̃Ẽ + Ĩ(−1 + 1

Ñ − µ̃I Ĩ) + Ĩ(γ̃I + µ̃I + 1)
−σ̃(1 − ρ̃)Ẽ + Ã(−1 + 1

Ñ − µ̃I Ĩ) + Ã(γ̃A + 1)

 .
The corresponding linearized matrices at the disease-free equilibrium E0 are

F =


−p̃ −p̃ −p̃ −p̃
0 0 β̃ β̃θ̃

0 0 0 0
0 0 0 0


and

V =


λ̃ + 1 0 0 0

0 σ̃ + 1 0 0
0 −σ̃ρ̃ γ̃I + µ̃I + 1 0
0 −σ̃(1 − ρ̃) 0 γ̃A + 1

 .
It follows that

FV−1 =


(− p̃)
λ̃+1

(−p̃)
σ̃+1 (1 + 1

γ̃I+µ̃I+1 +
σ̃(1−ρ̃)
γ̃A+1 ) (− p̃)

γ̃I+µ̃I+1
(− p̃)
γ̃A+1

0 σ̃β̃

σ̃+1 ( ρ̃

γ̃I+µ̃I+1 +
(1−ρ̃)θ
γ̃A+1 ) β̃

γ̃I+µ̃I+1
β̃θ

γ̃A+1

0 0 0 0
0 0 0 0

 .
Then, by applying RC = ρ(FV−1), where ρ is the spectral radius, the basic reproduction number RC is
given by

RC =
β̃(1 + b3θ)

b2(σ̃ + 1) + b1β̃(1 + b3θ)
=
β̃(λ̃ + 1)[σ̃ρ̃(γ̃A + 1) + σ̃(1 − ρ̃)θ(γ̃I + µ̃I + 1)]

(σ̃ + 1)(γ̃A + 1)(γ̃I + µ̃I + 1)( p̃ + λ̃ + 1)
,

where

b1 =
p̃σ̃ρ̃(σ̃ + 1)(r̃A + 1)(γ̃I + µ̃I + 1)

σ̃ρ̃β̃(λ̃ + 1)[σ̃ρ̃(γ̃A + 1) + θσ̃(1 − ρ̃)(γ̃I + µ̃I + 1)]
, b2 =

γ̃I + µ̃I + 1
σ̃ρ̃

, b3 =
σ̃(1 − ρ̃)b2

r̃A + 1
.

AIMS Mathematics Volume 6, Issue 11, 12298–12320.



12304

Using Theorem 2 in [26], we can get the following result.

Theorem 3.1. The disease-free equilibrium E0 of the system (2.2) is locally asymptotically stable if
RC < 1 and E0 is unstable if RC > 1.

The basic reproduction number represents the average number of people who will catch the disease
from a single infected person at the beginning of the disease [26]. If RC > 1, the disease will be
persistent and become endemic, otherwise, RC < 1, the disease will be extinct.

3.2. Existence and local stability of endemic equilibrium

The possible positive equilibrium of the system (2.2) is obtained by solving the nonlinear equations
which is obtained by equipping the derivatives of the system (2.2) to zero. The endemic equilibrium
Ē = (Q∗, E∗, I∗, A∗,R∗,N∗) of the model (2.2) is given by

Q∗ = b1emI∗ , E∗ = b2I∗, A∗ = b3I∗,R∗ = b4I∗,N∗ =
1

1 + µ̃I I∗
,

where

b4 = γIσ̃ρ̃(γ̃A + 1) + r̃Aσ̃(1 − ρ̃)(γ̃I + µ̃I + 1), b5 = 1 + b2 + b3 + b4,m = m1 + m2b3.

The value of I∗ is given by

1 − b5I∗ =
emI∗

RC
. (3.1)

Suppose there is no media coverage, i.e., m = 0, we obtain I∗ = 1
b5

(1 − 1
RC

). Therefore, I∗ exists in
a positive value if and only if RC > 1, and it is the unique endemic equilibrium Ē. Or else, the value
of I∗ is given from (3.1). Now, we establish the existence of I∗ for RC > 1. In Figure 1, we plot the
curve emI∗

RC
and straight line 1 − b5I∗ against I∗ in the range [0,1]. Note that RC < 1, system (2.2) does

not exist the endemic equilibrium. And when RC > 1, I∗ exists uniquely at positive level and hence the
unique endemic equilibrium exists in this case (see Figure 1(b)). From the previous discussion, we can
conclude the following Theorem 3.2.

(a) (b)

Figure 1. (a) shows that non-existence of I∗ when RC < 1; (b) shows that the existence of I∗

when RC > 1.
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Theorem 3.2. The system (2.2) has no endemic equilibrium if RC ≤ 1. And the system (2.2) has a
unique endemic equilibrium Ē if RC > 1.

In the following, we prove the local stability of the endemic equilibrium Ē.
Theorem 3.3. The endemic equilibrium Ē is locally asymptotically stable if RC > 1, but close to 1.
Proof. The Jacobian matrix J0 at disease-free equilibrium is given by

J0 =



−p̃ − λ̃ − 1 −p̃ −p̃ −p̃ −p̃ 0
0 −σ̃ − 1 β̃ β̃θ 0 0
0 σ̃ρ̃ −γ̃I − µ̃I − 1 0 0 0
0 σ̃(1 − ρ̃) 0 −γ̃A − 1 0 0
0 0 γ̃I γ̃A −1 0
0 0 −µ̃I 0 0 −1


.

Here, we establish the local stability of endemic equilibrium based on the central manifold theory
and taking β as bifurcation parameter [27]. A critical value of bifurcation parameter β at RC = 1 is
given as

β̃c =
(σ̃ + 1)(γ̃A + 1)(γ̃I + µ̃I + 1)(p̃ + λ̃ + 1)

(λ̃ + 1)[σ̃ρ̃(γ̃A + 1)σ̃(1 − ρ̃)θ(γ̃I + µ̃I + 1)]
.

Corresponding to the zero eigenvalue, the Jacobian can be easily verified J0 at β̃ = β̃c has a right
eigenvector given by W = (w1,w2,w3,w4,w5,w6)T , where

w1 = −
p̃(σ̃ρ̃ + γ̃I + µ̃I + 1)(γ̃A + 1) + p̃(γ̃A + 1)w4 + p̃µ̃(γ̃A + 1)w5

(γ̃A + 1)(p̃ + λ̃ + 1)
,w2 = γ̃I + µ̃I + 1,w3 = σ̃ρ̃,

w4 =
σ̃(1 − ρ̃)(γ̃I + µ̃I + 1)

γ̃A + 1
,w5 =

γ̃Iσ̃ρ̃(γ̃A + 1) + γ̃Aσ̃(1 − ρ̃)(γ̃I + µ̃I + 1)
µ̃(γ̃A + 1)

,w6 = −µ̃Iσ̃ρ̃.

Furthermore, corresponding to the zero eigenvalue, the components of the left eigenvector, V =

(v1, v2, v3, v4, v5, v6), must satisfy the equalities V · J0 = 0 and V ·W = 1, so

v1 = v5 = v6 = 0,

v2 =
v4(λ̃ + 1)[σ̃ρ̃(γ̃A + 1) + σ̃(1 − ρ̃)θ(γ̃I + µ̃I + 1)]

θ(σ̃ + 1)(γ̃I + µ̃I + 1)( p̃ + λ̃ + 1)
, v3 =

v4(γ̃A + 1)
θ(γ̃I + µ̃I + 1)

, v4 =
1

w4 + B1 + B2
,

where

B1 =
σ̃ρ̃(γ̃A + 1)
θ(γ̃I + µ̃I + 1)

, B2 =
(λ̃ + 1)[σ̃ρ̃(γ̃A + 1) + σ̃(1 − ρ̃)θ(γ̃I + µ̃I + 1)]

θ(σ̃ + 1)( p̃ + λ̃ + 1)
.

Use the notations x1 ≡ Q̃, x2 ≡ Ẽ, x3 ≡ Ĩ, x4 ≡ Ã, x5 ≡ R̃, x6 ≡ Ñ, we have

a =

6∑
k,i, j=1

vkwiw j
∂2 fk(0, 0)
∂xi∂x j

,b =

6∑
k,i, j=1

vkwi
∂2 fk(0, 0)
∂xi∂β

.

When β = βc, substituting the following values of all the second order derivatives evaluated at the
disease-free equilibrium E0, we get

a =v1(2w1w6 + 2w1w3µ̃I) + v2[2w2w6 + 2w2w3(−β̃c + µ̃I) + 2w2w4(−β̃cθ) + 2w1w3(−β̃c)
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+ 2w1w4(−β̃cθ) + w2
3(−2β̃c − 2m1β̃c) + w2

4(−2β̃cθ − 2m2β̃cθ) + 2w3w4(−β̃c − m2β̃c

− β̃cθ − m1β̃cθ) + 2w3w5(−β̃c) + 2w4w5(−β̃cθ)] + v3(2w3w6 + 2w2
3µ̃I) + v4(2w4w6

+ 2w3w4µ̃I) + v5(2w5w6 + 2w3w5µ̃I) + v6(−2w3w6µ̃I)

and

b = v2(w3 + θw4).

Finally, substituting the values of V and W in a and b, we obtain

a =
−2v4B2B3(σ̃ + 1)

(γ̃A + 1)( p̃ + λ̃ + 1)
,b =

v4B2
2θ(σ̃ + 1)( p̃ + λ̃ + 1)

(λ̃ + 1)(γ̃A + 1)(γ̃I + µ̃I + 1)
,

where

B3 =(λ̃ + 1)(γ̃I + µ̃I + 1)(γ̃A + 1) + (λ̃ + 1)[γ̃Iσ̃ρ̃(γ̃A + 1) + γ̃Aσ̃(1 − ρ̃)(γ̃I + µ̃I + 1)]
+ (λ̃ + 1)[σ̃ρ̃(γ̃A + 1) + σ̃(1 − ρ̃)(γ̃I + µ̃I + 1)] + ( p̃ + λ̃ + 1)[m1σ̃ρ̃(γ̃A + 1)
+ m2σ̃(1 − ρ̃)(γ̃I + µ̃I + 1)].

Since a < 0 and b > 0 at β = βc, by using Theorem 4.1 and Remark 1 stated in [27], there
is a transcritical bifurcation at RC = 1 and the locally asymptotically stable of the unique endemic
equilibrium for RC > 1 is established.

3.3. Global stability of the disease-free equilibrium E0

We analyze the globally asymptotical stability of the disease-free equilibrium E0 in this subsection.
Theorem 3.4. Suppose RC < 1 and µ̃I = 0. The disease-free equilibrium E0 is globally asymptotically
stable.
Proof. We present the global stability of the disease-free equilibrium by using the method in [28].
When µ̃I = 0, we have dÑ

dt̃ = 1 − Ñ. Then Ñ → 1 as t̃ → ∞. Take Ñ in the limiting case, i.e., Ñ = 1,
then the system (2.2) reduces to

dQ̃
dt̃

= p̃S̃ − (λ̃ + 1)Q̃,

dẼ
dt̃

= β̃e−m1 Ĩ−m2ÃS̃ (Ĩ + θÃ) − (σ̃ + 1)Ẽ,

dĨ
dt̃

= σ̃ρ̃Ẽ − (γ̃I + 1)Ĩ,

dÃ
dt̃

= σ̃(1 − ρ̃)Ẽ − (γ̃A + 1)Ã,

dR̃
dt̃

= γ̃I Ĩ + γ̃AÃ − R̃.

(3.2)

Let X = (Q̃) and Z = (Ẽ, Ĩ, Ã, R̃), here U0 = (X0,Z0), where X0 = ( p̃
p̃+λ̃+1 ) and Z0 = (0, 0, 0, 0). We have

dX
dt̃

= F(X,Z) = p̃(1 − Q̃ − Ẽ − Ĩ − Ã − R̃) − λ̃Q̃ − Q̃.
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At Z = Z0, G(X, 0) = 0. Now dX
dt̃ = F(X, 0) = p̃ − (p̃ + λ̃ + 1)X, as t̃ → ∞, X → X0. Thus, X = X0

(= Q̃0 =
p̃

p̃+λ̃+1 ) is globally asymptotically stable. Hence, the condition (H1) in [28] is satisfied. From
(3.2), we get

dZ
dt̃

= G(X,Z) = BZ − Ĝ(X,Z),

where

B =


−σ̃ − 1 β̃ β̃θ 0
σ̃ρ̃ −γ̃I − 1 0 0

σ̃(1 − ρ̃) 0 −γ̃A − 1 0
0 γ̃I γ̃A −1

 ,
and

Ĝ(X,Z) =


β̃(Ĩ + θÃ)(1 − e−m1 Ĩ−m2ÃS̃ )

0
0
0

 .
Obviously, B is an M-matrix. We have 0 < e−m1 Ĩ−m2Ã ≤ 1, for Ĩ ≥ 0, Ã ≥ 0. Therefore, Ĝ(X,Z) ≥ 0
since 0 ≤ S̃ ≤ 1. Thus both the conditions (H1) and (H2) in [28] are satisfied. Hence, the disease-free
equilibrium E0 is globally asymptotically stable if RC < 1.

3.4. Uniform persistence of system (2.2)

In the next, the uniform persistence for the system (2.2) will be explored. The system (2.2) is said to
be uniformly persistent if there exists a constant c such that any solution (Q̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), Ñ(t))
satisfies

lim inf
t→∞

Q̃(t) ≥ c, lim inf
t→∞

Ẽ(t) ≥ c, lim inf
t→∞

Ĩ(t) ≥ c,

lim inf
t→∞

Ã(t) ≥ c, lim inf
t→∞

R̃(t) ≥ c, lim inf
t→∞

Ñ(t) ≥ c

provided that (Q̃(0), Ẽ(0), Ĩ(0), Ã(0), R̃(0), Ñ(0)) ∈ Ω [29]. Similar as the proof of [30], the following
theorem for persistence can be stated:
Theorem 3.5. The system (2.2) is uniformly persistent in Ω if and only if RC > 1.
Proof. From Theorem 3.1, the disease-free equilibrium of the model (3.2) is unstable when RC >

1. Applying the uniform persistence result stated in [29], finally it can be proved in a similar way
as Proposition 3.3 in [31]. At the beginning, the necessity of RC > 1 be deduced from the result
of Theorem 3.2 and the asymptotic stability of the disease-free equilibrium. The sufficiency of the
condition RC > 1 is given by uniformly persistent results in the Theorem 4.3 in [29]. It can be proved
that the system (3.2) satisfies the hypothesis (H) of Theorem 4.3 in [29]. Eventually, the proposition
is proved by observing that, in (3.2), the necessary and sufficient conditions for uniform persistence in
Theorem 4.3 in [29] is equivalent to the disease-free equilibrium is unstable. The consequence shows
that in limiting case, Q̃, Ẽ, Ĩ and Ã of the model (3.2) will remain a positive value and the disease will
persist.
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4. Threshold analysis

In this section, the quarantine parameter p̃, the progression rate σ̃ from the exposed to the infectious
and the recovery rate for the symptomatic infectious γ̃I with respect to RC is measured qualitatively.
The threshold analysis on the parameters p̃ is performed by calculating the partial derivatives of the
effective reproduction number RC. We can observe that

∂RC

∂ p̃
= −

β̃(λ̃ + 1)[σ̃ρ̃(γ̃A + 1) + σ̃(1 − ρ̃)θ(γ̃I + µ̃I + 1)]
(σ̃ + 1)(γ̃A + 1)(γ̃I + µ̃I + 1)( p̃ + λ̃ + 1)2

.

Hence
∂RC

∂ p̃
< 0.

From the above discussion, we have the following conclusion: the larger the quarantine parameter is,
the better the quarantine effect is. The basic reproduction number RC decreases with the increase of
the quarantine parameter p̃, when RC < 1 and the infectious disease will be extinct.
Theorem 4.1. For the model (2.2), the use o f quarantine o f the susceptile individuals will have
positive population − level impact since ∂RC

∂ p̃ < 0.
In the same way, the threshold analysis respect to the parameters (1 − ρ̃) is performed by calculating
the partial derivatives of the effective reproduction number RC:

∂RC

∂(1 − ρ̃)
=
β̃(λ̃ + 1)[−σ̃(γ̃A + 1) + σ̃θ(γ̃I + µ̃I + 1)]
(σ̃ + 1)(γ̃A + 1)(γ̃I + µ̃I + 1)(p̃ + λ̃ + 1)

.

It follows that
∂RC

∂(1 − ρ̃)
< 0(or > 0) if θ < θ(1−ρ̃)(or θ > θ(1−ρ̃)),

where

θ(1−ρ̃) =
γ̃A + 1

γ̃I + µ̃I + 1
.

Therefore, it can be concluded that if θ < θ(1−ρ̃), the quarantine will achieve good results.
Theorem 4.2. For the model (2.2), the use of quarantine of the infectious individuals will have positive
(negative) population-level impact since θ < θ(1−ρ̃) (θ > θ(1−ρ̃)).

5. Numerical simulation

In this section, we provide numerical simulations to illustrate the results under the values of the
biologically feasible parameters which is shown in Table 2. The system (2.1) is simulated by taking
initial value S 0 = 390,Q0 = 58, E0 = 245, I0 = 95, A0 = 45,R0 = 160. The initial values of
the numerical simulation are arbitrary and are used only for the simulation, rather than data from a
particular region. In fact, the main theoretical results in this paper are independent of the initial values,
which we will also present in the subsequent numerical simulation.
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Table 2. Parameter values used in the simulation for the system (2.1).

Parameter Nominal values Unit Parameter Nominal values Unit
Λ 136 day−1 ρ 0.74 day−1

µ 0.0751 day−1 p 1/100 day−1

β [0.09,0.65] day−1 λ 0.95 day−1

θ 0.5 µI 0.03521 day−1

m1 0.2 γI 1/6 day−1

m2 0.2 γA 1/14 day−1

σ 1/5.2 day−1

Based on the form of the basic regeneration number of system (2.2) calculated in Section 3, the
expression form of the basic regeneration number of system (2.1) can be obtained as follows (we also
note it as RC):

RC =
β(λ + µ)[σρ(γA + µ) + σ(µ − ρ)θ(γI + µI + 1)]
µ(σ + µ)(γA + µ)(γI + µI + µ)(p + λ + µ)

.

For β = 0.09, the basic reproduction number RC = 0.3438, the disease-free equilibrium is locally
asymptotically stable, see Figure 2(a), the recovered is represented by the solid green line which is
decreasing as t increasing but does not go to zero. When β = 0.65, the basic reproduction number
RC = 2.4833 > 1, the unique endemic equilibrium is locally asymptotically stable as shown in Figure
2(b), which means that the infectious increases over time but reaches a certain level after a period of
time and remains stable. The fraction of the total number of infected individuals as a function of time
with different initial values for RC = 0.3438 < 1 is presented by Figure 3(a) and RC = 2.4833 > 1
is presented by Figure 3(b), respectively. We can conclude that when the RC is a definite value, the
trend of infected individuals has no change with the different initial values of infectious. The effect
of parameter m respect to infected individuals is shown separately in Figure 4, which has shown that
media coverage decrease the infectious. The effect of parameter σ on the number of the infectious
is shown in Figure 5(a), when σ ≤ 0.03, the number of infected individuals decrease and tend to 0,
while σ ≥ 0.21, the number of infected individuals increase. For 1 − ρ, in Figure 6(b), 1 − ρ has
both positive and negative effects on the basic reproduction number, when 1 − ρ > 0.5, RC increases,
otherwise, decrease. It can be seen from Figure 6(a) that the basic reproduction number decreases as
the quarantine parameter p increases and RC < 1 if p > 0.7. With γI increasing, the basic regenerative
number is decreasing and γI = 0.1053 is the critical value.
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(a) (b)

Figure 2. (a) The variation of the scaled population in scaled-time, taking m1 = m2 = 0.2
and β = 0.09 with RC = 0.3438 < 1; (b) The variation of the scaled population in scaled-
time,taking m1 = m2 = 0.2 and β = 0.65 with RC = 2.4833 > 1.

(a) (b)

Figure 3. (a) The fraction of the total number of infected individuals as a function of time
with different initial values for RC = 0.3438 < 1; (b) The fraction of the total number of
infected individuals as a function of time with different initial values for RC = 2.4833 > 1.
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(a) (b)

Figure 4. (a) Effect of m1 and m2 on I,when β = 0.09 and RC = 0.3438 < 1; (b) Effect of m1

and m2 on I,when β = 0.6 and RC = 2.4833 > 1.

(a) (b)

Figure 5. (a) Effect of σ on I,when β = 0.65; (b) Effect of 1 − ρ on effective reproduction
number RC.
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(a) (b)

Figure 6. (a) Effect of quarantine parameter p on effective reproduction number RC; (b)
Effect of recovery rate for symptomatic infectious individuals γI on effective reproduction
number RC.

6. Optimal control strategy for disease control

From the above sections, the influence of media coverage and quarantine measures on the number
of infected individuals is discussed. To ensure the effectiveness of control while minimizing the cost
of various prevention measures is the top concern of the government in the face of the epidemic.
Therefore, we add media coverage control and quarantine control to the system (2.1), and the model is
shown as follows: 

dS
dt

= −βe−
u1(t)I+u2(t)A

N
S (I + θA)

N
− u3(t)S + λQ + Λ − µS ,

dQ
dt

= u3(t)S − λQ − µQ,
dE
dt

= βe−
u1(t)I+u2(t)A

N
S (I + θA)

N
− σE − µE,

dI
dt

= σρE − γI I − µI I − µI,
dA
dt

= σ(1 − ρ)E − γAA − µA,
dR
dt

= γI I + γAA − µR.

(6.1)

The control function u1(t) represents media coverage control for the symptomatic, u2(t) represents
media coverage control for the asymptomatic and the control of the quarantine is expressed by u3(t).
In order to solve u1(t), u2(t), u3(t), we construct the objective functional J. Then has

J(u1(t), u2(t), u3(t)) =

∫ T

0
(A1I + A2A +

B1

2
u2

1 +
B2

2
u2

2 +
B3

2
u2

3)dt,
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where A1, A2 represent the positive weight. We need to find an optimal control u∗1(t), u∗2(t) and u∗3(t)
such that

J(u∗1(t), u∗2(t), u∗3(t)) = minJ(u1(t), u2(t), u3(t)), (u1(t), u2(t), u3(t)) ∈ U,

where

U = {(u1(t), u2(t), u3(t)) | ui(t) is Lebsgue measurable on [0, 1], 0 ≤ ui(t) ≤ 1, i = 1, 2, 3}

is the control set.

6.1. The existence of optimal control

Optimal control existence can be demonstrated through a well known classical result: (see [20]),
we must inspect that the following axioms are satisfied:

(H1) Controls set and set of state variables are nonempty.
(H2) The admissible control set U is convex and closed.
(H3) R.H.S of state system is bounded by a linear function of the state variables and controls.
(H4) The objective functional J has convex integrand on U and is bounded below by c1(

∑3
i=1 |ui|

2)
τ
2 −

c2,where c1, c2 > 0 and τ > 1.
The existence of solutions for the system is established by using the result given by Lukes [32]. In

this way we verify the above hypotheses. (H1) is accomplished because the coefficients are bounded.
The boundedness of solutions shows that the set of controls fulfils (H2). Since the system of equations
is bilinear in u1, u2 and solutions are bounded. So, R.H.S of system satisfies the criteria (H3). Because
the integrand of objective functional is convex and the last condition is satisfied.

M1I + M2A +
1
2

D1u2
1 +

1
2

D2u2
2 +

1
2

D3u2
3 ≥ c1(

3∑
i=1

| ui |
2)

τ
2 − c2,

where M1, M2, D1, D2, D3, c1, c2 > 0 and τ > 1. Thus we have the following theorem:
Theorem 6.1. For the objective functional J(u1(t), u2(t), u3(t)) =

∫ T

0
(A1I + A2A + B1

2 u2
1 + B2

2 u2
2 + B3

2 u2
3)dt,

where U = {(u1(t), u2(t), u3(t)) | 0 ≤ ui(t) ≤ 1, i = 1, 2, 3, t ∈ [0,T ]} subject to system with
initial conditions, there exists an optimal control u∗1(t), u∗2(t), u∗3(t), so that J(u∗1(t), u∗2(t), u∗3(t)) =

minJ(u1(t), u2(t), u3(t)), (u1(t), u2(t), u3(t)) ∈ U.
In order to obtain an optimal control u∗1(t), u∗2(t), u∗3(t) to make J(u∗1(t), u∗2(t), u∗3(t)) =

minJ(u1(t), u2(t), u3(t)), (u1(t), u2(t), u3(t)) ∈ U. The optimal solution can be obtained by finding the
Lagrangian as well as Hamiltonian for the system. The Lagrangian is:

L(I, A, u1(t), u2(t), u3(t)) = A1I + A2A +
B1

2
u2

1 +
B2

2
u2

2 +
B3

2
u2

3.

We need establish the Lagrangian minimum value. To achieve this goal, we construct the Hamiltonian
function H for the optimal problem as follows:

H =A1I + A2A +
B1

2
u2

1 +
B2

2
u2

2 +
B3

2
u2

3 + λ1(−βe−
u1 I+u2A

N
S (I + θA)

N
− u3S + λQ + Λ − µS )

+ λ2(u3S − λQ − µQ) + λ3(βe−
u1 I+u2A

N
S (I + θA)

N
− σE − µE) + λ4(σρE − γI I − µI I
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− µI) + λ5(σ(1 − ρ)E − γAA − µA) + λ6(γI I + γAA − µR).

We can find the essential conditions for the optimal control problem by applying the Pontryagin’s
Maximum Principle [19]. For the system, the solution of optimal control problem, a non-zero vector
function λ(t) = (λ1, λ2, λ3, λ4, λ5, λ6) exists and the subsequent conditions is established. Then the state
equation, optimality condition and adjoint equation, respectively as follows:

dx
dt

=
∂

∂λ
(H(t, u∗1, u

∗
2, u

∗
3, λ(t))),

0 =
∂

∂u
(H(t, u∗1, u

∗
2, u

∗
3, λ(t))),

dλ
dt

= −
∂

∂x
(H(t, u∗1, u

∗
2, u

∗
3, λ(t))).

The essential conditions applied to the Hamiltonian H give the following result:
Theorem 6.2. Given that (S ∗,Q∗, E∗, I∗, A∗,R∗) are optimal state solutions and (u∗1, u

∗
2, u

∗
3) are

associated optimal control variable for the optimal control problem (6.1), then, there exists adjoint
variables λi, for i = 1, 2, 3, 4, 5, 6 which satisfies

dλ1

dt
= (λ1 − λ3)βe−

u1 I+u2A
N

S (I + θA)
N

+ (λ1 − λ3)u3 + λ1µ,

dλ2

dt
= (λ2 − λ1)λ + λ2µ,

dλ3

dt
= (λ3 − λ5)σ + (λ5 − λ4)ρ + λ3µ,

dλ4

dt
= −A1 + (λ1 − λ3)βe−

u1 I+u2A
N (

S
N
−

u1S (I + θA)
N2 ) + (λ4 − λ6)γI + λ4(µI + µ),

dλ5

dt
= −A2 + (λ1 − λ3)βe−

u1 I+u2A
N (

S θ
N
−

u2S (I + θA)
N2 ) + (λ5 − λ6)γA + λ5µ,

dλ6

dt
= λ6µ,

(6.2)

with the transversality condition λ1(T ) = λ2(T ) = ··· = λ6(T ) = 0. Additionally, u∗1, u
∗
2, u

∗
3 are expressed

as

u∗1(t) = max{min{1,
I∗B1B2NLambertW(βS ∗(I∗+θA∗)(I∗2B2+A∗2B1)(λ3−λ1)

B1B2N3 )

(I∗2B2 + A∗2B1)(λ3 − λ1)
λ3 − λ1

B1
}, 0},

u∗2(t) = max{min{1,
A∗B1B2NLambertW(βS ∗(I∗+θA∗)(I∗2B2+A2B1)(λ3−λ1)

B1B2N3 )

(I∗2B2 + A∗2B1)(λ3 − λ1)
λ3 − λ1

B2
}, 0},

u∗3(t) = max{min{1,
(λ1 − λ2)S ∗

B3
}, 0}.

Proof. The adjoint equations and the conditions of transversality are obtained by the Hamilton function
H. By putting S = S ∗,Q = Q∗, E = E∗, I = I∗, A = A∗,R = R∗ and differentiating the Hamiltonian
with respect to S ,Q, E, I, A and R respectively, we obtain
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

dλ1

dt
= (λ1 − λ3)βe−

u1 I+u2A
N

S (I + θA)
N

+ (λ1 − λ3)u3 + λ1µ,

dλ2

dt
= (λ2 − λ1)λ + λ2µ,

dλ3

dt
= (λ3 − λ5)σ + (λ5 − λ4)ρ + λ3µ,

dλ4

dt
= −A1 + (λ1 − λ3)βe−

u1 I+u2A
N (

S
N
−

u1S (I + θA)
N2 ) + (λ4 − λ6)γI + λ4(µI + µ),

dλ5

dt
= −A2 + (λ1 − λ3)βe−

u1 I+u2A
N (

S θ
N
−

u2S (I + θA)
N2 ) + (λ5 − λ6)γA + λ5µ,

dλ6

dt
= λ6µ,

with the transversality condition λ1(T ) = λ2(T ) = · · · = λ6(T ) = 0. Further, by solving the equations
∂H
∂ui

= 0, i = 1, 2, 3 on the interior of the control set and using the optimality condition, we obtain

∂H
∂u1

= B1u1 + (λ1 − λ3)βe
−u1 I∗−u2A∗

N
I∗

N
S (I∗ + θA∗)

N∗
= 0,

∂H
∂u2

= B2u2 + (λ1 − λ3)βe
−u1 I∗−u2A∗

N
A∗

N
S (I∗ + θA∗)

N
= 0,

∂H
∂u3

= B3u3 − λ1S ∗ + λ2S ∗ = 0.

(6.3)

Let’s solve u1 by using the first two equations of (6.3), thus
B1u1 = (λ3 − λ1)βe

−u1 I∗−u2A∗

N
I∗

N
S ∗(I∗ + θA∗)

N
,

B2u2 = (λ3 − λ1)βe
−u1 I−u2A∗

N
A∗

N
S (I∗ + θA∗)

N
.

(6.4)

Hence,

u2 =
A∗B1

I∗B2
u1. (6.5)

Putting (6.5) in the first equation of (6.4), we get u∗1. And then we can easily get u∗2 and u∗3 as follows

u∗1(t) = max{min{1,
I∗B1B2NLambertW(βS ∗(I∗+θA∗)(I∗2B2+A∗2B1)(λ3−λ1)

B1B2N3 )

(I∗2B2 + A∗2B1)(λ3 − λ1)
λ3 − λ1

B1
}, 0},

u∗2(t) = max{min{1,
A∗B1B2NLambertW(βS ∗(I∗+θA∗)(I∗2B2+A∗2B1)(λ3−λ1)

B1B2N3 )

(I∗2B2 + A∗2B1)(λ3 − λ1)
λ3 − λ1

B2
}, 0},

u∗3(t) = max{min{1,
(λ1 − λ2)S ∗

B3
}, 0}.

Therefore, the optimal control problem of (6.1) is finished. Furthermore, some graphs is obtained by
numerical simulation.

6.2. Numerical simulation of optimal control

In this section, we assess numerically by investigating the effect of control strategies on the
transmission dynamics of disease. An iterative scheme of fourth order Runge-Kutta method is used for
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solving the optimality system (6.1). The common parameter values used in the computations are the
same in Table 2 except β, and the initial value are S 0 = 400, Q0 = 200, E0 = 300, I0 = 50, A0 =

60, R0 = 35 and β = 0.26.

The system is numerically simulated under the control of media coverage and quarantine. When
media control and quarantine control measure are used together to optimize the objection J, it is
observed from Figure 7 that the number of symptomatic and asymptomatic individuals are both
reduced, while the number of susceptible individuals will increase greatly. The upper bounds for
the controls u1, u2 and u3 are 140 days.

(a) The plot represents population of susceptible

with and without control

(b) The plot represents population of quarantined

with and without control

(c) The plot represents population of exposed

with and without control

(d) The plot represents population of infected

with and without control
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(e) The plot represents population of asymptomatic

with and without control

(f) The plot represents population of recovered

with and without control

(g) Control profile

Figure 7. Simulation of the solutions of system (6.1) with and without control (Figures
7(a)–(f)) and control profile Figure 7(g).

7. Conclusions

The SQEIAR model proposed in this paper is based on the media coverage and quarantine. We
discussed the dynamic behavior of the proposed model. The disease-free equilibrium of the system
(2.2) is locally-asymptotically stable if RC < 1, and if RC > 1, it is unstable. Then the existence of the
endemic equilibrium, the local asymptotic stability and global asymptotic stability of the equilibria of
system (2.2) related to basic reproduction number are discussed and the uniformly persistent property
of the system is obtained. The threshold analysis is carried out to discuss the influence of different
parameters on the effective reproduction number, such as the quarantine parameter p, the recovery rate
for symptomatic infections individuals γI , the progression rate parameters σ and 1−ρ, which have both
positive and negative effects on the basic reproduction number. The increase of quarantine parameter
p while the effective reproduction number decrease, which indicates that quarantine measures affect
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the extinction rate of the disease. The recovery rate parameter γI has the same effect on the basic
regeneration number as the quarantine p. While the progression rate parameters 1−ρ has both positive
and negative effects on the basic reproduction number, when the 1 − ρ is greater than the threshold,
RC increases, otherwise, RC decrease. The parameter σ has both positive and negative effects on the
number of the infectious, when the value of σ is less than a certain small value, the number of infected
individuals decrease and tend to 0, while σ is bigger than a certain big value, the number of infected
individuals increase.

Furthermore, the optimal control solutions are shown in Figure 7, showing media coverage and
quarantine measures are simultaneously more conducive to controlling the spread of epidemic diseases
in the early stages. By using the optimal control theory, we obtain the control strategy that minimizes
infected and asymptomatic infected persons with the least cost of implementing control measures.
Under this kinds of control, the number of symptomatic and asymptomatic individuals are both
reduced, while the number of susceptible individuals will increase greatly. Therefore, the suggestion
for the control of epidemic disease is to greatly reduce the number of infected persons through positive
media influence and effective quarantine.

The model works well for the spread of COVID-19, based on the basic regeneration number formula
given by the model, we can calculate the basic regeneration number of COVID-19 transmission in a
certain region, and then predict the transmission trend of COVID-19. The impact of the analyzed
model parameters on the basic regeneration number or the number of infected people can provide
suggestions for the prevention and treatment of COVID-19 from media reports, quarantine, treatment
and recovery. In particular, our model is able to give a control strategy that minimizes the number
of COVID-19 infected and asymptomatic infected people at the least cost, which is crucial for
economically underdeveloped countries to control COVID-19. Compared with other conventional
COVID-19 models, such as SEIR model in the literature [8, 33], the proposed model not only adds
the category of asymptomatic infection, but also takes into account the impact of media coverage and
quarantine on the transmission of COVID-19, which is more consistent with the current actual situation
of COVID-19 transmission. This makes our model more practical in revealing the transmission pattern
of the COVID-19.
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