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1. Introduction

Special functions is a basic and important field of mathematics, because of applications in functional
analysis, physics, statistics, mathematical analysis etc. The special functions can not be defined in
formal way but all the functions which are important enough and assigned by their own names like
exponential functions, logarithmic functions, trigonometric functions, Laguerre polynomials, Lagrange
polynomials, Hermite polynomials, Mcrobert E-functions, Meijer G-functions, Fox H-functions etc.
are considered to be the special functions. The Pochhammer symbol, gamma function, beta function
and hypergeometric functions are fundamentals in the field of special functions.

The Pochhammer’s symbol is defined [1] as

(a)n =

{
a(a + 1)(a + 2) · · · (a + n − 1) for n ≥ 1
1 for n = 0, a , 0,

(1.1)

where a ∈ C and n ∈ N.
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The gamma function is defined [1] as

Γ(a) =
∫ ∞

0
ta−1e−tdt, (1.2)

whereℜ(a) > 0.
The relation of gamma function with Pochhammer symbol is given as

(a)n =
Γ(a + n)
Γ(a)

. (1.3)

The beta function is defined [1] in the integral and gamma function forms as

β(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt, ℜ(a) > 0,ℜ(b) > 0 (1.4)

=
Γ(a)Γ(b)
Γ(a + b)

.

The Laguerre polynomial is defined [1] as

Lλv (t) =
v∑

i=0

(−1)i(1 + λ)vti

i!(v − i)!(1 + λ)i
, (1.5)

where v is non-negative integer. The researchers [2–4] worked on the Laguerre polynomials and proved
some important relations and applications in different fields.

The Gauss hypergeometric and confluent hypergeometric functions are defined [1] respectively as

2F1

[
v,w

l

∣∣∣t] = ∞∑
n=0

(v)n(w)ntn

(l)nn!
(1.6)

and

1F1

[
v
l

∣∣∣t] = ∞∑
n=0

(v)ntn

(l)nn!
, (1.7)

where v,w, l are parameters with l not be zero or negative integer and |t| < 1.
Shen-Yang et al. [5] worked on the functional inequalities for the Gaussian hypergeometric function

and generalized elliptic integral of the first kind. They discussed some applications of the Gauss
hypergeometric functions in different areas especially in functional analysis. Almost all the special
functions and elementary functions can be obtained from hypergeometric functions as special cases.
Several applications of Gauss hypergeometric functions are discussed in [6–8]. Wang et al. [9]
worked on the generalization of the inequalities and proved the generalization of Ramanujan’s
cubic transformation inequalities for zero balanced hypergeometric functions. Qiu et al. [10]
investigated the generalization of the inequalities and proved sharp Lenden transformation inequalities
for hypergeometric functions. They also proved some properties and gave some applications of the
Ramanujan’s constant.

The Meijer G-functions are important in various fields especially in applied mathematics and
mathematical statistics. These functions naturally appear as a solution of differential equations. Meijer
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G-functions are interesting because of greater flexibility in the orders p, q,m, n and the parameters.
By adopting different values of these parameters, we can obtain different known special functions.
Because of the fact that Miejer G-functions can be defined in different ways, these functions are easy
to compute. Almost all the elementary functions can be presented in the form of Meijer G-functions
by choosing different parameters. Meijer G-functions are applicable in mathematical physics because
these can be expressed in the form of hypergeometric function. So, almost all the special functions can
be obtained as special cases of Meijer G-functions.

The Meijer G-function is defined [11–15] in integral form as

Gm,n
p,q

[
a1, a2, ..., ap

b1, b2, ..., bq

∣∣∣∣∣t] = 1
2πi

∮
L

Γk(b1,m − s)Γk(k − a1,n + s)
Γk(an+1,p − s)Γk(k − bm+1,q + s)

ts/kds, (1.8)

where m, n, p, q are orders of G-function with the conditions 0 ≤ m ≤ q and 0 ≤ n ≤ p, and ap, bq are
parameters. Also no poles of any Γ(b j − s), j = 1, 2, ...,m coincides with a pole of Γ(1 − ai + s), i =
1, 2, ..., n.

The Meijer G-functions in term of hypergeometric functions are given as

Gm,n
p,q

[
a1, a2, ..., ap

b1, b2, ..., bq

∣∣∣∣∣t] = m∑
i=1

∏m
h=1 Γ(bh − bi)∗

∏n
h=1 Γ(1 − ah + bi)tbi∏q

h=m+1 Γ(1 − bh + bi)
∏p

h=n+1 Γ(ah − bi)

×pFq−1

[
1 − ap + bi

(1 − bq + bi)∗

∣∣∣∣∣(−1)p−m−nt
]

(1.9)

and

Gm,n
p,q

[
a1, a2, ..., ap

b1, b2, ..., bq

∣∣∣∣∣t] = m∑
i=1

∏n
h=1 Γ(ai − ah)∗

∏m
h=1 Γ(1 − ai + bh)tai−1∏p

h=n+1 Γ(1 − ai + ah)
∏q

h=m+1 Γ(ai − bh)

×qFp−1

[
1 − ai + bq

(1 − ai + ap)∗

∣∣∣∣∣(−1)q−m−nt−1
]
, (1.10)

with the same conditions on m, n, p, q.
The researchers [16–27] worked on Meijer G-functions and proved immense amount of properties

and applications.
In the last two decades, special functions have gained much attention of the researchers [28–38]

after the development of k-symbol and k-functions by Diaz et al. [39, 40] in (2005) and (2007), which
are considered to be the generalization of special functions.

Diaz and Pariguan [40], firstly defined generalization of gamma and beta functions in k-form, k > 0
as

Γk(a) = lim
n→∞

n!kn(nk)
a
k−1

(a)n,k
, k > 0, a ∈ C\kZ− (1.11)

and

βk(a, b) =
1
k

∫ 1

0
t

a
k−1(1 − t)

b
k−1dt, ℜ(a) > 0,ℜ(b) > 0, (1.12)

where (a)n,k is the Pochhammer k-symbol defined as

(a)n,k =

{
a(a + k)(a + 2k) · · · (a + (n − 1)k) for n ≥ 1
1 for n = 0, a , 0.

(1.13)
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Motivated by Prudnikov [25], our main aim is to obtain the generalization of some functions by
keeping in view the idea of the extension and generalization of the special functions. We first define
the generalized Meijer G-functions and then find some important relations between the generalized
Meijer G-functions and some known generalized special functions. We investigate the relation of
generalized Meijer G-functions with Laguerre polynomial, product of Laguerre polynomial with
exponential functions, logarithmic functions and confluent hypergeometric functions. These relations
will be helpful in different areas especially in mathematical physics and functional field of analysis.

The generalized Meijer G-function in the integral form can be defined as

Gm,n
k,p,q

[
a1, a2, ..., ap

b1, b2, ..., bq

∣∣∣∣∣t] = 1
2πi

∮
L

Γk(b1,m − s)Γk(k − a1,n + s)
Γk(an+1,p − s)Γk(k − bm+1,q + s)

ts/kds, (1.14)

where m, n, p, q are orders of G-function with the conditions 0 ≤ m ≤ q and 0 ≤ n ≤ p, and ap, bq are
parameters, k > 0. Also no poles of any Γk(b j−s), j = 1, 2, ...,m coincides with a pole of Γk(k−ai+s), i =
1, 2, ..., n.

The generalized Meijer G-functions in terms of generalized hypergeometric functions are defined
as respectively

Gm,n
k,p,q

[
a1, a2, ..., ap

b1, b2, ..., bq

∣∣∣∣∣t] = m∑
i=1

∏m
h=1 Γk(bh − bi)∗

∏n
h=1 Γk(k − ah + bi)t

bi
k∏q

h=m+1 Γ(k − bh + bi)
∏p

h=n+1 Γk(ah − bi)

×pFq−1,k

[
k − ap + bi

(k − bq + bi)∗

∣∣∣∣∣(−1)p−m−nt
]
, (1.15)

for p < q and

Gm,n
k,p,q

[
a1, a2, ..., ap

b1, b2, ..., bq

∣∣∣∣∣t] = m∑
i=1

∏n
h=1 Γk(ai − ah)∗

∏m
h=1 Γ(k − ai + bh)t

ai
k −1∏p

h=n+1 Γk(k − ai + ah)
∏q

h=m+1 Γk(ai − bh)

×qFp−1,k

[
k − ai + bq

(k − ai + ap)∗

∣∣∣∣∣(−1)q−m−nt−1
]

(1.16)

for p > q with the same conditions on m, n, p, q as that of integral definition.

2. Laguerre polynomials in the form of generalized G-functions

In this section, we prove the relation of generalized Laguerre polynomials and product of Laguerre
polynomial with exponential functions in the form of generalized Meijer G-functions.

Theorem 2.1. Let λ be an arbitrary real number and v be a non-negative integer. Then for k > 0, the
following holds

Lλv,k(t) = Γk(k + λ + vk)G1,0
k,1,2

[
vk + k
0,−λ

∣∣∣∣∣t] . (2.1)

Proof. Applying the definition (1.15) of the generalized Meijer G-function on the right hand side,
we have

AIMS Mathematics Volume 6, Issue 11, 11631–11641.
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G1,0
k,1,2

[
vk + k
0,−λ

∣∣∣∣∣t] = 1
Γk(k + λ)Γk(vk + k) 1F1,k

[
−vk

k + λ

∣∣∣t]
=

(k + λ)v,k

Γk(k + λ + vk)kvv! 1F1,k

[
−vk

k + λ

∣∣∣t] .
So,

Γk(k + λ + vk)G1,0
k,1,2

[
vk + k
0,−λ

∣∣∣∣∣t] = (k + λ)v,k

kvv! 1F1,k

[
−vk

k + λ

∣∣∣t] . (2.2)

The generalized form of Laguerre polynomial (1.5) for k > 0, can be defined as

Lλv,k(t) =
(k + λ)v,k

kvv! 1F1,k

[
−vk

k + λ

∣∣∣t] . (2.3)

Thus from (2.2) and (2.3), we obtain the desired result. □

Corollary 2.1. Let λ be an arbitrary real number and v be a non-negative integer. Then for k > 0, the
following holds

Lλv,k(
1
t
) = Γk(k + λ + vk)G0,1

k,2,1

[
k, λ + k
−vk

∣∣∣t] . (2.4)

Proof. By using the definition (1.16) of the generalized Meijer G-function, we have

G0,1
k,2,1

[
k, λ + k
−vk

∣∣∣t] = (k + λ)v,k

Γk(k + λ + vk)kvv! 1F1,k

[
−vk

k + λ

∣∣∣∣∣1t
]
. (2.5)

As the Laguerre polynomial for k > 0, is defined as

Lλv,k(
1
t
) =

(k + λ)v,k

kvv! 1F1,k

[
−vk

k + λ

∣∣∣∣∣1t
]
. (2.6)

Thus from (2.5) and (2.6), we obtain the desired result. □

Now, we are considering the product of exponential function with Laguerre polynomial.

Theorem 2.2. Let λ be an arbitrary real number and v be a non-negative integer. Then for k > 0, the
following holds

e−tLλv,k(t) =
1

kvv!
G1,1

k,1,2

[
−vk − λ

0,−λ

∣∣∣∣∣t] . (2.7)

Proof. By considering the series of exponential and Laguerre polynomial, and taking their product,
we have
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e−tLλv,k(t) = [
∞∑

n=0

(−t)n

n!
][

(k + λ)v,k

kvv!

∞∑
m=0

(−vk)m,ktm

(k + λ)m,km!
]

=
(k + λ)v,k

kvv!

∞∑
n=0

∞∑
m=0

(−1)n(−vk)m,ktm+n

(k + λ)m,km!n!

=
(k + λ)v,k

kvv!

∞∑
n=0

(−1)ntn(k + λ + vk)n,k

(k + λ)n,kn!
. (2.8)

By using (1.15), the generalized Meijer G-function on the right hand side of (2.7) will take the
following form

G1,1
k,1,2

[
−vk − λ

0,−λ

∣∣∣∣∣t] = (k + λ)v,k

∞∑
n=0

(−1)ntn(k + λ + vk)n,k

(k + λ)n,kn!
. (2.9)

So, from (2.8) and (2.9), we obtain the desired result. □

Corollary 2.2. Let λ be an arbitrary real number and v be a non-negative integer. Then for k > 0, the
following holds

e−
1
t Lλv,k(

1
t
) =

1
kvv!

G1,1
k,2,1

[
k, λ + k
λ + vk + k

∣∣∣∣∣t] . (2.10)

Proof. By considering the series of exponential and Laguerre polynomial on the lefty hand side and
taking their product, we have

e−
1
t Lλv,k(t) =

(k + λ)v,k

kvv!

∞∑
n=0

(−1)ntn(k + λ + vk)n,k

(k + λ)n,kn!
. (2.11)

By using (1.16), the generalized Meijer G-function on the right hand side of (2.10) will take the form

G1,1
k,2,1

[
k, λ + k
λ + vk + k

∣∣∣∣∣t] = (k + λ)v,k

∞∑
n=0

(−1)n(k + λ + vk)n,k

(k + λ)n,ktnn!
. (2.12)

So, from (2.11) and (2.12), we obtain the desired result. □

Proposition 2.1. Let v be a non-negative integer and λ be zero in theorem (2.2). Then for k > 0, the
following holds

e−tLv,k(t) =
1

Γk(vk + k)
G1,1

k,1,2

[
−vk
0, 0

∣∣∣∣∣t] . (2.13)

Proof. By considering the series of exponential and Laguerre polynomial, and taking their product,
we have
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e−tLv,k(t) = [
∞∑

n=0

(−t)n

n!
][
∞∑

m=0

(−vk)m,ktm

(k)m,km!
]

=

∞∑
n=0

∞∑
m=0

(−1)n(−vk)m,ktm+n

(k)m,km!n!

=

∞∑
n=0

(−1)ntn(k + vk)n,k

Γk(k + nk)n!
. (2.14)

By using (1.15), the generalized Meijer G-function on the right hand side of (2.13) will take the form

G1,1
k,1,2

[
−vk
0, 0

∣∣∣∣∣t] = Γk(k + vk)
∞∑

n=0

(−1)ntn(k + vk)n,k

(k)n,kn!
. (2.15)

So, from (2.14) and (2.15), we obtain the required result. □

Proposition 2.2. Let v be a non-negative integer and λ be zero in corollary (2.2). Then for k > 0, the
following holds

e−
1
t Lv,k(

1
t
) =

1
Γk(k + vk)

G1,1
k,2,1

[
k, k

vk + k

∣∣∣∣∣t] . (2.16)

Proof. By adopting the same process as that of corollary (2.2), one can prove easily. □

3. Relations of the generalized Meijer G-functions with some other known functions

In this section, we prove the relations of generalized Meijer G-functions with generalized form of
some known functions as logarithmic functions and confluent hypergeometric functions.

Theorem 3.1. Let p = 3, q = 3, m = 1, n = 2 and a1 = k, a2 = k, a3 =
k
2 , b1 = k, b2 = 0 and b3 =

k
2 ,

with k > 0 in (1.15). Then for |t| < 1, the generalized Meijer G-function gives

G1,2
k,3,3

[
k, k, k

2
k, 0, k

2

∣∣∣∣∣t] = 1
k2π

ln(1 − kt). (3.1)

Proof. By using the definition of generalized Meijer G-function (1.15) for given parameters, we have

G1,2
k,3,3

[
k, k, k

2
k, 0, k

2

∣∣∣∣∣t] = 1
Γk(2k)Γk( 3k

2 )Γk(−k
2 )

∞∑
n=0

(k)n,kkntn+1

(2k)n,k

=
−1
kπ

∞∑
n=0

(k)n,kkntn+1

(2k)n,k
. (3.2)

Since, the Maclaurin series of logarithmic function is

ln(1 − kt) = −kt −
(kt)2

2
−

(kt)3

3
− · · · . (3.3)

So, from (3.2) and (3.3), we obtain the required result. □
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Corollary 3.1. Let p = 2, q = 2, m = 2, n = 1 and a1 = 0, a2 = k, b1 = 0, b2 = 0 with k > 0 in (1.15).
Then for |t| < 1 the generalized Meijer G-function gives

G2,1
k,2,2

[
0, k
0, 0

∣∣∣∣∣t] = 1
k2 ln(1 +

k
t
). (3.4)

Proof. By using the definition of generalized Meijer G-function (1.15) for given parameters, we have

G2,1
k,2,2

[
0, k
0, 0

∣∣∣∣∣t] = 1
Γk(2k)

∞∑
n=0

(k)n,kkn(−1)n

(2k)n,ktn+1

=
1
k

∞∑
n=0

(k)n,kkn(−1)n

tn+1(2k)n,k
. (3.5)

So, we have

G2,1
k,2,2

[
0, k
0, 0

∣∣∣∣∣t] = 1
k2 ln(1 +

k
t
).

□

The confluent hypergeometric functions can be expressed in the form of generalized Meijer G-
functions as follows:

Corollary 3.2. Let p = 1, q = 2,m = 1, n = 1 and a1 = k − a, b1 = 0, b2 = k − b for k > 0. Then
from (1.15), the following relation holds

G1,1
k,1,2

[
k − a

0, k − b

∣∣∣∣∣t] = Γk(a)
Γk(b) 1F1,k

[
a
0

∣∣∣∣∣ − t
]
. (3.6)

Proof. By using the definition of generalized Meijer G-function (1.15) for given parameters we can
prove easily. □

Proposition 3.1. Let p = 1, q = 2,m = 2, n = 1 and a1 = k − a, b1 = 0, b2 = k − b for k > 0. Then
from (1.15), the generalized Meijer G-function can be expressed in the form of generalized confluent
hypergeometric function of tricomi as

G2,1
k,1,2

[
k − a

0, k − b

∣∣∣∣∣t] = Γk(a)Γk(k + a − b)øk(a; b; t), (3.7)

where the generalized confluent hypergeometric function of tricomi is defined as

øk(a; b; t) =
Γk(b − k)
Γk(a − b + k) 1F1,k

[
a
b

∣∣∣∣∣t] + Γk(k − b)t1− b
k

Γk(a) 1F1,k

[
a − b + k

2k − b

∣∣∣∣∣t] .
Proof. By using the definition of generalized Meijer G-function (1.15), we can obtain

G2,1
k,1,2

[
k − a

0, k − b

∣∣∣∣∣t] = Γk(b − k)Γk(a) 1F1,k

[
a
b

∣∣∣∣∣t] + Γk(k − b)t1− b
kΓk(k + a − b) 1F1,k

[
a − b + k

2k − b

∣∣∣∣∣t] , (3.8)

from which we get the required result. □
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Corollary 3.3. Let p = 1, q = 2,m = 1, n = 1 and a1 = k, a2 = b, b1 = a for k > 0. Then from (1.15),
the following relation holds

G1,1
k,1,2

[
k, b
a

∣∣∣∣∣t] = Γk(a)
Γk(b) 1F1,k

[
a
b

∣∣∣∣∣t] . (3.9)

Proof. By using the definition of generalized Meijer G-function (1.15) for given parameters, we can
prove easily. □

Proposition 3.2. Let p = 2, q = 1,m = 1, n = 2 and a1 = k, a2 = b, b1 = a for k > 0. Then
from (1.16), the generalized Meijer G-function can be expressed in the form of generalized confluent
hypergeometric function of tricomi as

G1,2
k,2,1

[
k, b
a

∣∣∣∣∣t] = Γk(a)Γk(k + a − b)øk(a; b;
1
t
), (3.10)

where the generalized confluent hypergeometric function of tricomi is defined as

øk(a; b;
1
t
) =

Γk(k − b)
Γk(a − b + k) 1F1,k

[
a
b

∣∣∣∣∣1t
]
+
Γk(b − k)

Γk(a)t1− b
k

1F1,k

[
a − b + k

2k − b

∣∣∣∣∣1t
]
.

Proof. By using the definition of generalized Meijer G-function (1.15), we have

G1,2
k,2,1

[
k, b
a

∣∣∣∣∣t] = Γk(k − b)Γk(a) 1F1,k

[
a
b

∣∣∣∣∣1t
]
+ Γk(b − k)Γk(k + a − b)t

b
k−1

1F1,k

[
k + a − b

2k − b

∣∣∣∣∣1t
]
, (3.11)

from which we can obtain the desired result. □

4. Conclusions

In this article, we gave the relations of some special functions with the generalized Meijer G-
functions. The main focus was on Laguerre polynomials, product of Laguerre polynomials and
exponential functions, logarithmic functions, confluent hypergeometric functions. We derived the
generalized form of the said functions from generalized Meijer G-functions by choosing different
parameters. There are several similar type of functions which can also be expressed in terms of the
generalized Meijer G-functions.
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