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Abstract: In this paper, we introduce the notion of m-polar spherical fuzzy set (m-PSFS) which is a
hybrid notion of m-polar fuzzy set (m-PFS) and spherical fuzzy set (SFS). The purpose of this hybrid
structure is to express multipolar information in spherical fuzzy environment. An m-PSFS is a new
approach towards computational intelligence and multi-criteria decision-making (MCDM) problem:s.
We introduce the novel concepts of correlation measures and weighted correlation measures of m-
PSFSs based on statistical notions of covariances and variances. Correlation measures estimate the
linear relationship of the two quantitative objects. A correlation may be positive or negative depending
on the direction of the relation between two objects and its value lies the interval [—1, 1]. The same
concept is carried out towards m-polar spherical fuzzy (m-PSF) information. We investigate certain
properties of covariances and the correlation measures to analyze that these concepts are extension
of crisp correlation measures. The main advantage of proposed correlation measures is that these
notions deal with uncertainty in the real-life problems efficiently with the help of m-PSF information.
We discuss applications of m-polar spherical fuzzy sets and their correlation measures in pattern
recognition and medical diagnosis. To discuss the superiority and efficiency of proposed correlation
measures, we give a comparison analysis of proposed concepts with some existing concepts.
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1. Introduction

Crisp set theory and logic are key factors in the foundation of science and engineering. A crisp
set describes the belongingness of an element in a digital manner, i.e., an element either belongs to a
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set or not. However, in many real-life problems, partial belongingness becomes necessary to describe
uncertainty. In most of real-life problems, we have to deal with the situations where crisp set theory
fails. For example, if a decision maker (DM) requires to seek a best teacher, sharp student, beautiful
girl, young researcher, etc., the selection of such individual is vague. Since the criterion of best, sharp,
beautiful, and young vary person to person. To deal with such problems, Zadeh [1] extended crisp set
to fuzzy set and laid foundation of fuzzy set theory. A fuzzy set assigns partial grades which lies in
unit closed interval [0, 1] known as membership degree (MDs) to express the partial belongingness of
an element to a set under a specific characteristics. A fuzzy set is strong set-theoretic model to express
vague information. Fuzzy set got the attention of the researchers and this is broadly used in many
fields like computational intelligence, information fusion, pattern recognition, engineering, medical
diagnosis, artificial intelligence, machine learning, neural networks, and MCDM problem:s.

Atanassov [2] extended fuzzy set to the notion of intuitionistic fuzzy set (IFS). An IFS is very useful
and efficient model which assigns MDs and non-membership degrees (NMDs) to each element in the
universe of discourse with the constraint that sum of these grades lies between 0 and 1. Yager [3]
introduced Pythagorean fuzzy set (PFS) with the constraint that sum of squares of MDs and NMDs
is less or equal to 1. PFS is useful to deal with the uncertain situation where IFS fails to hold. For
example, if the sum of MD and NMD is greater than 1 but the sum of their squares is less or equal to 1.
This clearly shows that every PFS is an IFS but converse does not hold. Peng and Yang [4] presented
some important results for PFSs. Peng et al. [5] proposed Pythagorean fuzzy information measures
and their applications in pattern recognition, clustering analysis, and medical diagnosis. Peng and
Selvachandran [6] introduced further interesting properties of PFSs. Yager [7] further introduced a
strong model named as g-rung orthopair fuzzy set (g-ROFS) which is extension of both PFS and IFS.

Peng and Liu [8] introduced information measures for g-rung orthopair fuzzy sets. Molodtsov [9]
introduced the concept of soft set (SS) which is a parameterized collection of subsets of a classical
set. Maji et al. [10] extended IFS to intuitionistic fuzzy soft set (IFSS). Peng et al. [11], and Naeem et
al. [12] introduced the idea of Pythagorean fuzzy soft sets (PFSSs) as a hybrid model of PES and SS.
Guleria and Bajaj [13] introduced matrix form of PFSSs and proposed a decision-making algorithm
and its application.

Smarandache [14, 15] introduced the idea of neutrosophic set (NS) with three functions, truthness
(truth membership) 7', indeterminacy /, and falsity (false membership) F. Wang et. al. [16] introduced
single-valued neutrosophic set (SVNS) with the constraints that three components, truth membership,
indeterminacy, and falsity must lies in the unit closed interval [0, 1]. Cuong [17] introduced the concept
of picture fuzzy set with three index, a membership grade, hesitancy, and a non-membership grade
with the constraint that the sum of these grades is less or equal to 1. Gundogdu and Kahraman [18]
further introduced the concept of spherical fuzzy set (SFS). These models have the ability to deal
with uncertainties in the real-life problems with the interesting features that if one model fails to hold
the other will manage the uncertain situation. A SFS is of great importance as it has the ability to
express vague and uncertain information with the condition that the sum of squares of three index, a
membership grade, hesitancy, and a non-membership grade, is less than or equal to 1. Ahmmad et
al. [19] developed new average aggregation operators based on SFSs and their applications in MCDM.

Gundogdu and Kahraman [20-22] introduced several properties and arithmetic operations of
spherical fuzzy sets, TOPSIS method for optimal site selection of electric vehicle charging station
by using spherical fuzzy, and hospital performance assessment using interval-valued spherical fuzzy
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analytic hierarchy process. Gundogdu et al. [23] presented the analysis of usability test parameters
affecting the mobile application designs by using spherical fuzzy sets. Shishavan et al. [24] proposed
novel similarity measures in spherical fuzzy environment and their applications. Rafiq et al. [25]
established new cosine similarity measures of spherical fuzzy sets and their applications in decision-
making. Deli and Cagman [26] introduced spherical fuzzy numbers and spherical triangular fuzzy
numbers and MCDM applications.

Garg and Arora [27] proposed extended TOPSIS method based on correlation coefficient for
MCDM with IFSS information. Ashraf and Abdullah [28] also independently proposed the idea of
spherical fuzzy set. Mahmood et al. [29] introduced some elementary operations on SFSs. Sitara et
al. [30] decision-making analysis based on g-rung picture fuzzy graph structures. Akram et al. [31]
proposed a hybrid decision-making framework under complex spherical fuzzy prioritized weighted
aggregation operators. Recently, Akram et al. [32] introduced Extensions of Dombi aggregation
operators with MCDM applications. Riaz and Hashmi [33] introduced a new extension of fuzzy
sets named as linear Diophantine fuzzy set (LDFS). Kamaci [34] presented linear Diophantine
fuzzy algebraic structures and their application to coding theory. Ayub et al. [35] introduced linear
Diophantine fuzzy relations and their algebraic structures with decision making application. Shaheen
et al. [36] analyzed risk analysis with generalized hesitant fuzzy rough sets (GHFRS).

Zhang [37] introduced bipolar fuzzy set (BFS) as an extension of FS. This set is used to deal with
the data which is bipolar in nature that describes information and with its counter property. Lee [38]
introduced bipolar-valued fuzzy sets and their elementary operations. Chen et al. [39] introduced m-
polar fuzzy sets (m-PFS) as an extension of bipolar fuzzy sets. An m-PFS deals with multipolarity
by assigning m degrees to each element of a crisp set. Recently, some hybrid structures of m-PFSs
have been introduced for modeling uncertainties in multi-criteria decision-making (MCDM) problem:s.
Naeem et al. [40] introduced the notion of Pythagorean m-polar fuzzy set (P-m-PFS) as a hybrid model
of PFS and m-PFS. Riaz et al. [41] proposed Pythagorean m-polar fuzzy soft set (P-m-PFSS) as a
hybrid model of PFS, m-PFS, and SS.

Correlation is a property that evaluates the mutual or reciprocal relation between two objects
in connection to each other, while similarity measurement tests the proximity of two objects. In
engineering and statistics, correlation have significant applications. Statistics have used probability
approaches successfully to deal with many real space problems that rely on random data analysis.
Similarly, the same probability theory has also tackled several mathematical issues in the scientific
fields. These techniques, though, have certain inconveniences, as these procedures are dependent on
a random choice of samples with a certain degree of confidence. If we gather data on a vast scale, it
involves massive fluidity, which makes it impossible to refine idealism. Highlighting these challenges
is how to achieve idealistic performance. A big question? It is very difficult to address this query.
The first thing to note is that confusion still takes a position in every real situation, regardless of the
technicality, medical or administrative problem. Correlation in statistics is one of our most essential
topics of different subjects like business, finance, engineering, management, etc. The dilemma, though,
is that this kind of correlation can only address the crisp data and we have resolved several real issues
without considering complexity. Many ambiguous structures have been added to deal with uncertainty
since the birth of the fuzzy set theory. Many extensions of fuzzy sets have been developed to express
vague information until now. Consequently, correlation measures must be introduced in almost all
extensions of fuzzy sets. Some correlation measures for IFSs was proposed by Ejegwa et. al. [42], Xu
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et. al. [43], Gerstenkorn and Manko [44], and Szmidt and Kacprzyk [45]. Later, Garg [46] suggested
correlation measures in PFS environment. Liu et. al. [47] and Thao [48] observed the restrictions of
the earlier defined correlations and proposed some new directional correlations for PFS environment.
Correlation measures studied by Mahmood and Ali [49] to define an extended TOPSIS method based
on PFS environment. Zulgarnain et al. [50] defined correlated TOPSIS for mask selection procedure.
Joshi [51] defined some weighted correlations for MCDM.

1. In many real-life problems, we have to deal with the hybrid situations where multi-polarity of each
of three index (membership, non-membership and neutral-membership degree) of the alternatives
are required but with the help of existing models we can’t handle this situations. To deal with
this type of problems, we introduce the hybrid structure of m-polar fuzzy set and spherical fuzzy
set named as m-polar spherical fuzzy set (m-PSFS). We introduce the idea of m-polar spherical
fuzzy numbers (m-PSFNs). These concepts are more efficient to express vague and uncertain
information in a realistic manner.

2. We introduce some basic operational laws of m-PSFSs and m-PSFNs. Based on these operational
laws, we analyze certain properties of m-PSFSs and m-PSFNss.

3. We define the score function and certainty functions for comparison of mPSFNs and for finding
the ranking of feasible alternatives.

4. We introduce new correlation measures and weighted correlation measures for m-PSFSs.

5. We present a MCDM method based on these correlation measures for medical diagnosis and
pattern recognition.

This article is arranged as follows. In Section 2, we discuss basic concepts of m-PFS and SFS. In
Section 3, the notion of m-PSFS is introduced which is a robust fusion of m-PFS and SFS. Some basic
operations on m-PSFSs are introduced to analyze key properties of m-PSFSs. We also defined several
novel features of m-PSFSs. In Section 4, the correlation measures and weighted correlation measures
for m-PSFSs are proposed. The proposed correlation measures have their value in the interval [-1, 1].
In Section 5, we give applications of proposed correlation measures for m-PSFSs to pattern recognition
and medical diagnosis. Lastly, the conclusion od current research work is summarized in Section 6.

2. Preliminaries

In this section, we review some preliminaries like spherical fuzzy set and m-polar fuzzy set that are
necessary to understand many novel concepts in this manuscript.

Definition 2.1. Let X be the universe (set of objects or alternatives). A spherical fuzzy set (SFS) 7~
on X having three index of membership degrees u, indeterminacy w, and non-membership degree v,
which lies in the unit closed interval [0, 1] for each object ¢ € X, can be expressed as

T = { < 6. (u(e), 7(6), Y(s)) >: & € X)

satisfying the restriction
0 <p(6) + () + vV (s) < 1

V¢ € X. For the fixed ¢, the triplet (i, m, v) is called spherical fuzzy number.
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Definition 2.2. For any arbitrary cardinal number m, an m-polar fuzzy set (m-PFS) on X is
characterized by the mapping Y : X — [0, 1]”. An m-PFES can be expressed as

M= { <6 ui(S), -+, um(§)) >: g € X}

where 0 < y;(¢) < I, foralli=1,--- ,m.
3. m-Polar spherical fuzzy set

In this section, first we introduce the notion of m-PSFS which is a robust fusion of m-PFS and SFS.
Then we define some fundamental operations on m-PSFSs and their related key properties. Several
novel features of m-PSFSs are also investigated.

Definition 3.1. An m-PSFSs S defined on X is characterized by the mappings u' : X — [0, 1] (known
as membership function), 7”7 : X — [0, 1] (known as hesitant function) and v’ : X — [0, 1] (known
as non-membership function), respectively with the restriction that sum of their squared values should
not exceed unity, i.e.,

0 < W)+ @) +((e) <1
for j=1,2,3,...,m.
Mathematically, An m-PSFS can be written as

S

{(w“)(g), 20(&), v (), L (1™(6), 7"(g), v<'"><g)>> e X}
{5 w).776). v (6))

:geX}

J=1

. 2 . 2 . 2
and refusal degree is R = \/1 - (,u(f)(g)) - (n(-/)(g)) - (v(f)(g)) , forj=1,2,3,...m

For a fixed ¢, an m-polar spherical fuzzy number (m-PSFN) can be written as
N = <(u(1), A0 YD) L g, v(’"))>
- DRGNS
- <(” STV )>j:]

If the cardinality of X is k, then the tabular representation of m-PSFS is given by Table 1:

Table 1. m-polar spherical fuzzy set.

S m—PSFSs
i | (B0 260060 126 A6, ¥ 51) )+ (161, A 1), V(e )

& | (17676, v<1><g2))(u<2>(gz), 762, v2(62)) -+ (12, 1M s2), v<m>(g2))

G (u<1><gk>, 20y, v<“(gk))(u<2><gk>, 750, 7260 )+ (1 50,7 5 v<'">(gk>)
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and m-polar spherical fuzzy set(m-PSEFS) can be represented in matrix form as

(u<1><gl>,n“>(gl>,v<l>(gl>) (u@(gl),n@)(gl),v@)(gl)) (u“")(gl),n“")(gl),v<m><g1))
P (R SRS R S ES R ES) I SR S SRS
(y“)(gk),n“)(gk),v(l)(g,a) (u<2>(gk>,n<2>(gk>,v<2><gk)) (u<'"><gk>,n<m><gk>,v<m><gk>)

The collection of all m-PSFSs on X is denoted by m — PS F'S (X).

Definition 3.2. An m-PSFS is said to be an empty or null m-PSFS if
19(¢) = 0,19(¢) = 0 and v(¢) = 1 for all j=1,2,3,..m. It is denoted as ® and scripted as

® = {<g‘ ((0,0,1),(0,0, 1), ... (0,0, 1))> ‘c€ X}

Its matrix representation is

0,0,1) (0,0,1) --- (0,0,1)
. (0,0,1) (0,0,1) --- (0,0,1)
®= : : " :

0,0,1) (0,0,1) --- (0,0,1)

Definition 3.3. An m-PSFS is said to be absolute m-PSFES, if
1) =1,79(¢) = 0 and v¥'(¢) = 0 for all j=1,2,3,..m. It is denoted as X and scripted as

%= {<g ((1,0,0),(1,0,0),....(1,0, 0))> ‘g€ X}

Its matrix representation is

(1,0,0) (1,0,0) --- (1,0,0)
. ((1,0,0) (1,0,0) --- (1,0,0)
X= : : " :

(1,0,0) (1,0,0) --- (1,0,0)

Definition 3.4. Let S; and S, be two m-PSFSs. Then S, is subset of Sy written as S§; € S, if
1) 2 1 (©). 7 (6) < 7(¢) and v(¢) = v{’(¢) forall ¢ € X and for j = 1,23, .m.

Two sets Sy and S, are said to be equal if §; € S, and S, C S;.

Definition 3.5. The complement of m-PSFS

8 = {{s- (1.1, v<f><g>)>:; cex|
is defined as "
S = {<§ (v(j)(g),7T(j)(s*),/1(")(§))>j:1 is€ X}
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It is interesting to note that information given by hesitancy part of m-PSFS is uncertain. It does not
give exact information as given by membership and non-membership grades. Thus the h-complement
of m-PSFS is denoted as C* and defined as

S = {<§ ("(s).1 - (n(f)(c))z,ﬂ(j)(g)»m

j=1

1G¢ € X}
Notice that (S°)° = S, & = X and X¢ = ©.

Definition 3.6. The union of two m-PSFSs S; and S, defined over the same universal set X is defined
as

SIUS, = {<§ (max (1 (9). 15 (). min ('7(6), 75 (s)). min (v7(s), v(zj)(g))»m

j=1

:geX}.

Definition 3.7. The intersection of two m-PSFSs S, and S, defined over the same universal set X can
be defined as

$1018> = { (5. (min (1), (). min (5 (62,7 ) max (4 (61,4 ))) v e X
.

Definition 3.8. The difference of two m-PSFSs S; and S, defined over the same universal set X is
defined as

81/8: = {{s (min (461, (6)). min (61,76 max (461, @) <€ x).

j=1

Definition 3.9. let S; and S, are m-PSFSs over X. Then some new operations are as follows.

18108 = {( (0602 + )2 - (PP 1) " (1 = WP @) + (1 -
WM @ - 3P ©F) O )) sex)

2888 = |{o(iere. (0 - 6fOPE R + (1 - WO -
_ . 12
P ©F)

. . . . 1/2

(00602 + 69602 - V(208 6)) ))F1

348 ={(s (1= (- 026?) ) 7 (1-12602) = (1 W7 - 62) ) 06

J

m

:geX}

i=1 !
g€ X}, A>0
4.8 = {5 (w0 (-0 - (1- 060 -a0?) ) (1= (1-022) ) 7))
-

geX},/l>0
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Some novel features of m-polar spherical fuzzy set
Theorem 3.10. Let § = ((:. 7/ )" .81 = (i) | 8, = (A9 A"
and 7 = <(/,L(J),7T(TJ), v(T]) > be m-PSFNs. Then

I.fSCS andSC S, thenSC S NS,

2.If S CSand S, CSthen S; US, C S.

3.).If$,CSand S, €T then S US, CSUT.
4. IfS] QSandSzg‘TthenSlﬁSzgSﬂT.

Proof. In the following, we shall prove (1) and (3) and (2) and (4) can be proved similar.
(1) If S C S and S C 85, then by definition

10 <129 <7D VP > forall j 3.1)
yg]) < ,u(zj),ﬂgj) < 71'(J) ng) > v(zj) forall j. (3.2)
Suppose
min{ 'u(lﬁ’ u(21)} /“‘(1/)’ mln{ﬂ(lj) (J)} _ ﬂ.(J) and max{v(lj), V(zj)} _ v(zj)
then

. (G 0] () R)) )] W ()
SNS, = <(m1n W, 15"}, min{r”, "}, max{v”, v/ })> <(/JJ vy >
j=1 _

Clearly from equations (3.1) and (3.2) ,u(’) (’) (’) < 7T(J) and v(’) >y (’) . This Shows that S € S|NS..

The rest of 7 cases may be discussed similarly.
(3). If S; € Sand S, C 7, then by definition

/J(]]) Iu(]) ) < ﬂ.(]) (J) > V(]) fOI" all ] (33)
u;’) ,u(Tj),n(zj) < ﬂ(Tj),V(zl) > V(Tj) forall j. (3.4)
Suppose
max{u, 1"} = 1, min{z'?, 2} = 2V and  minp? V) =Y
and
min{,ué’),y(T])} u(TJ),mm{Jrg]),ﬂ(T’)} = n(sj) and max{vgj), V(T])} = vgj)
then

m
SiUS, = <(maX (1, 1y, min{rl”, 757}, minpy V(ZJ)})> <(/1(]),7r(1]),v(1’))>
J=1 j=1

) (
SUT = <( max{u?, 1}, min{z}’, 7}, min{(r?, V(TJ)})> <(/1 ’),ﬂ(S]),v(S]))>'
j=1 =

Clearly from equations (3.3) and (3.4)

ﬂ(z]) < ll(T]), ()] < ﬂ.(J) (J) > V(]) for all j.
This shows that S;US, CSUT.

The rest of 7 cases may be discussed similarly.
]
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Theorem 3.11. Let S; = ((u}”, ﬁ”,vl'))> and S = (. 73, v§”)> be two m-PSENs and 4 > 0,
then

1.8 €S & (S) C(S)

2.8 =8, ©(S) =(S)”

3.81 =8 © (8) = (S

4. §,C S © AS) CASH)

5. 81 = 82 (=4 /1(81) = /l(Sz)

Proof. The proof is obvious.

Theorem 3.12. Let S = <(,u(j), ', v(j))>n,l , and 4 > 0, then following results hold
J:

L. (SY° = ASY)
2. (A8 = (S
3. (AS) = (89"

Proof. (1) By definition,

(SYe = <(('u(j>)a’ VI = (D))= (1 = D)2 = (z0)2)L, AT = (1 = (v(j))z)ﬂ)cyl
J

=1

<( VI= (1= 0P, V(I = (P = (1 = (D)2 = (a D)), (u“’)”))m
j=1
_ <(,u(’) (J))>
j=1

= A8
(2) By definition,
(/l(SC))C — (/l W(I) (J)) >m )
j=1
— ( 1 (V(j) (1)) )C
,_
= ( (VI= = 0D, VI = 0P = (1= G2 = @)1, (1)) }
j=1
= < (,U(J)) VA = DR = (1 = (D) = (@D)2), 1= (1 - (V(’))2)4)>
j=1
(3) By definition,

1S = ( /1<(,u<’) (J))> 1)C
J=
(V== Gy, V= GOy = (T = Gy — P, <V”)>‘)>n.1 l)c
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(% A= GORY = (= G — GORY, T =0 = )

(<(,u(f) YD) >J I)A i

— (SC)/I

Theorem 3.13. Let S; = (i} 7}, v§f>)> 2= (. x5, vgﬂ)) and A > 0, then

1. /1(81 U 82) = /181 U /182
2. S UuS)' =8S{usS]

Proof. Here, we shall prove (1) and (2) can be proved analogously.
Suppose the first possibility

max{u'?, 1"} = 1, min{zx”, 7} = 2 and  minp,»Y) =Y

(1) AS, U AS, = /l<(ﬂ(]),7r(1]),vlj))> U /1<(ﬂ<]>,n(21>,v(2p)> N

= <( \/1 —(1- (,u(lj))z)ﬁ, \/(1 - (lu(J))Z)/l —(1- (,u(lﬂ)z _ (ngj))Z)/l’ (v(lj))l)>m

j=1
_ T 0 e D) i\
O{(N1= 0= G, O = 2 =1 = 72 = i, o))
= (max{{1-(1- wﬁ”)zv, Ji-a- w;ﬁ)z)ﬂ}, min { \/<1 — @ - (1= @R - G,
\/(1 — W) = (1 - @y - (J))Z)/l} min {(ng))a, (v;j>)a}>m
j=1

<\/1 — (1 — max{ ('u(f))z (/J(J)

A m
\/ — min{ (/1(]))2) (/J(J) ( mll’l{(/.l(J))z) ('u(J))Z) mil’l{(ﬂ'(lj))z), (ﬂ.(zj))z)}) . min {(V(J))/l (V(J))/l}>

j=1
:A< max{uy, g2}, mingr, 7a), min{vl,m}>

:/1(81 U 82)
The rest of 7 possibilities may be discussed similarly. O

Theorem 3.14. Let S, = <(/J(]),7r(1]), v(lj) > L S, = < ) JT(ZJ), v;]))> o and A > 0, then

]. /1(81 @Sz) = (((81 @Sz)c)/l)c

2. (8188 = ((S188,))")
3 4S8 88 = AS) B AS))
4. (S90S =8l S]

5. 48D ®AS) = (S @ ()]
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1/2
Proof. (1) (((816982)6)/1)6 _ (((<((u&/))2+(ﬂ(1))2 ('u(j))Z('u(]) ) , (1_('“(2/))2)(71.(1))2_’_(1 (/.L(I))z)(ﬂ'(,)

1/2
(ﬂ(J))z(ﬂ(J))z) (V(J))(V(j))> -_l)c)a)
1/2
(<((V(]))(V(J) ((1 _ (,U(J))Z)(T[(J))z + (1 ('u(J))Z)(n.(J) (71.11))2(71.(]))2) ,
((ﬂm)z + WY - WP )1/2>".1 )A)C
j=1
— (<(v1]))/l(v(J) (( ((M(]))Z + (ﬂ(J) (#(]))Z(IJ(]) )) _(( ((ﬂ(J))Z +(/J(]) (ﬂ(J))Z(ﬂ(J) )) (
' ' . . . ‘ 1/2 . . /2vm \€
(/.1(2]))2)(7T(]]))2+(1 _(IJ(]J))Z)(N(ZJ))Z_(7.[(1]))2(”(2]))2))) ( ( ((/1(]))24-(/.1(]))2 (/1(11))2(/1(2]))2))/1)1 2>. 1)
j=
= <( ( ((ﬂ(n)z +(ﬂ(]))2 (Il(lj))z(ﬂ(zj))z))’l)l/ 2, ((1 _((/’l(lj))z +(IJ(J))2 (ﬂ(n)z(y(p )) ((1 —((ﬂ(lj))2 +
1/2 m
(M(]) (I-I(J))Z(IJ(J) )) (1 _ (ﬂ(J))Z)(ﬂ(lj))Z + (1 (#(J))Z)(ﬂ.(]) (71.(1]))2(71.(]))2))) , (V(lj))/l(v(zj))/l> .
— /1<((/J(1J))2 + ('u(zj))Z _ (/1(]))2(/.1(J) )1/2,(1 _ (u(]))z (7.[(]))2 + (1 - (#(J))Z)(F(J)
1/2
(ﬂ(lj))z(ﬂ;/))z) (v />)(Vu>)>

=AS D8
Thus (2) can be proved analogously.

(3) By definition
AS ) = <( \/1 (- (/1(11'))2)/1’ \/(1 _ (ﬂ(lj))Z)/l -(- (’u(lj))z — (ﬂ(lj))Z)/l, (y(lj))/l)>j:1
and

A(S,) = <( \/1 (1= (u;j))z)a’ \/(1 _ ('u(zj))z)a ('u(J) (]))2)/1 (y(!))/l)>:1:1.

1/2
AS1)®A(S) = ((1 — (1= + (1= = @) - (1 — (1= (1- (1 - w;szv)) ((1 -
(/'l(zj))z)/l)((l _ (/J(lj))z)/l —(1- (,u(lj))z (]))2)/1) ( (/J(j))z)/l)((l _ (#(21'))2)/1 (/J(J)
(71.(]))2)/1) _ (1 —(1- (/1(2]))2)/1)((1 _ (M(lj))Z)/l _ _ ('u(lj))z (]))2)/1)( -(1- (/J(1j))2)/l)( _ ('u(zj))Z)/l
Wy - (n)z)a))l/z (V(j>)4(v(1))a>m
j=1
1/2
= (2 == ) = A= @ = 1+ = E = @) = 1= A - (ué”)z)*) ,((1 -
(,u(]'))Z)/l(l (ll(j))Z)/l (- (.11(21))2)/1(1 _ (H(lﬁ)z _ (7.[(1]))2)/1 .+ (- ('u(j))Z)/l(l ('u(j))Z)/l (IJ(IJ))Z)A(l _
(/J(J) (]))2)/1 _ ('u(lj))Z)/l(l _ (IJ(ZJ))Z)A +(1- ('u(lj))Z)/l(l (/J(J) (J))Z)/l + (1 ('u(ZJ))Z)/l(l _
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WY = (AP = (1 = @Y = (D)1 - (/J(.i))z_(ﬂ.(j))Z)/l)l/z (V(j))/l(vgi))/l>;n=1

= ((1-(1- a7 + 2 - OJE”)ZWW))”) ((1 (a7 + @2 = P V?) = ((1- 2 +
Wy (.U(]))z(.u(j))z))—(l—(#(gj))z)(”(lj))z £ (L= @)Y (ﬂ(lj))Z(ﬂgj))z)))l/z’(V(lj))/l(v(zj))/l>j:1
- ﬂ<(<ﬂi”)2 oy - (ui”)z(u;”)z)l/z,(l - EHE? + A - @HE? -

(ﬂ(p)z(ﬂm)z)l/z (V(J))(V(]))>
Jj=1

=S8,
Thus (4) can be proved analogously.

(5) (((S])C)a ® ((82)6)1) ((<(VU> (0. u))> ) (( D 20, </> )
. . /
— (<((v(ll))/1 ( 1 _ (ﬂ(]))Z)/l _ (1 _ ('u(lj))Z _ ﬂlj))Z)ﬂ)l 2,( (M(J))Z)/l) ) ((V(J) ( (M(J))Z)/l —
12\ \€
_ (2 (J)Z/l 1 _ (D2
(-2 -y (1= - ) )>,1)
/2
(<(((V(J))2 + (V(J))2 (V(]))Z(V(J))Z) ) , ((1 (J))Z)/l)((l (ﬂ(lj))Z)/l _ (1 _ (/J(lj))z (J))Z) ) + (1
(]))2)/1)((1 (J))2)/l (1 (J) (J))Z) ( 1 _ (/J(lj))z)/l _ (1 _ (/’l(lj))2 (J) ) ( (/J(J))Z)/l _
. . 172\™ \¢
( (u(/) (J))Z) d1-a- ('U(J))Z)/l 1 - (1 _ (/J(J))2)/l > )
T

(<(((V(J))2+(V(J))2 (V(J))Z(V(]))Z)) (1 (V(]))Z)/l)(l (M(J))Z)/l (1 (V(J))Z)/l)(l ('U(J))Z (7.[(]))2)/1)_'_

(1 (J))Z)/l)(l (J))Z)/l ( (]))2)/1)(1 (J) (7.[(2]))%) ) _ (1 (J))Z)/l)(l (]))2)/1) + (1
(#(]))2)/1)(1 (J) (1))2) + (1 (]))2)/1)(1 ('u(]))Z _ (71.(1]))2)/1 + (1 (/J(J))Z (r (j))Z) (1 (j)

@Ry (11 - ;”>2>ﬂ)—(1—<u§”>2>ﬂ)+(1—(uﬁf'))Z)ﬂ)(l—(u;f))z)ﬂ))} )
j=1

= <(1 = (1= = (= @MY + (1= @))H( - w;szv)) (1= 0N = @) = (1 -
(]))2)/1)(1 ('u(J))Z (7'((]))2) ) (1 (V(j))2)/l)(l (]l(j))z)/l (1 (]))2)/1)(1 (J) (J))Z) ) (1
(]))2)/1)(1 (J))Z)/l) + (1 (/J(J))Z)/l)(l (J) (J))Z) + (1 (]))2)/1)(1 (’u(J))Z (71.(]))2) + (1

w(lj))2 (J))Z) (1 (j) (J))Z) (((V(J))Z + (V(J))Z (V(j))Z(V(J))Z) )1/2>m

1

— <(1 _ (1 _ (u(lj))2)/l) ((1 (M(J))2)/l (1 (/'t(J))2 7.{.(]))2)/1) (V(J))/l> < 1 (1 (M(J))Z)A) ((1 _

w(zj))2)/l _ (1 _ (/J;j))z (J))Z)/l) (Véj))/l>

J=1
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= AS) ®AS))

Theorem 3.15. let S1 = (7" V)" . 82 = (W2 AN)" and Sy = (W29 AN,
then

1 (SUS)NS, =S,

2. ENSHUS, =8,

3.5 USUS;=8U8US,

4. S] 032083 :Sl 083082

Proof. The proof is obvious.
]

Theorem 3.16. Let Sy = ((u.x.»7) > LS = (21>’,T<2»’V<2n)>. and S, = (@ ﬂgj),vgﬂ»
_1 _ ot
then

1. ($1US)S:=(S1085)US:083)
2. 8NS)S:=(S1dS5)N(S,883)
3. (SIUS))RS:;=(S10883)U(S;083)
4. (S] 082)@)83 = (S] ®S3) N (82 ®S3)

Proof. Suppose the first possibility

( ) ) ( ( )
max{u\”, 15"} = i, max{u, 1} = 1, max{uy, 4} = uf

m1n{7r(1’),7r§])} = n(lj), mln{ﬂ(lj), 7T(3])} = 7'((1]), mln{ﬂéﬁ,ng’)} = 71(2])

mln{v(lj), v(})} _ V(J) mln{v(lj), v(3])} _ V(l])’ mln{vgj), V(SJ)} _ V(ZJ)

(1)
1/2
(Sl @ SS) U (82 D 83) — (<((/J(j))2 + (/J(J) (/J(j))z(ﬂ(j) ) ’( (lu(]))Z)(ﬂ.(]))Z + (1 (ﬂ(J))z)(JT(J)

(n(lp)z(ﬂ;j))z)l/z’ (V(lj))(v(’))> ) (<((ﬂo>)z +(,u(1))2 (ﬂo))z('uo) )1/ ( (Mm)z AP +(1-(udP) (ﬂm

j=1
1/2
wral?) o900 )
— < max {((M(IJ))Z + (/'t(3]))2 _ ('u(lj))Z(ﬂ;j))Z) ((u(J))Z + (/1(3/))2 _ (ﬂ(zj))2w(3j))2) }’ min {( w(/))2)(ﬂ(ﬂ)2 +
1/2 1/2
(IJ(]))2)(7T(]) (ﬂ(]))l(ﬂgj))Z) , (1 _ (M(]))Z)(ﬂ.(]))Z + (1 (M(j))z)(ﬂ(]) (ﬂ(]))Z(ﬂ;j))Z) }’

min {(V I))(V /)) (V(I))(V /))}>m
j=1
1/2

— <((ﬂ(zj))2 + (ﬂ(j))Z _ (/J(J))Z(,U(J) )1/2’ (1 _ w(}))Z)(ﬂ(J))Z + (1 _(M(zj))l)(ﬂ.(]))Z (71.(]))2(71.(3]))2) (V(J))(V(J))>

_ D D) W ()
‘< TV )> < ERRE )>F
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<max{u(]]),,u(zj)} mm{ﬂ(lj)’”(zj)} mm{v(lj), V(ZJ)}>‘ 1 69< ) ﬂgj), ng))>
]:

=(SIUS)eS;

The rest of possibilities may be considered accordingly.
3)
1/2

<Sl®83>u<sz®83)=(((ui”)(ué”»(l—(v<”>2>(n<”>2+<1 (v“>>2)<n<”>2—<n§f'>)2(n3’)>2) ((v{)>2

(V(]))Z (V(]))2(V(3j))2)1/2>m )U(<(/J(J))(M(J) (1 (V(]))z)(ﬂ'(]))z-i-(l (V(J))z)(ﬂ'(J))Z (ﬂ(]))Z(ﬂgj))Z)l/z’((v(zj))Z_'_

Jj=1

12,
WOy - (V(zj))z(vgj))z) > )
J=1
1/2
— <max {(,u(j))(,u(j)) (,Ll(]))(/JU) } min {( (v(j))z)(ﬂ.(lj))Z +(1 - (V(lj))Z)(ﬂ.gj))Z _ (71.(]))2(71.(]))2) ’(1 _
1/2
(ng))Z)(ﬂ.;j))Z + (1 _ (V;/))z)(ﬂ3/))2 (ﬂ;f))2(ﬂ(3j))2) , }’

1/2 12y
min {((V(J))Z + (V(]))Z (V(]))Z(ng))Z) ((V(J))Z + (V(3j))2 (V(J))Z(V;j))z) }>

J=1

1/2 172,
— <(/~l(]) (,Ll(]) (1 (V(]))Z)(ﬂ.(]))Z_i_(l_(ng))Z)(ﬂ.(]))Z (7'((]))2(71';]))2) , ((vgj))2+(vgj))2_(V(J))Z(V(]))Z) _
]:
<max{ /l(lj)’ IJ(2})} mm{ﬂ(lJ)’ ﬂ.gj)} mln{v(lj), v(])}> . ® < () ﬂ.gj), V(SJ))>
=(S5iUS)RS;s
The rest of possibilities may be considered accordingly.
]

4. Correlation coefficient for m-PSFSs

The correlation coefficient is a statistical analysis of how strong an association exists between
two variables’ variations. The scope of values is -1.0 to 1.0. There was an error in the correlation
calculation if the computed number was greater than 1.0 or less than -1.0. A negative correlation of
-1.0 indicates a complete negative correlation, while a positive correlation of 1.0 indicates a complete
positive correlation. A correlation of 0.0 means that the changes of the two variables have no linear
relationship. In this section, we define correlation coefficient in m-PSFSs. We analyze their usefulness
and address some of their characteristics.

Definition 4.1. Let S = {<§, (ll(j)(g‘),ﬂ(j)(g‘),v(j)(g‘))>

G E X} be a m-PSFS over a universal set X.
j=1

Then the average or mean of S is defined as

- {<W . W))’;}
_ { <(% Zg: L), |17| Zgl 7(s), % Zg: v(f)(g))>;}
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If we take X={¢1, 2, ¢3, ¢4, ¢5} and 3PSFSs as

R AR I LG SR
(172,762,762 (12620, 762, (c2)
(170,76, (6)) [

(10660 7060, 0 (10,7260, (52)
(106676301055 (1(s3), 7550, ¥2s3)

then the average or mean of S is given by

S =
, where
p = éZ, 1), A= ;Z RESICONERGE
/ﬁ — 5 Zz 1#(2)(9 ﬁ =3 Zl 17T(2)(S'z ﬁ
pd =3 LY u¥(s), A = é T, v

Definition 4.2. Let

(ko”m)Wm)(%o@m>Wm)
ﬂ%ﬁ”@)%@)@%@&@)%m)

SA =
@%mﬁ%wwmﬁ(km<%w@mﬁ
and
(560600 60 (16070 s0)
&:(k@ﬁ%wwmﬁ(kmﬁ%wﬂmﬂ

@%m#@w%@(ﬁmm@mﬂmﬂ

be m-PSFSs over X. Then covariance of S4 and Sp can be defined as

w351, 1¥(s1), vI(s))

1 (s2), 19(62), VI(s)

13 (s4), m3(54), VI (gy)

13 (ss5), 3(s5), VI (gs)

) |
) |
D6 163, (5] (s
)
) (

O(63), 19(s3), v (s3)

S— — — S— S

((W’ m’ W)’ (/ﬁ’ ﬁ? ﬁ)’ (/’ﬁ’ E’ %))

1y V(s

(0760057 60)

(K620, 77 67 62)

(0,77 6057 50)

KmﬁWwv@ﬂ

(5
(62,720, "2))

(Wmnkm¢ﬂm)

1 m
— o) ) ()
lisimsp = %Z(Iu(sﬁsm Lisiosn Iv(SwS;;))
]:
Where,
k
I,Sj(fs - Z( D(g) - ,u(”)( OD(g) - /J(j))

i=1

AIMS Mathematics
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k

I%AHSB) Z( (])(gl) (;))( (J)(gl) (]))

i=1
k

I% - Z( Dig) - )( (g - _>)

i=1

for j=1,2,3,....,m.

Definition 4.3. Let S, be a m-PSFS on X as mentioned in definition 4.2. Then Variance of S, can be
defined as

m

1 . . ,
_ () () ()
VS =5 ,Zl (VS + VIS0 +V(S)
Where,
k
VIS = ) (s - u“)) ,

i=1

k
VIS, Z( D (e) (1)) ’
i=1

1

VI(S,) i( O(s) - )2

i=1
for j=1,2,3,...,m.

Proposition 4.4. The covariance and variance for m-PSFSs of S4 and Sy follow the following
properties.

@ Iis sy = VS Igs, sy = VS0 Ijs, sy = V' (Sn)
(b) Y = Jv () = J9 () ()]

#(Sa—Sp) #(Sp—S84)’ "n(Sa—Sp) ﬂ(SB—>3A)’ WSA—SE) — USp—S4)

© 1L, sy < \/"v“>(SA)(v(’><SB) |10 s, IS \/v;f)<SA)v;f)<SB>,
119, o) 1€ VSOV (Sp).

Proof. (a) and (b) are simple to prove.
(c) We will use Cauchy-Schwarz inequality to prove our result. Cauchy-Schwarz inequality states that

Slumy <>
=1 =1 =1

for u;,v; € R Consider

k
(5] = (D00~ D0 i)
i=1

IA

k
Z(ﬂ(’)(g) 1y Z(,u(’)(g,) u0y?

i=
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11362

= VISHVI(Sp)
S0 o 1€ VISV (S

The other two are simple to prove. O

Definition 4.5. Let S, and Sz be m-PSFSs over X as mentioned in Definition 4.2. Then correlation
coefficient of S, and Sp can be defined by

1 m
p(S4a,Sp) = —Z( (’)(SA,SB)+p(’)(SA,SB)+p(’)(3A,SB)) 4.1)
m Jj=
Where,
| S (160 - 1 Yo 50 - 1)
pg)(SA,SB) = 5
sz,lpﬁkg) u@)z,ngkg) u@)
Zic 1(71.1(4])(5.1) (J))( (J)(gt) ﬂ.(]))
p(Sa, Sp) = =
JZ?:l ﬂ.(J)(gl)_ (J)) Z ( (])(S.l) (J))
| sk ( (’)(9) (;))( (’)(9) (1))
png)(SA’ SB) -
\/Z Wis) _Vij)) o ((1)(9) (;))
for j=1,2,3,....,m

It is very critical to note that if, for some j(= 1,2,3,...,m), ,u(’) (¢;) = constant for all i=1,2,3,...,n,
then /1(’) = constant and hence I(](g _, and (V(’)(SA) = 0 and hence I((s s, = Oand (Vflj)(SA) = 0.
Therefore, the correlation p(J)(SA,SB) can not be defined. Similarly if nﬁ{)(g) = constant for all

i=1,2,3,....n, then n(’) = constant and hence I(’(g _, and VYY(S,) = 0 and hence Ifr](ig sy, = 0and

VY(S,) = 0. Therefore, the correlation p'(S4, Sp) can not be defined. And similarly if v A)(g,) =
= constant and hence 1Y)

) ws,—0 and VY9(S,) = 0 and hence

IE{?SAH Sy = = 0 and ‘V(])(SA) = 0. Therefore, the correlation p(j)(SA,SB) can not be defined. In either

case, p(Sa, Sp) is meaningless. Therefore, our m-PSF information should be diverse in nature.

constant for all i=1,2,3,....n, then v(’

Example 4.6. Let Table 2

AIMS Mathematics Volume 6, Issue 10, 11346-11379.
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Table 2. 3-polar spherical fuzzy set.

Sy | 3-PSFS

s (0.28, 0.49, 0.55), 0.32,0.42, 0.20), (0.45, 0.37, 0.06)

() (
s (0.42, 0.38, 0.49),

0.55.0.32. 0.42), (0.52, 0.33, 0.22), (0.49, 0.55. 0.09)
(0.34, 0.56. 0.48), (0.36, 0.49, 0.23)

and Table 3

Table 3. 3-polar spherical fuzzy set.

S | 3-PSFS

s1 | 10.20,0.60,0.25 0.34,0.41,0.17), 0.52,0.41,0.32

( M ( )
¢ (0.55, 0.72, 0.08), (0.39, 0.45, 0.16), (0.32, 0.15, 0.48)
( M M )

s3 |10.37,0.25,0.42),(0.54,0.32,0.19,10.49,0.18, 0.31

b

be 3-PSFSs defined over X. Then S, = ((0.42, 0.38,0.42), (0.39, 0.44, 0.30), (0.43, 0.47, 0.13)),

Sy = ((0.37, 0.52,0.22), (0.42,0.39,0.17), (0.44, 0.25, 0.37)),

(V(SA) = 002, (V(SB) = 004, I(SA—>SB) =0.003

Hence,

p(S4,Sp) = 0.11

Theorem 4.7. For the m-PSFSs S, and Sp, we have

(a)  The correlation p is symmetrical, that is, p(Sa, Sp) = p(Sp, Sa)

(b)  The correlation p lies between —1 and 1, that is, —1 < p(S4,Sp) < 1
() p(S4,Sp)=1ifA =B

(d  p(S4,Sp)=1ifA = (@)B,a > 0.

Proof. (a) Itis easy to prove.

(b) From the proposition 4.4, we have | I;’&A_) Sp) < \/(V,(f)(S A)(V,(j '(Sp)

= - \/(VLJ')(SAWL”(SB) <TI0 sy < \/(V,(])(SA)(V,‘])(SB)

)]
- 1< #(Sa—Sp) <1

L VISovISy
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= -1 <p/(84,8p) < 1

Similarly, —1 < pY(S4, Sp) < 1 and —1 < p(S4, Sp) < 1 and hence —1 < p(Sy, Sp) < 1.
(c) If A=B then u(s)) = 1V (51, 7V(s) = 7¥(s) and v (s3) = vY(s)), then

0 p (u;”(g,) ui())(uf,!>(g,) uj,!’) p (u;”(m uf{))(ﬂf{)(q) u;”)
i (Sa,Sp) = = = 1 Similarly

2 2 2 2
J 1 (ui’)(s‘,) ui{)) i (uﬁ;’)(sﬁ) u}’)) J L(#ﬁg’)(g) u(A’)) f;l(#i{)(c,) /t(A’))

09(8S4,Sp) = 1 and p(S4, Sp) = 1 and hence p(Sy, Sp) = 1. _
(d) If A=()B then 1 (s;) = (@)u(s), V(1) = (@)7Y(s)) and v (5;) = (@)Y (), then

o, (ui,”(c,) ui())(u?(cl) ;f,,?)

(J)
i (Sa,Sp) = 5 —
Jz,ﬁl (uﬁj’(a) ui{)) o, (ui{)(m—ui{))
py ((a)uj?(g,) (a)uﬁ,ﬁ)(u;”(m ﬂ;’))
= _ _ =
Jzi;l ((a)u(,;')(g,) (a)yi?) 3k, (ui{)(m ui?)
Similarly p%(S4, Sp) = 1 and p\”(S4, Sp) = 1 and hence p(S4, Sp) = 1. O

Definition 4.8. Let S, and S be m-PSFSs over X as mentioned in definition 4.2. Then correlation
coeflicient of S, and Sj can also be defined as

m

S Sp= 5 ) (/50,5 + 3081, S0 + (S, S5) (4.2)
=
Where,
s sk ( Dig) - 'u(J))( D(g) - ,uo)) |
maX{Zfl(,uﬁ()(g,) ﬂm) 3k ( O(g) — ,u(”)}
s - 3 ( Dig) - (1))( (g - ﬂo)) |
max{zk ( D (g,) m) D ( D) - (1))}
and
s sk 1(VX)(§1) (1))( (J)(gl) (J))

max{Zf‘l(VX)(Cz) m) sk ((’)(g) (p)}.

Theorem 4.9. For the m-PSFSs S4 and Sg, we have

(a)  The correlation o is symmetrical, that is, 0(S,, Sg) = 0(Sp, Sx)

(b)  The correlation o lies between —1 and 1, that is, —1 < 0(S4,Sp) < 1
(c) 0(84,8p)=1ifA =B

(d)  0(Sx,Sp)=1ifA = (@)B, a > 0.
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Proof. (a) It is easy to prove.
(b) From the proposition 4.4, we have | 1 (SaSp) < \/(V,Sj)(SA)(V,(Jj)(SB)

= —JVISOVISH <195 o < VISHVI(Sw)
)
— 1< u(Sa—Sp) <1
JVISHV(Ss)

= -1 <G/ SxSp) < 1

Similarly, —1 < 8Y(S4, Sp) < 1 and —1 < 9Y(S4, Sp) < 1 and hence —1 < 3(Sy, Sp) < 1.
(c) If A=B then () = 1 (5)), 7¥(s0) —n“)(g,) and v/(;) = vJ (), then

.{) k (u)(g) ﬂw)( Dig)- u(’)) (#X)(SJ #u))(ﬂi‘p(g) ﬂu))
i (Sa, Sp) = =

2 2 2 2
maX{ p (/15{)(5'1) uﬁ{)) Dy (ug)(cy)—ug)) } maX{ p (Mﬁ{)(cz)—ﬂf{)) By, (uﬁ{)(c,)—ﬂx)) }

0(84, Sp) = 1 and 2”(S4, Sp) = 1 and hence 9(S4, Sp) = 1. |
(d) If A=(a)B then u”)(g) = (@) (), 70(s) = (@) (s) and v{(5;) = (@) (s)), then

>, (uﬁ{’@,) u(”)(u(g)@,) ﬂ(”)

= 1 Similarly

0(S4.Sp) = ; ;
max{ L ( G u(”) i (#53’)(9) /159’)) }
py ((a)u;”(m <a>u§;))(u;”(g,> u“))
= 2 N =
max{ il ((a)u;”(g,) (a)u;”) il (u}”(g) u;/)) }
Similarly 09(84, Sp) = 1 and 2”(S,, Sp) = 1 and hence 9(S4, Sp) = 1. O

Two main aspects of most real-world issues should be addressed: complexity and weights.
Uncertainty is a major factor that can influence our decisions and analyses when dealing with such
issues. Furthermore, weights have an effect on the majority of unknown mathematical models. We
describe weighted Correlation coefficients (WCCs) to deal with such issues.

Definition 4.10. Let S, and Sz be m-PSFSs defined over X as mentioned in definition 4.2. The
alternatives are effected by ¢y, ¢, -+ , ¢, are affected by the weights w;, w,, - - - , w, with the condition
Y w;=1and 0 < w; < 1. Then weighted covariance of S, and S can be defined as

w (]) w () w ()
I(SA_“SB) 3 Z ( H(SA—>SB) Iﬂ(SA—>SB) IV(SA—>SB)) (4.3)

Where,

k
sy = Dol 60 =i i 60 - ),

i=1

k
w;j(gA_)SB) Z ((’)(9 </))( (’)(9) ﬂw)

i=1
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k

wl% - Z wl(vg)(gl) _ (1))( (’)(5‘,) (1))

i=1
for j=1,2,3,....,m.

Definition 4.11. Let S, be a m-PSFS on X as mentioned in definition 4.2. Then weighted variance of
S, can be defined as

“V(Sy) = ﬁ > ( CYD(Sa) + VIS + va')(SA))
j=1

Where,

k

w(V(J)(SA) Zwl( (])(gl) 'u(J))
i=1
k

VIS = Y wi(n (6 - “)),
i=1
k 2

VIS = 3 w60 - )

1l
—_

1

for j=1,2,3,....,m

Proposition 4.12. The covariance and variance for m-PSFSs of S4 and Sg follow the following

properties.
w () — wa)h) w () — wa/h) w () — wa/D)
(@) “lsinsy = Vi (Sa) s, sy = “Va (Sa) “Lis, sy = “V(Sa)
(b) w7 — a)I(j) w7l — w () w7l — w ()
u(Sa—Sp) u(Sp—Sa) 7(Sa—Sp) n(Sp—>8Sa) v(S4—Sp) v(Sp—Sa)

() 1“1 ) 1€y “VIS) VIS | “1% | VIS VI (S),
|91 g 1\ VIS VI (S,

Proof. (a) and (b) are simple to prove.
(c) We will use Cauchy-Schwarz inequality to prove our result. Cauchy-Schwarz inequality states that

(zn: uvy)® < (Zn: Mlz)(zn: V)
=1 =1 =1

for u;,v; € R Consider

k

(“10 ) = (D060~ 60 )
i=1
k

= (2 V60 D e 5 - W)

IA

Zwi(u“)(g,) uly sz(,u(’)(g,) u7)
i=1
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= VIS) “VY(Sp)

S 9p o 1< N VIS YV (Sp)

The other two are simple to prove. O

Definition 4.13. Let S, and Sp be m-PSFSs over X as mentioned in definition 4.2. Then weighted
correlation coefficient of S4 and Sp can be defined by

m

1 . . .
PSaSn) = 5 O (P (SusSn) + “pY(SasSn) + P (S, Sn) (4.4)
j=1
Where,
| ) lwl(ﬂ(”(g) /1(’))( Dig) - ll(]))
“p(Sa, Sp) = =
) 0 ) (J)
i wi ,UA (Si) — 1, Z, Vil (§) — g
| 3 10)1(”;])(9) (;))( (J)(gl)_ m)
“p(S4, Sp) = .
\/2, (7 - “)) Lo - n(”)
) Zf 1 wt(v,(:)(gt) - V(]))( (j)(gz) - Vggl))
wp(/)(SA, Sp) =
\/Z 1wl Vf{)(cz (’)) Pl 1w,(v;’)(§,) (’))
for j=1,2,3,....,m.

Theorem 4.14. For the m-PSFSs S, and Sg, we have

(a)  The weighted correlation “p is symmetrical, that is, “0(S4, Sg) = “p(Sp, Sa)
(b)  The weighted correlation “p lies between —1 and 1, that is, —1 < “0p(S4,Sp) < 1
(C) wp(SA,SB) =1ifA =B

(d) “0(S4,Sp) =1ifA = (@)B,a > 0.

Proof. (a) Itis easy to prove.

(b) From the proposition 4.12, we have | “’If{’(g LSp) |< \/ “’(V,(,j)(SA) “’(V,(lj)(SB)
= - \/ “V(Sp) vV (Sp) < I g, < \/w(v“)(s ) “V,/(Sp)
wl(ﬁg LS
=-1< A <1

VLS VL (Sp)
= -1< prj)(SA,SB) <1
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Similarly, -1 < “pY(S4, Sp) < 1 and -1 < “p(S4, Sp) < 1 and hence —1 < “p(S4, Sp) < 1.
(c) If A=B then 1{(s)) = 1V (51), 7V(s)) = (1) and v\ (s1) = v{(s,), then

,klw,(#f{)(cl) #X))(#}’)(g) uﬁg’)) i lw,(ﬂﬁ{)(g) uﬁ{))(ui’)(c,) ﬂ(”)

“p (S, Sp) = = 1 Similarly

,k.w,(#(A’)(c,) u(A’)) kL .w,(#g)(cl)—u}”) \ f‘]w,(#f{)(y) /1(”) ’ ]w,(#fj)(g)—#ff))
“o (84, Sp) = 1 and “p(S4, Sp) = 1 and hence “p(Sa, Sp) = 1. .
(d) If A=(a)B then u(s;) = (@) (s), 7V(s)) = ()7 (s1) and v (s) = (@) (s:), then

by lw,(ui,”(g,) W)( P W)

-

(J) _
i (Sa, Sp) = : 2
JZLM(#?(CZ) u;’)) zlewi(ﬂ;ﬁ(m ﬂg>)
T 1%((&)#2”(9) ((t)ﬂ(’))(ug)(g) u(”)
- s =1
sz‘ 1wz((a)u§§)(c,) (a)u(”) p 10)1(#3,!)(;,) ﬂm)
Similarly “p7(S4,Sp) = 1 and “p{’(S4,Sp) = 1 and hence “p(Sa, Sp) = 1. m

Definition 4.15. Let S, and Sp be m-PSFSs over X as mentioned in definition 4.2. Then weighted
correlation coefficient of S, and Sp can also be defined as

m

1 . )
“0(84, Sp) = Im Z ( wﬁj)(SA, Sp) + “0Y(S4, Sp) + “0(Sy, SB))
=1
Where,
S o) 60 = 1 i s - 1)
u)"(])(*SA’ SB) = 5
maX{Zk lwl(ﬂﬁ()(gz) u(”) pl lwz(u;’)(g) u(”) }
o 1wl(ﬂ£()(§l) (J))( (J)(S.l) (J))
UJ"‘(])(SA’S ) = )
max { £, o (50) - “)) AT “’) }
and

sh wl( Dig) - <1>)( D(g) - (;))

VTS P

w"'(/)(S S ) _

Theorem 4.16. For the m-PSFSs S, and Sp, we have

(a)  The correlation “p is symmetrical, that is, “0(S4, Sp) = “0(Sp, Sx)
(b)  The correlation o lies between —1 and 1, that is, —1 < “0(S4,Sp) < 1
(c) “0(S4,Sp)=1if A = B

(d) “o(84,Sp) = 1ifA = (@)B, a > 0.
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Proof. (a) It is easy to prove.
I(J)

(b) From the proposition 4.4, we have | ¢ (Sa—Sp)

<y “V(SD) “V(Sp)

= - \/ “VP(Sa) “V(Sp) < I s, < \/w@(s ) “V,/(Sp)

w1
u(Sa—Sp) <1

J VIS VI Sw)

= -1<

=-1< wﬂu(j)(SA SB) <1

Similarly, -1 < “0Y(S4, Sp) < 1 and -1 < “5(S4, Sp) < 1 and hence —1 < “9(S4, Sp) < 1.
(c) If A=B then () = 1V (51), 7{(s)) = 7¥(s1) and v\ (s3) = v{(s,), then

i- 1‘”1(/42’)(9) ﬂi{))(uﬁ;’)(cl) ,ﬁ,,ﬁ)
2 2
max{ZZ‘(:lwi(/‘X)(?z) uf{)) DY lw,(#(/)(g) #(1)) }
flwz(uﬁ{)(g) uﬁ{))(uff)(g,) u;’))
= / 2
max {a), Zf lw:(#;{)(g) H(J)) Z,k 10)1(”;])(9) ,U(])) }

Similarly “gY(S4, Sp) = 1 and “0%(S4, Sp) = 1 and hence “5(Sy, Sp) = 1.
(d) If A=(a)B then u{(s;) = (@) (s), 7¥(s)) = (@) (s1) and v{(5;) = (@)} (s)), then

f‘]w,(#ﬁ()(g,) #E{))(ﬂg)(g) /1(]))
2 2
maX{Zf-;lw,(#X)(c) #L’)) Z,":lwi(ﬂﬁ;”(cl) /1(3”) }

kL wi(mmg)(g) <a>u‘”)(u;!><g,) ;ﬁ”)

ar‘(})(SA’SB) _

w“(/)(s S 5) =

- 2 2
max{zf;lwi((am;”(g,) (a)u;”) z,ilwl(ui{)(c) ﬂg))}
Similarly “0%(S4,Sg) = 1 and “0%(S4, Sp) = 1 and hence “(Sy, Sp) = 1. O

The weights (%, %, RN i) is changeless in correlation. So, once such weights occur, we can just
ignore them and proceed unweightedly. In other words, the weighted alternatives can be considered

uneven. We may observe that

Lo 60 - 1 Y 50 - 1)

maX{ f‘lwz(,ui()(gl) ,u(’)) ' 1wl(ﬂ§;’)(§,) ,u(’))}

w"(])(SA,S ) _

e (/Ji()(g) ﬂ(n)( D) - ,uu))

lln

max{Z, 1,1(#2)(9) #(1)) sk n(ﬂg)(g) ﬂm) }

Volume 6, Issue 10, 11346-11379.

AIMS Mathematics



11370

,1(u51><gl> u“>)( D) - u<”) |
= :Z)-f[j)(SAaSB)

max{Zf-‘: ( D(g) - ’um) T ( O - ,u(j))}

and

Zklwz(,uff)(gz) ,u(’))( (’)(g) /J(’))

’

w (])(S S )_
\/Z 1w, u(’)(g) ﬂ(’))Z 1wz(uf;)(9) u(’))

Zfln(/lg)(gz) #(1))( (’)(g) N(n)

’

\/ i 1n #(”(9) ﬂ(’)) I ln(ufé)(g) u(”)

pya 1(/12])(5‘1) MU))( O(g) - ’um)

—_ O

_p“ (SA7SB)
2
\/21 (e - u(’)) S (160 - u<”)

5. Applications of proposed correlation measures

In statistics and engineering the correlation plays a major role. The cumulative relation between
two variables can be analysed using the level of stability of the two variables by means of correlation
analysis. Correlation actions are prevalent indicators and appropriate methodologies to MCDM
problems. Several intellectuals have used correlations in different uncertain conditions to solve these
problems quickly and productively. The correlations defined in this article will be used in this section
to precisely recognize patterns and medical diagnosis.

Pattern recognition is automatic identification of collection and aggregation in statistics. It is
usually classified based on the type of learning experience for producing the value of output. Pattern
recognition methods usually help to identify all the independent variables moderately and to make
“most likely” the insights to match, taking their statistical variance into consideration. Pattern
recognition is usually divided into the classifications of learning process of creating new value of
the output.

5.1. Application to pattern recognition

Now we develop Algorithm 1 for pattern recognition with the help of proposed correlation based
on m-PSF information.

Algorithm 1 (Pattern Recognition)
Step 1: Read the pattern to be recognized as # and express in the form of m-PSFS.

Step 2: Arrange the known patterns in the form of a sequence P, PP, ... PO,

Step 3 (i): By using the formula (4.1) or (4.2), find the correlation coefficients of the pattern £ from
the known patterns PV, PP, ... Pm,

Step 3 (ii): If the universe X for the m-PSF model contains weighted alternatives, find the respective
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weighted correlation coefficients using the formula (4.3) or (4.4).
Step 4: Pattern # belongs to P, if any pattern P finds the greatest correlation with P.

Example 5.1. Pattern recognition is one of the most important and fundamental concern in robotics,
machine learning and security management. We consider a perticular problem of pattern recognition,
namely, facial recognition. Facial recognition is a mechanism through which an individual’s
identification can be confirmed by his face. In photos, videos and even in real time, facial recognition
systems can be used to identify people. One of the main category of biometric safety is facial
identification. Suppose a machine, which is already feeded with three patterns PV, @ and P of
three different persons in the form of m-PSFSs, has to detect a face of an unknown person. (We are
considering only three persons in this example because our aim is to give a mathematical model only.
However, a certain machine can be feeded with hundreds and thousands of the patterns of different
persons at a time). The three patterns are expressed in in terms of 3-PSFS in Table 4, Table 5, Table 6,
respectively.

Table 4. Assessment of pattern PV in terms of 3-PSFS.
PO | 3-PSFS
¢ (0.19, 0.24, 0.35), (0.24, 0.36, 0.49),

0.22.0.33, 0.45)

S3

9

o (0.24, 0.33, 0.47),

0.14,0.32, 0.48), (0.30, 047, 0.58)

0.25.0.37, 0.54), (0.20, 0.31,0.50). (0.25. 0.39, 0.59)

Table 5. Assessment of pattern £® in terms of 3-PSFS.
PO | 3-PSFS
0.25,0.34,0.47),10.17,0.34,0.40

S 0.21,0.34,0.38

( ) M )
¢ (0.08, 0.14, 0.25), (0.26, 0.38,047),(0.24,032, 0.49)
( i i )

b 2

0.27,0.36,0.49),(0.15,0.33,0.63 |,10.26,0.43, 0.52

3

b b

and

Table 6. Assessment of pattern P in terms of 3-PSFS.
PO | 3-PSFS
0.18,0.22,0.33), (0.24, 0.55,0.67

s , (0.32, 0.49,0.56

( )
& (0.25, 0.34, 0.50),
( )

0.37,0.48, 0.62), (0.25, 0.34, 0.57)

0.14.0.27.0.37). (0.32, 0.46,0.53). (0.14, 0.28.0.47

S3
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The machine first detects the face of an unknown person, analyzes it and converts it into a m-PSF
model, say £, which is given in Table 7 as follows.

Table 7. m-PSF model.

P | 3-PSFS
G (0.20, 0.44, 0.66), (0.06, 0.19, 0.50), (0.32, 0.46, 0.55)

o (0.42, 0.53, 0.65), (0.32, 0.44, 0.59), (0.37, 0.43,0.50

o (0.29, 0.38, 0.52), (0.27, 0.36, 0.64), (0.23, 0.32, 0.40)

It, then, finds the correlations of the unknown pattern from the known ones and decides that which
pattern is closest to the unknown pattern. This whole facial recognition process can be performed
through the following Algorithm 1, that is, the machine can be feeded with the proposed algorithm in
order to detect the person.

The correlation coefficients of P from PV, P@ PO (using the formula (4.1) and (4.2) respectively)
are given by

PP, PD) =009 p(P,PP)=-029 pP,PY)=0.36
oP,PD) =007 o(P,P?)=-028 o(P,PY) =023

However, if the alternatives ¢, 2, ¢3 pursue some weights w = (0.24,0.36, 0.40), then we find the
respective weighted correlation coefficients (using the formula (4.3) and (4.4) respectively) as follows.

“p(P,PV)=0.10 “pP,P?)=-031 “pP,P) =039
P, PV =006 “oP,PP)=-029 “oP,PY) =027

The correlation flow of ? from the known patterns PV, P and P under the proposed correlations
are given in the following table.

Table 8. Comparison analysis.

Correlation measures Ranking The optimal pattern
0 PO - P 5 PO g
0 P3 . p) o P2 P3)
“p P s p) s PO PB)
g Pd) s P) o PQ) o)

All of the above results show that the pattern % finds the greatest correlation from P, Therefore,
the facial recognition machine detects the person P as P, and then the examiners has to decide the
physical existence of the unknown person.
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5.2. Medical diagnosis

Now we develop Algorithm 2 for medical diagnosis with the help of proposed correlation for
m-PSF information.

Algorithm 2 (Medical Diagnosis)
Step 1: Consider the set of m symptoms {1, 2, - - - 6.} and the set of n diseases {8V, 5% .. g™},

Step 2: Compute assessment matrices for diseases 8, 8% - - - ™ and assessment matrix for the patient
% in terms of m-PSFS.

Step 3 (i): By using the formula (4.1) or (4.2), find the correlation coefficients of the matrix # with
each matrix g, @ ... g™,

Step 3 (ii): Compute weighted correlation coefficients using the formula (4.3) or (4.4).

Step 4: The disease 8 showing highest correlation with patient % is the actual disease.

Example 5.2. In this example, we use the Algorithm 2 to analyze the actual disease of a patient.
Suppose a patient has to be diagnosed in a healthcare center and healthcare experts diagnosis the
patient with the following symptoms as follows:

¢1 = headache, ¢, = fatigue, ¢3 = chest pain, ¢4 = breathing difficulty
and the possible diseases as follows:
BY = fever, f% = typhoid, 8% = corona, 8 = heart disease

The assessment matrices for 8V, % and f are expressed in Table 9, Table 10, Table 11, Table
12, respectively.

Table 9. Assessment matrix for 5.

B | 3-PSFS
0.18,0.26,0.39

S ,10.15,0.24,0.46),(0.19,0.36,0.42

0.36,0.48,0.54),10.33,0.41,0.57

] B

sz |(0.11,0.22,0.44),(0.12,0.35,0.47),(0.24,0.51,0.62

0.22,0.34,0.48),(0.10,0.15,0.20},10.13,0.27,0.46

b 9

o (0.24, 0.38.0.44

— —— S —— S——
| —
~~— —— S—— ———
e e N
N— S — S ——

G4

Table 10. Assessment matrix for 5.

B2 | 3-PSFS
0.20,0.35,0.45),(0.18,0.29,0.43

S1 0.15,0.29,0.37

2

0.10,0.16,0.27),{0.26,0.37,0.48 |,1 0.20, 0.35, 0.50

() (
. (0.23,0.33,0.46

b

0.25,0.37,0.46

b

e e U g
N—  —— S —— |

0.32,0.39, 0.45),

~— S — S —— S
| — |

¢4 |10.29,0.38,0.44),(0.27,0.40,0.56),(0.17,0.34,0.62

b

AIMS Mathematics Volume 6, Issue 10, 11346-11379.



11374

Table 11. Assessment matrix for 5.

BY | 3-PSFS
0.43,0.50,0.62),0.18,0.26,0.34

S 0.30,0.48,0.64

0.14,0.28,0.32),(0.17,0.32,0.54),{0.15, 0.40, 0.57

Y]

S3 (0.16, 0.30,0.45),10.24,0.37,0.58 ),{0.18, 0.26, 0.44

0.13,0.29,0.48),(0.32,0.46,0.62 },10.23,0.38, 0.50

G4

N— S —— S —— S|

e Y e Y
N— S — ——

and

Table 12. Assessment matrix for %,

BY | 3-PSFS
0.16,0.24,0.36,(0.19,0.33,0.45

0.28,0.35,0.43

S1 ( s s
o (0.28, 0.37.0.54

0.26,0.53,0.65),10.39,0.49,0.54

’ B

0.17,0.26,0.39),(0.34,0.47,0.55,10.20, 0.49, 0.62

3

2 2

0.18,0.46,0.59),(0.39,0.45,0.60),{0.13,0.35,0.49

4

2 b

— —— S —— S——
| —
~~— — S—— ———
e e N
N— — S —— S

Assume the expert opinion for the patient and his symptoms is evaluated in terms 3PSFS as given
in Table 13.

Table 13. Expert opinion in terms of 3-PSFS.

P | 3-PSFS
0.20,0.30,0.40),{0.17,0.25,0.36

S1 0.09,0.32,0.41

o (0.15,0.16,0.18

b

0.22,0.35,0.43),{0.15,0.26,0.44

B

0.21,0.32,0.52),10.25,0.34,0.47,10.33,0.45,0.68

3

2

0.23,0.38,0.42),(0.28,0.49,0.65 |,10.26, 0.40, 0.60

S4

b

e e N N N

)
)
)
)

~— S —— S —— S|
| —
— S — S —— S

In order to check the actual disease of patient, we find the correlation coefficients of B from gV, g
using formula (4.1) and (4.2) respectively as follows.

oP.BD) =021 pP,B?) =081 p®P.Y) =0.15 p(P ) =029
oP.BD) = =015 oP.BP) =060 o®P.f>)=0.18 oP.f¥) =020

However, if the patients ¢y, 3, §3, ¢4 are assigned some weights w = (0.19,0.22,0.26, 0.33) from
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the healthcare team, then we find the respective weighted correlation coefficients using the formula
(4.3) and (4.4) respectively as follows.

“pP.p") = -023  “p(P,?) =080 “pP,fV)=0.13 “pP,pY)=0.29
P,V = —0.16 “oP,p0) =060 “o@.fV) =016 “GP,BP) =0.19

The correlation flow of P from B, B and 5 under the suggested correlation measures are given
in the Table 14. From these results, we find that the patient  shows the greatest correlation with 2.
So, the patient is suffering from typhoid and the necessary measures are to be taken in this regard.

Table 14. Comparison analysis.

Correlation measures Ranking The optimal diagnosis
0 B9 > gD = gO » gD e
0 ,8(2) > ﬁ(4) > 13(3) > g ’3(2)
“p B > Y > gO » g0 82
“o 13(2) > ﬁ(4) > ’3(3) > ﬁ(l) 13(2)

6. Conclusions

MCDM has been studied by a large number of scholars and researchers. The methods designed for
this purpose are generally influenced by the judgment operational framework used. The most of its
key issues are attached to vague, imprecise, and multi-polar data that can’t be adequately explained by
fuzzy set alone. An m-polar fuzzy set (m-PFS) has the ability to deal with vagueness by multi-polarity
and the spherical fuzzy set (SFS) deal with uncertainty by using three independent grades (membership
degree, neutral-membership degree, and non-membership degree).

In order to deal with real-life vague circumstances when decision makers require a new
mathematical model to deal with multi-polarity as well as three independent spherical index, we
introduced a new hybrid model named as m-polar spherical fuzzy set (m-PSFS) as a robust fusion
of SFS and m-PFS. The existing models namely m-PFS and SFS are the special cases of suggested
hybrid m-PSFS. To ensure the algebraic structures of this robust extension, we developed fundamental
operations on m-PSFSs and investigated their related results. A suitable numbers of illustrations
are presented to explain suggested notions and results. We introduced the correlation measures and
weighted correlation measures for m-PSFSs. Certain properties of covariances and the correlation
measures are proposed to analyze that suggested concepts are novel extension of crisp correlation
measures. The main advantage of proposed correlation measures is that these notions deal with
vagueness and uncertainty in the real-life problems efficiently with the help of m-PSF information. We
discussed applications of m-PSFSs and their correlation measures in pattern recognition and medical
diagnosis. To discuss the superiority and efficiency of proposed correlation measures, we give a
comparison analysis of proposed concepts with some existing concepts.
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