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1. Introduction

In this paper, we consider the following nonclassical diffusion equation on a bounded domain Ω ⊂

Rn with smooth boundary ∂Ω:

ut − ν∆ut − ∆u + f (u) = g, in Ω × R+. (1.1)

The problem is supplemented with initial data

u(x, 0) = u0(x), x ∈ Ω, (1.2)

and the boundary condition
u(x, t)|∂Ω = 0, for all t ∈ R+, (1.3)
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where ν is a positive constant and g = g(x) ∈ L2(Ω). For nonlinearity, we always assume that

f (s) ∈ C1(R, R), f (0) = 0, (1.4)

and it satisfies the following conditions: For any s ∈ R,

α|s|p − β ≤ f (s)s ≤ γ|s|p + δ, p ≥ 2, (1.5)

where α, γ, β and δ are positive constants given, and there is a positive constant l such that

f ′(s) ≥ −l. (1.6)

This equation appears as an extension of the usual diffusion equation in fluid mechanics, solid
mechanics and heat conduction theory (see e.g., [1–3]). The Eq (1.1) with a one-time derivative
appearing in the highest order term is called pseudo-parabolic or Sobolev-Galpern equation [4]. The
existence of global attractors or uniform attractors for this equation has been considered in many
monographs and lectures (see e.g., [5–13] and the references therein). As nonlinearity satisfies
arbitrary polynomial growth condition, the asymptotic behavior of the solution for the nonclassical
diffusion equation, especially the existence of exponential attractors, has received considerably less
attention in the literature. In some cases similar to Eq (1.1) for some recent results on this equation,
the reader can refer to [14–17].

In recent years, the existence of exponential attractors for different types of evolution models has
been studied by many works of literature (see, e.g., [18–21] and references therein). Generally,
exponential attractors can be constructed for dissipative systems which possesses a certain kind of
smoothing property. Actually, not only does the smoothing property provide us with an exponential
attractive compact set M (i.e. the exponential attractivity of the semigroup), but also it ensures the
finite dimensionality of this set. In order to obtain the smoothing property of dissipative systems, we
need split the solution of our problem into two parts, one part exponentially decay, and the other part
is in some suitable phase spaces with higher regularity (for example, the domain of a suitable
fractional power of the operator ∆). For our problem, we note that the two terms which are ∆∂tu and
the nonlinearity f make problem (1.1) differ from usual reaction-diffusion equations or wave-type
equations. For the Eq (1.1), if initial data belongs to H1

0(Ω), then its solution is always in H1
0(Ω), and

has no higher regularity, that is similar as hyperbolic equations. Furthermore, when “n > 4” the
imbedding D(A) ↪→ L∞(Ω) is not true, so it’s very difficult to obtain the squeezing property for the
semigroup {S (t)}t≥0 associated with this equations. These characters cause some difficulties in
studying the existence and the regularity of exponential attractors for equation (1.1) when the
nonlinearity f satisfies the polynomial growth of arbitrary order and f ∈ C1. For the limit of our
knowledge, the existence and the regularity of exponential attractors of equation (1.1) is still not
confirmed when the nonlinearity f satisfies (1.4)–(1.6).

The main purpose in this paper is to consider the existence of exponential attractors for Eq (1.1).
In particular, by verifying the asymptotic regularity of global weak solutions of problem (1.1), we also
obtain the regularity of the exponential attractor M , i.e. M ⊂ D(A) with u0 ∈ H1

0(Ω). First, to obtain
the finite fractal dimension of global attractors in H1

0(Ω), we verify the asymptotic regularity of the
semigroup of solutions corresponding to problem (1.1) by using a new decomposition method (or
technique) as in [22]. It is worth noticing that authors only proved the the existence of global
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attractors (autonomous) or uniform attractors (non-autonomous) under a polynomial growth
nonlinearity in [22–24]. Second, to obtain an exponential attractor in H1

0(Ω), we prove that the
semigroup is Fréchet differentiable on H1

0(Ω) . Obviously, the result obtained in this paper essentially
improve and complement earlier ones in [25, 26] with critical nonlinearity.

This paper is organized as follows. In section 2, we recall some basic concepts as to exponential
attractors and useful results that will be used later. In section 3, by using the ideas in [22], we first
verify the asymptotic regularity of the semigroup for problem (1.1). Then we obtain the existence and
regularity of global attractors of problem (1.1). Finally, the existence and regularity of exponential
attractor is proved by using the ideas in [27].

2. Preliminaries

For conveniences, hereafter let |u| be the modular (or absolute value) of u, |Ω| be the measure of the
bounded domain Ω ⊂ Rn, | · |p be the norm of Lp(Ω)(1 ≤ p ≤ ∞) and (·, ·) be the inner product of L2(Ω).
C denotes any positive constant which may be different from line to line even in the same line. For the
family of Hilbert spaces D(A

s+1
2 ), s ≥ 0, their inner products and norms are respectively,

((·, ·))s = (A
s+1
2 ·, A

s+1
2 ·) and ‖ · ‖s = |A

s+1
2 · |2.

Let X be a complete metric space. A one-parameter family of (nonlinear) mappings S (t) : X →
X(t ≥ 0) is called semigroup provided that:

(1)S (0) = I;
(2)S (t + s) = S (t)S (s) for all t, s ≥ 0.
Furthermore, we say that semigroup {S (t)}t≥0 is a C0 semigroup or continuous semigroup if S (t)x0

is continuous in x0 ∈ X and t ∈ R.
The pair (S (t), X) is usually referred to as a dynamical system. A set A ⊂ X is called the global

attractor for {S (t)}t≥0 in X if
(i)A is compact in X,
(ii)S (t)A = A for all t ≥ 0, and
(iii) for any bounded set B ⊂ X, dist(S (t)B,A )→ 0 as t → 0, where

dist(B,A ) = sup
b∈B

inf
a∈A
‖b − a‖X.

A set B0 is called a bounded absorbing set for (S (t), X) if for any bounded set B ⊂ X, there exists
t0 = t0(B) such that S (t)B ⊂ B0 for all t ≥ t0. A set E is called positively invariant w.r.t. S (t) if for all
t ≥ 0, S (t)E ⊂ E.

Lemma 2.1. [19, 20, 28] A continuous semigroup {S (t)}t≥0 has a global attractor A if and only if
S (t) has a bounded absorbing set B and for an arbitrary sequence of points xn ∈ B(n = 1, 2, · · · .), the
sequence {S (tn)xn}

∞
n=1 has a convergence subsequence in B.

In fact, we know that

A =
⋂
t≥0

⋃
s≥t

S (s)B.
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Now, we briefly review the basic concept of the Kuratowski measure of noncompactness and restate
its basic property, which will be used to characterize the existence of exponential attractors for the
dynamical system (S (t), X) (the readers refer to [29, 30] for more details).

Let X be a Banach space and B be a bounded subset of X. The Kuratowski measure of
noncompactness κ(B) of B is defined by

κ(B) = inf{δ > 0|B admits a finite cover by sets of diameter ≤ δ}.

Let B, B1, B2 ⊂ X. Then
(1)κ(B) = 0 if and only if B is compact;
(2)κ(B1 + B2) ≤ κ(B1) + κ(B2);
(3)κ(B1) ≤ κ(B2), for B1 ⊂ B2;
(4)κ(B1 ∪ B2) ≤ max{κ(B1), κ(B2)};
(5)i f F1 ⊃ F2 · · · are non-empty closed sets in X such that κ(Fn) → 0 as n → ∞ , then F =

⋂∞
n=1 Fn

is nonempty and compact. In addition, let X be an infinite dimensional Banach space with a
decomposition X = X1 ⊕ X2 and let P : X → X1,Q : X → X2 be projectors with dim X1 < ∞. Then

(6)κ(B(ε)) = 2ε, where B(ε) is a ball of radius ε;
(7)κ(B) < ε, for any bounded subset B ⊂ X for which the diameter of QB is less than ε.

Definition 2.2. [19, 28] A semigroup S (t) is called ω-limit compact if for every bounded subset B
of X and for any ε > 0, there exists a t0 > 0 such that

κ

⋃
t≥t0

S (t)B

 ≤ ε.
Definition 2.3. [19, 20] Let n(M , ε), ε > 0 denote the minimum number of balls of X of radius ε

which are needed to cover M . The fractal dimension of M , which is also called the capacity of M , is
the number

dim f M = lim
ε→0

ln n(M , ε)
ln 1

ε

.

Definition 2.4. [18,20,31] Let {S (t)}t≥0 be a semigroup on complete metric space X. A set M ⊂ X
is called an exponential attractor for S (t), if the following properties hold

(1) The set M is compact in X and has finite fractal dimension;
(2) The set M is positively invariant, i.e., S (t)M ⊂M for any t > 0;
(3) The set M is an exponentially attracting set for the semigroup S (t), i.e., there exist two positive

constants l, k = k(B), such that for every bounded subset B ⊂ X, it follows that

dist(S (t)B,M ) ≤ ke−lt.

Definition 2.5. [27] Let (X; d) be a complete metric space. A continuous semigroup {S (t)}t≥0 on
X is called global exponentially κ-dissipative if for each bounded subset B ⊂ X, there exist positive
constants k and l such that

κ

⋃
s≥t

S (s)B

 ≤ ke−lt, ∀t ≥ 0,

where κ is the Kuratowski measure of noncompactness.
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Let X be a Banach space with the following decomposition

X = X1 ⊕ X2, dim X1 < ∞,

and denote projections by P : X → X1 and (I − P) : X → X2. In addition, let {S (t)}t≥0 be a continuous
semigroup on X. Using the idea in [29], the concepts “Condition (C∗)” is introduced in [27].

Condition (C∗): For any bounded set B ⊂ X, there exist positive constants t0, k and l, such that for
any ε > 0, there is a finite dimensional subspace X1 ⊂ X satisfying

(I) {‖PS (t)B‖X}t≥0 is bounded, and
(II) ‖(I − P)S (t)B‖X < ke−lt + ε, for t ≥ t0 ,

where P : X → X1 is a bounded projection.

Lemma 2.6. [27] Let X be a Banach space and {S (t)}t≥0 be a continuous semigroup on X for which
Condition (C∗) holds. Then {S (t)}t≥0 is a global exponentially κ−dissipative semigroup.

Lemma 2.7. [27] Let X be a Banach space, and {S (t)}t≥0 be a continuous semigroup on X. If
{S (t)}t≥0 is global exponentially κ−dissipative and has a bounded absorbing subset B0 ⊂ X, then there
exists a compact subset M such that

(i) M is positive invariant,
(ii) M exponentially attracts any bounded subset B ⊂ X.

Theorem 2.8. [27] Let {S (t)}t≥0 be a continuous semigroup on a Banach space X, if {S (t)}t≥0 is a
global exponential κ−dissipative semigroup and satisfies

(i) the fractal dimension of global attractor A is finite, i.e., dim f (A ) < ∞,
(ii) there exists a constant ε > 0, such that for any T ∗ > 0, S = S (T ∗) : N ε(A )→ N ε(A ) is a C1

map.
Then there exists a exponential attractor M with the finite fractal dimension.

3. Exponential attractors in H1
0(Ω)

3.1. Priori estimates

The following general existence and uniqueness of solutions for the nonclassical diffusion
equations can be obtained by the Galerkin approximation methods, here we only formulate the
results:

Lemma 3.1. [22, 32] Assume that g ∈ L2(Ω), and f satisfies (1.4)–(1.6). Then for any initial data
u0 ∈ H1

0(Ω) and any T > 0, there exists a unique solution u for the problem (1.1)–(1.2) which satisfies

u ∈ C1(0,T ; H1
0(Ω)) ∩ Lp(0,T ; Lp(Ω)).

Moreover, we have the following Lipschitz continuity: For any ui
0(ui

0 ∈ H1
0(Ω), denote by ui(i = 1, 2)

the corresponding solutions of Eq (1.1), then for all t ≥ T

‖u1(t) − u2(t)‖20 ≤ Q
(
‖u1

0‖0, ‖u
2
0‖0,T

) (
‖u1

0 − u2
0‖

2
0

)
, (3.1)

where Q(·) is a monotonically increasing function.
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By Lemma 3.1, we can define a semigroup {S (t)}t≥0 in H1
0(Ω) as the following:

S (t) : R+ × H1
0(Ω)→ H1

0(Ω),

u0 → u(t) = S (t)u0,

and {S (t)}t≥0 is a continuous semigroup on H1
0(Ω).

Lemma 3.2. [22,23] Let (1.4)–(1.6) hold, and g ∈ L2(Ω). Then for any bounded subset B ⊂ H1
0(Ω),

there exist positive ρ0 and T0 = T0(‖B‖0) such that

|S (t)u0|
2
2 + ‖S (t)u0‖

2
0 6 ρ0, for all t > T0 and all u0 ∈ B, (3.2)

where ρ0 depends only on |g|2 and is independent of the initial value u0 and time t.

Combining with (3.1), we know that S (t) maps the bounded set of H1
0(Ω) into a bounded set for all

t > 0, that is

Corollary 3.3. Let (1.4)–(1.6) hold and g ∈ L2(Ω), then for any bounded (in H1
0(Ω)) subset B, there

is an MB = M(‖B‖0, |g|2) such that

|S (t)u0|
2
2 + ‖S (t)u0‖

2
0 6 MB for all t > 0 and all u0 ∈ B. (3.3)

Lemma 3.4. [23] Let (1.4)–(1.6) hold, g ∈ L2(Ω) and B be any bounded subset H1
0(Ω), then there

exists a positive constant χ which depends only on |g|2 and ρ0, such that for any u0 ∈ B, the following
estimate

|u(t)|pp ≤ χ,

holds for any t ≥ T0 (from Lemma 3.2).

For brevity, in the sequel, let B0 be the bounded absorbing set obtained in Lemma 3.2 and let
ρ1 = ρ0 + χ, i.e.,

B0 =
{
u ∈ H1

0(Ω) ∩ Lp(Ω) : |u|22 + ‖u‖20 + |u|pp ≤ ρ1

}
. (3.4)

Lemma 3.5. Let (1.4)–(1.6) hold, g ∈ L2(Ω) and B be any bounded subset of H1
0(Ω), for any u0 ∈ B,

then there exist positive constants C which depends on ‖B‖0, such that

|ut(s)|22 + ‖ut(s)‖20 ≤ C

holds for any t ≥ 0.

Proof. Multiplying (1.1) by u, and then integrating in Ω, it now follows that

1
2

d
dt

(
|u|22 + ν|∇u|22

)
+ |∇u|22 = − < f (u), u > +(g, u). (3.5)

Using the assumptions (1.4)–(1.6), we have

− < f (u), u >≤ β|Ω| − α
∫

Ω

|u|p. (3.6)
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By the Hölder inequality, combining with (3.5) and (3.6), it follows that

1
2

d
dt

(
|u|22 + ν‖u‖20

)
+ α|u|pp ≤ β|Ω| +

|g|22
2λ1

, (3.7)

where λ1 is the first eigenvalue of −∆ with the boundary condition (1.3).
Taking t ≥ 0 and integrating (3.7) over [t, t + 1], we obtain∫ t+1

t
|u(s)|ppds ≤ M0, (3.8)

where M0 = 1
α

(
2β|Ω| + (1 + ν)MB +

|g|22
λ1

)
.

We can infer from (3.8) that for any τ > 0, there exists τ0 ∈ (0, τ] such that

|u(τ0)|pp ≤ M0. (3.9)

Multiplying (1.1) by ut(t) and integrating in Ω, we have

|ut|
2
2 + ‖ut‖

2
0 +

d
dt

(1
2
‖u(t)‖20 +

∫
Ω

F(u(t)) − (g, u(t))
)
≤ 0, (3.10)

whence ∫
Ω

F(u(t)) ≤
1
λ1
|g|22 + MB +

∫
Ω

F(u(τ0)), (3.11)

and

F(s) =

∫ s

0
f (υ)dυ.

From assumptions (1.4) − (1.6), then there are positive constants α̃, β̃, γ̃, δ̃, such that

α̃|s|p − β̃ ≤ F(s) ≤ γ̃|s|p + δ̃, (3.12)

holds for any s ∈ R.
Plugging (3.12) and (3.14) into (3.11), then there exists a positive constant M2 = M2

(
MB, |g|22

)
(of

course M2 also depends on these coefficients, e.g., α̃, γ̃ etc.) such that

|u(t)|pp ≤ M2 (3.13)

holds for all t ≥ 0.
From (3.10), there exists a positive constant M3 = M3

(
MB,M2, |g|22

)
such that∫ t

0

(
|ut(s)|22 + ‖ut(s)‖20

)
ds ≤ M3.

Similarly, for any τ > 0, there exists τ1 ∈ (0, τ] such that

|ut(τ1)|22 + ‖ut(τ1)‖20 ≤ M3. (3.14)
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In order to obtain the estimate about ut, differentiate the first equation of (1.1) with respect to t and let
z = ∂tu, then z satisfies the following equality

zt(t) − ν∆zt(t) − ∆z(t) + f ′(u(t))z = 0. (3.15)

Multiplying (3.15) by z(t), and integrating in Ω, we have

1
2

d
dt

(
|z|22 + ν‖z‖20

)
+ ‖z‖20 ≤ l|z|22. (3.16)

Taking t ≥ τ1 and integrating (3.16) over [τ1, t]. Thus, we obtain

|z(t)|22 + ν‖z(t)‖20 ≤ |ut(τ1)|22 + ν‖ut(τ1)‖20 + l
∫ t

0
|ut(s)|22ds.

Let C = M3l max{1,ν}
min{1,ν} , then the proof is completed.

3.2. Exponential attractors

In the following, we will prove the asymptotic regularity of solutions for the Eq (1.1) with initial-
boundary conditions (1.2)–(1.3) in H1

0(Ω) by using a new decomposition method (or technique).
In order to obtain the regularity estimates later, we decompose the solution S (t)u0 = u(t) into the

sum:
S (t)u0 = S 1(t)u0 + S 2(t)u0, (3.17)

where S 1(t)u0 = v(t) and S 2(t)u0 = ω(t) solve the following equations respectively,
vt − ∆v − ν∆vt + f (u) − f (ω) + µv = 0,
v(0) = u0,

v|∂Ω = 0,
(3.18)

and 
ωt − ∆ω − ν∆ωt + f (ω) − µv = g,
ω(0) = 0,
ω|∂Ω = 0,

(3.19)

where the constant µ > 2l max{β, 1} given, l is from (1.6).

Remark 3.6. It is easy to verify the existence and uniqueness of the decomposition (3.17)
corresponding to (3.18) and (3.19).

In fact, we can rewrite (3.19) as the following
ωt − ∆ω − ν∆ωt + f (ω) + µω = g + µu,
ω(0) = 0,
ω|∂Ω = 0,

(3.20)

where u is the unique solution of Eq (1.1) with (1.2), so g + µu ∈ L2
loc(R

+, L2(Ω)) is known. The
existence and uniqueness of solutions ω corresponding to Eq (3.20) can be obtained by the Galerkin
approximation methods(see e.g., [19]). By the superposition principle of solutions of partial differential
equations, the existence and uniqueness of solutions v for Eq (3.18) can be proved.

We will establish some priori estimates about the solutions of Eqs (3.18) and (3.19), which are the
basis of our analysis. The proof is similar to [24]. We also note that this proof was mentioned in [22].
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Lemma 3.7. Let f satisfy (1.4)–(1.6) and B be any bounded set of H1
0(Ω). Assume that S 1(t)u0 =

v(t) is the solutions of (3.18) with initial data v(0) = u0 ∈ B. Then, there exists a positive constant d0

which only depend on l, µ and ν such that

|S 1(t)u0|
2
2 + ‖S 1(t)u0‖

2
0 ≤ k0e−d0t. (3.21)

for every t ≥ 0 holds, where k0 = k0(‖u‖0) > 0 is a monotonically increasing continuous function about
‖u‖0.

Proof. Multiplying (3.18) by v(t), and integrating in Ω, we obtain

1
2

d
dt

(
|v|22 + ν|∇v|22

)
+ |∇v|22 +

∫
Ω

(
f (u) − f (ω)

)
v + µ|v|22 = 0. (3.22)

By assumptions (1.4)–(1.6), we have∫
Ω

(
f (u) − f (ω)

)
v =

∫
Ω

(
f (u) − f (ω)

)
(u − ω) ≥ −l|v|22,

It follows that
1
2

d
dt

(
|v|22 + ν|∇v|22

)
+

(
µ − l

)
|v|22 + |∇v|22 ≤ 0.

By the definition of µ, then µ − l ≥ l > 0. Let

d0 = 2 min{µ − l,
1
ν
},

then we have
d
dt

(
|v|22 + ν|∇v|22

)
+ d0

(
|v|22 + ν|∇v|22

)
≤ 0.

By the Gronwall Lemma, for all t ≥ 0, we have the following estimation

|v|22 + ν|∇v|22 ≤ (|u0|
2
2 + ν|∇u0|

2
2)e−d0t.

Taking

k0 =
max{1, ν}
min{1, ν}

(|u0|
2
2 + ‖u0‖

2
0),

then for all t ≥ 0, we have
|S 1(t)u0|

2
2 + ‖S 1(t)u0‖

2
0 ≤ k0e−d0t.

This proof is completed.
Next, we will consider the asymptotic regularity of the solution u(t) for (1.1), that is to verify

the regularity of the solution ω(t) for Eq (3.19). Concerning the solution ω to Eq (3.19), we have
the following result, which shows asymptotic regularity of the solution u to Eq (1.1) with the initial-
boundary conditions (1.2)–(1.3).

Lemma 3.8. Let f satisfy (1.4)–(1.6), ω(t) be the solutions of the Eq (3.19). Then the solution
satisfies the following estimate: there is a positive constant ρ2 such that

‖ω‖21 ≤ ρ2 (3.23)

for every t ≥ T1, where T1 = T1(T0) ≥ T0 is a constant.
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Proof. Multiplying the first equation of (3.19) by ω(t), and integrating in Ω, we have

1
2

d
dt

(
|ω|22 + ν|∇ω|22

)
+ µ|ω|22 + |∇ω|22 +

∫
Ω

f (ω)ω = (g, ω) + µ(u, ω). (3.24)

Using the assumptions (1.4)–(1.6), we have∫
Ω

f (ω)ω ≥ −β|Ω| + α

∫
Ω

|ω|p. (3.25)

Combining with (3.24) and (3.25), we obtain that

1
2

d
dt

(
|ω|22 + ν‖ω‖20

)
+
µ

2
|ω|22 + ‖ω‖20 + α|ω|pp ≤ β|Ω| +

1
µ
|g|22 + µ|u|22. (3.26)

Therefore, for all t ≥ T0, we have

d
dt

(
|ω|22 + ν‖ω‖20

)
+ µ|ω|22 + 2‖ω‖20 ≤ 2β|Ω| +

2
µ
|g|22 + 2µ|u|22.

Let d1 = min{µ, 2
ν
} ≥ d0, then

|ω|22 + ‖ω‖20 ≤
2

min{1, ν}d1

(
β|Ω| +

1
µ
|g|22

)
+

2µ
min{1, ν}

e−d1t
∫ t

0
ed1 s|u(s|22ds

≤
2

min{1, ν}d1

(
β|Ω| +

1
µ
|g|22 + µρ0

)
+

2µMB

d1 min{1, ν}
e−d1(t−T0) (3.27)

where MB from Corollary 3.3.
Furthermore, by (3.26), we obtain also

d
dt

(
|ω|22 + ν|∇ω|22

)
+ 2α|ω|pp ≤ 2β|Ω| +

2
µ
|g|22 + 2µ|u|22.

For any t ≥ T0, it follows that∫ t+1

t
|ω(s)|ppds ≤

1
α

(
β|Ω| +

1
µ
|g|22

)
+
µ

α

∫ t+1

t
|u(s|22ds

+
max{1, ν}

α
(|ω(t)|22 + ‖ω(t)‖20). (3.28)

Taking

M =
2

min{1, ν}d1

(
µρ0 + β|Ω| +

1
µ
|g|22

)
,

M1 =
M
α

(
min{1, ν}d1

2
+ max{1, ν}

)
,

K0 =
2µMB

d1 min{1, ν}
,
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and
T ∗0 = max{T0,T0 +

1
d1

ln
2K0

M
},

then for all t ≥ T ∗0 , we have that

|∇ω(t)|22 ≤ 2M,
∫ t+1

t
|ω(s)|ppds ≤ M1. (3.29)

Multiplying (3.19) by −∆ω(t) and integrating in Ω, we obtain

1
2

d
dt

(
|∇ω|22 + ν|∆ω|22

)
+ |∆ω|22 =

∫
Ω

f (ω)∆ω − µ(v,∆ω) − (g,∆ω). (3.30)

By the Hölder inequality and assumptions (1.4)–(1.6), we have∫
Ω

f (ω)∆ω ≤ l|∇ω|22, (3.31)

− µ(v,∆ω) ≤ µ2|v|22 +
1
4
|∆ω|22, (3.32)

− (g,∆ω) ≤ |g|22 +
1
4
|∆ω|22. (3.33)

Plugging (3.31)–(3.33) into (3.30) , it follows that

d
dt

(
|∇ω|22 + ν|∆ω|22

)
+ l|∇ω|22 + |∆ω|22 ≤ 3l|∇ω|22 + 2µ2|v|22 + 2|g|2.

Let d2 = min{l, 1
ν
} < d0 and % = max{3l, 2µ2} then

d
dt

(
|∇ω|22 + ν|∆ω|22

)
+ d2

(
|∇ω|22 + ν|∆ω|22

)
≤ %

(
|∇ω|22 + |v|22

)
+ 2|g|2.

Combined with (3.29) and Lemma 3.7 , by the Gronwall Lemma we have

|∇ω|22 + ν|∆ω|22 ≤%e−d2t
∫ t

0
ed2 s(|∇ω(s)|22 + |v(s)|22)ds +

2
d2
|g|2

≤%e−d2t

(∫ t

0
ed2 s(|∇ω(s)|22)ds +

∫ t

0
ed2 s|v(s)|22ds

)
+

2
d2
|g|2

≤
2
d2
|g|2 +

%(M + K0ed2T0)
d2

e−d2(t−T ∗0 ) +
k0

d0 − d2
e−d2t

+%e−d2t
∫ t

T ∗0

ed2 s|∇ω(s)|22ds

≤
2
d2
|g|2 +

(
%(M + K0ed2T0)

d2
ed2T ∗0 +

k0

d0 − d2

)
e−d2t +

2%(d2 + 1)M
d2

Let

T1 = max

T ∗0 ,
1
d2

ln
d2

(
%(M+K0ed2T0 )

d2
ed2T ∗0 + k0

d0−d2

)
2
(
|g|2 + %M(d2 + 1)

)
 ,
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then it follows that

|∇ω|22 + |∆ω|22 ≤
4

d2 min{1, ν}

(
2|g|2 + %M(d2 + 1)

)
holds for any t ≥ T1. Let ρ2 = ρ0 + 4

d2 min{1,ν}

(
2|g|2 + %M(d2 + 1)

)
, by Lemma 3.2, we get

|ω|22 + |∇ω|22 + |∆ω|22 ≤ ρ2.

This proof is completed.

Remark 3.9. By the proof of the Lemma 3.7 and the Lemma 3.8, we find that the existence and
regularity of global attractor A also can be proved under g ∈ H−1(Ω).

In order to obtain the exponential attractor, we verify that the semigroup {S (t)}t≥0 satisfies globally
exponential κ−dissipative. Let λk(k = 1, 2, · · · ) be the eigenvalues of −∆ in D(A) and wk(k = 1, 2, · · · )
be the eigenvectors correspondingly, {wk}

∞
k=1 is an orthonormal basis in L2(Ω). Then we have

(wi,w j) = δi j =

{
1, i = j,
0, i , j,

i, j = 1, 2, · · · .

Further more, {wk}
∞
k=1 also form an orthogonal basis for H1

0(Ω) and D(A) and satisfies

− ∆wk = λkwk, k = 1, 2, · · · ,
0 < λ1 < λ2 ≤ λ3 ≤ · · · , and lim

k→∞
λk = +∞.

((wi,w j))0 = λ jδi j = λiδi j, i, j = 1, 2, · · · .

If we take an element of L2(Ω) and project it onto the space spanned by the first m eigenfunctions
{w1,w2, · · · ,wm}, we get

Pmu =

m∑
j=1

(u,w j)w j =

m∑
j=1

u jw j.

We also define the projection orthogonal of Pm, Qm = I − Pm,

Qmu =

∞∑
j=m+1

(u,w j)w j.

Let u1 = Pmu, u2 = Qmu = (I − Pm)u, then u = u1 + u2 and it follows that

|u2|
2
2 =

∞∑
j=m+1

|(u,w j)|2 ≤ |u|22, for any u ∈ L2(Ω); (3.34)

‖u2‖
2
0 = ((u2, u2))0 =

∞∑
j=m+1

λ j|(u,w j)|2 ≥ λm|u2|
2
2, for any u ∈ H1

0(Ω). (3.35)

‖u2‖
2
1 = ((u2, u2))1 ≥ λm‖u2‖

2
0, for any u ∈ H2(Ω) ∩ H1

0(Ω). (3.36)
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Lemma 3.10. Let Ω be a bounded domain in Rn with smooth boundary, f satisfies (1.4)–(1.6).
Assume further that g ∈ L2(Ω), and the semigroup {S (t)}t≥0 associated with the Eq (1.1) satisfies
Condition(C∗) , that is, for any bounded subset B ⊂ H1

0(Ω), there exist k, l,T2 > 0 and k(m), such that

‖(I − Pm)
⋃
s≥t

S (s)u0‖
2
0 ≤ ke−lt + k(m), for any u0 ∈ B,

and
lim

m→∞
k(m) = 0

hold provided that t ≥ T2 .

Proof. For any t > 0, the solutions u = S (t)u0, corresponding to (1.1)–(1.3), can be decomposed in
the form

S (t)u0 = S 1(t)u0 + S 2(t)u0,

where S 1(t)u0 and S 2(t)u0 are the solutions of system (3.18) and system (3.19)respectively. Then we
have

‖(I − Pm)
⋃
s≥t

S (s)u0‖0 ≤ ‖(I − Pm)
⋃
s≥t

S 1(s)u0‖0 + ‖(I − Pm)
⋃
s≥t

S 2(s)u0‖0. (3.37)

By Lemma 3.7, we have
‖v2‖

2
0 ≤ ‖v‖

2
0 ≤ 2k0e−d0t. (3.38)

For any t ≥ T1

‖ω2‖
2
0 ≤

1
λm
‖ω2‖

2
1 ≤

1
λm
‖ω‖21 ≤

ρ1

λm
. (3.39)

Let k =
√

2k0, l = 1
2d0 and k(m) =

√
ρ1
λm

, then we have

‖(I − Pm)
⋃
s≥t

S (s)u0‖0 ≤ ke−lt + k(m), for any u0 ∈ B,

and
lim

m→∞
k(m) = 0

provided that t ≥ T2. This proof is completed.
It follows from the conclusions in Lemma 2.7 and Theorem 3.10 that the semigroup {S (t)}t≥0

associated with the Eq (1.1) satisfies the globally exponential κ-dissipative, then the semigroup has a
compact and positive invariant set M , which attracts any bounded subset B ⊂ H1

0(Ω) exponentially.
Next, we are aiming to prove that the fractal dimension of the set M is finite, to this end, the
following result is necessary.

Lemma 3.11. Assume further that f satisfies (1.4)–(1.6) and g ∈ L2(Ω). Then the semigroup
{S (t)}t≥0, corresponding to (1.1)–(1.3), possesses a global attractor A in H1

0(Ω). Moreover, this
attractor A is bounded in D(A) and the fractal dimension of global attractor A is finite, i.e.,
dim f (A ) < ∞.
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Proof. By Lemma 3.8, we just need to verify that the fractal dimension of global attractor A is
finite. It’s obvious A ⊂ D(A) for all t ≥ 0. Take T > 0 fixing and let S n = S (nT ), obviously S n is
a discrete dynamical system. The measure of non-compactness is exponentially decaying for S n. Let
θ = e−lT and r = kθ (l, k from Lemma 3.10). Since A is compact, for r there exist x1, x2, · · · , xN such
that

A ⊂

N⋃
i=1

B(xi, kθ) ⊂
N⋃

i=1

{xi + kθB(0, 1)}, A =

N⋃
i=1

({xi + kθB(0, 1)} ∩A ) .

Because {xi + kθB(0, 1)}
⋂

A is precompact, so there exists a precompact set Bi ⊂ B(0, 1) such that
{xi + kθB(0, 1)}

⋂
A = {xi + kθBi}. For this θ, there exists q ∈ N such that Bi ⊂

⋃q
j=1 B(yi j, θ), so we

have

A =

 N⋃
i=1

q⋃
j=1

{xi + kθB(yi j, θ)}

⋂A =

 N⋃
i=1

q⋃
j=1

{xi + kθyi j + kθ2B(0, 1)}

⋂A .

Then there exist Nq open balls with radius kθ2 in H1
0(Ω) covering A . For any n ∈ N, after iterations,

we obtain that there exist at most Nqn−1 balls with radius kθn in H1
0(Ω) covering A . So for all ε > 0,

let n ≥ [ ln k−ln ε
lT ] + 1, then kθn = ke−nlT < ε. We get

dim f (A ) ≤lim
ε→0

ln Nqn−1

ln ε−1

≤lim
ε→0

ln N + (n − 1) ln q
ln ε−1

≤ lim
ε→0

lT ln N + (ln k − ln ε) ln q
−lT ln ε

≤
ln q
lT

.

This proof is completed.

Lemma 3.12. For any t > 0, the semigroup {S (t)}t≥0 is Fréchet differentiable on H1
0(Ω).

Proof. Let S (t∗)
(
u0 + hv0

)
= v(t∗) and S (t∗)

(
u0

)
= u(t∗) be the solutions at the time t∗ for the

following equations respectively, 
vt − ∆v − ν∆vt + f (v) = g,
v(0) = u0 + hv0,

v|∂Ω = 0,
(3.40)

and 
ut − ∆u − ν∆ut + f (u) = g,
u(0) = u0,

u|∂Ω = 0.
(3.41)

And then, setting ωh = v−u
h =

S (t∗)
(

u0+hv0

)
−S (t∗)

(
u0

)
h , which clearly satisfies the following equation

∂
∂tωh − ∆ωh − ν

∂
∂t ∆ωh + f ′(u + θ(v − u))ωh = 0,

ωh(0) = v0,

ωh|∂Ω = 0,
(3.42)
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where f ′(u + θ(v − u)) =
f (v)− f (u)

h and 0 < θ < 1.
Multiplying Eq (3.42) by ωh and integrating over Ω, we have

1
2

d
dt

(
|ωh|

2
2 + ν‖ωh‖

2
0

)
+ ‖ωh‖

2
0 ≤ l|ωh|

2
2.

Then ωh(t∗) ∈ H1
0(Ω) and

|ωh|
2
2 + ‖ωh‖

2
0 ≤ Celt(|v0|

2
2 + ‖v0‖

2
0
)
, (3.43)

where C is a constant independent of h. On the other hand, we denote W = W(x, t) which satisfies the
following equation 

∂
∂t W − ∆W − ν ∂

∂t ∆W + f ′(u)W = 0,
W(0) = v0,

W |∂Ω = 0.
(3.44)

Multiplying Eq (3.44) by W and integrating over Ω, we get

1
2

d
dt

(
|W |22 + ν‖W‖20

)
+ ‖W‖20 ≤ l|W |22.

Then
|W |22 + ‖W‖20 ≤ Celt(|v0|

2
2 + ‖v0‖

2
0
)
, (3.45)

where C is a constant independent of h.
Obviously, W(t∗) ∈ H1

0(Ω) and the linear version S ′(t∗)(if existed)

S ′(t∗) = L : v0(∈ Tu0(H
1
0(Ω))) 7→ W(t∗)(∈ TS (t∗)u0(H

1
0(Ω))),

where Tu0(X) denotes the tangent space at the point u0 in Banach space X.
From (3.42) and (3.42), the difference Uh = ωh −W satisfies

∂
∂t Uh − ∆Uh − ν

∂
∂t ∆Uh + ghωh + f ′(u)Uh + lUh = lUh,

Uh(0) = 0,
Uh|∂Ω = 0,

(3.46)

where gh = f ′(u + θ(v − u)) − f ′(u) and l from (1.6).
The homogenization of the above Eq (3.46) gives

∂
∂t U − ∆U − ν ∂

∂t ∆U + f ′(u)U + lU = lU,
U(0) = 0,
U |∂Ω = 0.

(3.47)

It is obvious U ≡ 0 for the homogenization Eq (3.47).
Next, we consider the non-homogeneous Eq (3.46). It is obvious that ghωh ∈ H−1(Ω) , Uh ∈ H1

0(Ω)
and ghωhUh ∈ L1(Ω). Multiplying Eq (3.46) by Uh and integrating over Ω, we get

1
2

d
dt

(
|Uh|

2
2 + ν‖Uh‖

2
0

)
+ ‖Uh‖

2
0 ≤ l|Uh|

2
2 +

∣∣∣∣ ∫
Ω

ghωhUh

∣∣∣∣.
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Combining with (3.28), (3.43) and (3.45), we get ghωhUh is uniform (w.r.t h) bounded, for a.e. x ∈ Ω.
Note that the non-homogeneous term ghωhUh → 0, a.e. x ∈ Ω. And applying the Lebesgue dominated
convergence theorem, one can deduce

lim
h→0

∫
Ω

|ghωhUh| = 0.

So we obtain that
lim
h→0

∣∣∣ ∫
Ω

ghωhUh

∣∣∣ = 0.

for any t ∈ [0,+∞). By the standard theory of ordinary differential equation, one see that Uh → 0 in
H1

0(Ω) as h→ 0, that is, ωh → W in H1
0(Ω) as h→ 0. It implies that the semigroup {S (t∗)}t≥0 is Fréchet

differentiable on H1
0(Ω). This proof is completed.

Lemma 3.13. There exists a constant L, such that for any u0 ∈ B0, the solution u(t) of the equation
(1.1) with the initial-boundary conditions (1.2) and (1.3) satisfies

|u(t1) − u(t2)|22 + ‖u(t1) − u(t2)‖20 ≤ L|t1 − t2|
2,

for any t1, t2 ≥ 0.

Proof. Recalling Lemma 3.5, for any t ≥ 0, there exists a constant C such that

|ut(t)|22 + ‖ut(t)‖20 ≤ C, and |u(t)|22 + ‖u(t)‖20 ≤ C

It follows that
|u(t1) − u(t2)|22 + ‖u(t1) − u(t2)‖20 ≤ C|t1 − t2|

2.

This implies for any T > 0, the semigroup {S (t)}t≥0 is uniformly Hölder continuous w.r.t t on [0,T ].
This proof is completed.

Theorem 3.14 (Exponential attractor). Let Ω be a bounded domain in Rn with smooth boundary,
and f satisfies (1.4)–(1.6). Then the semigroup {S (t)}t≥0, corresponding to (1.1)–(1.3), possesses a
exponential attractor M in H1

0(Ω).

Proof. Combining with Lemma 3.2, Lemma 3.10, Lemma 3.12 and Lemma 3.13. as a direct
application of the abstract theorem 2.8, we obtain the existence of a exponential attractor M in
H1

0(Ω). The proof is completed.

4. Conclusions

This paper mainly investigate the long-time behavior for nonclassical diffusion equations with
arbitrary polynomial growth nonlinearity, including the following three results: (i) the existence and
regularity of global attractors is obtained, it is worth noting that a new operator decomposition
method is proposed; (ii) the global attractors have finite fractal dimension by combining with
asymptotic regularity of solutions; (iii) we confirm the existence of exponential attractors by verifying
Fréchet differentiability of semigroup. The above conclusions are more general, and essentially
improve existing some results, it should be pointed out that these methods in this paper can also be
used for other evolution equations.
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