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nonlinear term, the existence and uniqueness of solution for a fractional iterative equation is proved
by applying the Leray-Schauder fixed point theorem and topological degree theory. Furthermore, the
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is demonstrated at the end.
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1. Introduction

The research on iterative differential equations can be traced back to 1965, Petuhov studied a
periodic boundary value problem of second-order differential iterative equation

x
′′

= λx[2](t), x(0) = x(T ) = α ∈ R,

with x[2](t) = x(x(t)) in [1], where the author obtained the existence and uniqueness of solution of the
equation when the parameters λ and α were in different ranges. Compared with ordinary differential
equations, the appearance of iteration terms brings certain difficulties to study this type of iterative
differential equations, and the fixed point theory is a common method to deal with such problems.
Recently, Kaufmann considered the boundary value problem of a class of second-order differential
iterative equations in [2], and used the Schauder fixed point theorem to show the existence of solution.
In [3–6], researchers use different fixed point theories, including Krasnoselskii fixed point theorem,
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Schauder fixed point theorem, etc., to investigate the existence and uniqueness of periodic solutions or
quasi-periodic solutions of several types of iterative differential equations.

In recent years, fractional differential equations has aroused the interest of many mathematicians
and researchers in the fields of engineering, chemistry, and physics, etc. However, there are few results
on boundary value and periodic problems of fractional iterative differential equations. It is worth
noting that when the nonlinear function satisfies the Lipschitz condition, Ibrahim [7] extended some
results of integer order to fractional iterative differential equations. However, to the best of the authors’
knowledge, there is no report about vector iterative equations in RN including integer order, since
one-dimensional iterative differential systems were handled in previous works.

In this paper, we first consider the following rotational periodic boundary value problem (RPBVP)
of fractional differential system:{

CDαx(t) + Ax(t) = f (t, x(t), x[2]
+ (t)), t ∈ I := [0, b],

x(b) = Qx(0),
(1.1)

where CDα denotes the Caputo fractional derivative with α ∈ (0, 1), A : RN → RN is a linear operator,
f : I × RN × RN → RN is a measurable function, and Q ∈ O(n), where O(n) denotes the group of
orthogonal matrix. When Q-rotating periodic are in different ranges, different solutions are derived,
such as periodic solutions if we let Q = EN , where EN represents the identity matrix in RN , anti-
periodic solutions if we let Q = −EN , subharmonic solutions if we let Qk = EN for some k ∈ Z,
and quasi-periodic solutions if we let Q = diag(W(θ1), · · ·,W(θk)) for N = 2k with k ∈ Z, or Q =

diag(W(θ1), · · · ,W(θk),±1) for N = 2k + 1, where W(θi) =

(
cos θi − sin θi

sin θi cos θi

)
and θi ∈ [0, 2π] (i =

1, 2, · · · , k).
The first objective of this work is to prove that the RPBVP (1.1) has a unique rotational periodic

solution by using topology-degree theory and the Leray-Schauder fixed point theorem. It is worth
noting that the solution x is called rotational periodic solution if x satisfies x(t+T ) = Qx(t) for all t ∈ R.
Recently, more attention has been paid to the rotational periodic solutions of differential equations. The
existence of rotating periodic solutions for second-order differential equations are demonstrated in [8,9]
by using the coincidence degree method. The existence of rotating periodic solutions for second-order
Hamiltonian system is investigated in [10] via the technique of penalized functionals and Morse theory,
where the resonance condition at infinity is satisfied. Applying the homotopy continuation method,
the rotating periodic problems of second order differential equation is considered in [11], where the
nonlinearity satisfies the Hartman-type condition. The interested readers are referred to see [12,13] for
physical investigation on the rotational periodic.

Furthermore, we consider a fractional nonlinear control system of the following form:
CDαx(t) + Ax(t) ∈ f (t, x(t), x[2]

+ (t)) + U(t) + d(t, x), t ∈ I
U(t) ∈ F(t, x)
x(b) = Qx(0)

(1.2)

where A,Q, f are present as in RPBVP (1.1), U : I → RN is a control input, F : I × RN → 2RN
\ {∅} is

a multifunction of observation data, and d : I × RN → 2RN
\ {∅} is a multivalued disturbance function.

Motivated by [14, 15], we use the techniques of functional analysis and set-value theory to get the
existence of solutions for RPBVP (1.2).
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It is well known that dynamic neural networks systems are widely used in combinatorial
optimization, associative memory, image and signal processing, pattern recognition and other fields.
It should be mentioned that the existence and stability of solution for a fractional neural networks is
studied in [16], where neuron activation functions are required to be continuous. Inspired by this, we
also consider the fractional neural networks where neuron activations are discontinuous, and establish
the existence of equilibrium point of this system at the end.

The remainder of this paper is organized as follows. some basic definitions and auxiliary results
corresponding to the fractional calculus are introduced in section 2. In section 3, the existence and
uniqueness of solution for RPBVP (1.1) is provided by applying the Leray-Schauder fixed point
theorem and topological degree theory. In section 4, the well posedness for a nonlinear control
system (1.2) is established by using set-valued theory, followed up the existence of solution for a
iterative neural network system in section 5.

2. Preliminaries

Let I := [0, b], where b is greater than a constant given later. Let RN be an N-dimensional Euclid
space, where the inner product and norm of RN are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let
C([0, b]; RN) denote the space composed of all continuous functions from [0, b] to RN with
‖x‖C = max

t∈I
‖x(t)‖, ∀x ∈ C([0, b]; RN). Let ‖ · ‖∞ denote the norm of L∞[0, b]. For the basic properties

of fractional calculus, we refer the readers to see [17–19].

Definition 2.1. The fractional integral of order α > 0 of a function y is defined as

CIαy(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1y(τ)dτ, t > 0,

where Γ(·) is the Gamma function.

Definition 2.2. The fractional derivative of order α in the sense of Caputo for a function y ∈ Cn[0, b]
is defined as

CDαy(t) =
1

Γ(n − α)

∫ t

0
(t − τ)n−α−1y(n)(τ)dτ, t > 0,

where α ∈ (n − 1, n), ∀n ∈ N.
A property regarding the Caputo fractional derivative is given as follows:

Proposition 2.1. If y ∈ Cn[0,T ], then

CIαCDαy(t) = y(t) −
n−1∑
k=0

y(k)(0)
k!

tk,

where α ∈ (n − 1, n), ∀n ∈ N. In particular, if y ∈ C1[0,T ] and α ∈ (0, 1), then

CIαCDαy(t) = y(t) − y(0).

Now, we state the fractional Gronwall’s inequality which will be used later.
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Lemma 2.1. [20] Suppose that the nonnegative integrable function m(t) is defined on I, the nonnegative
function p(t) is non-decreasing on I, and the nonnegative integrable function Y(t) satisfies

Y(t) ≤ m(t) + p(t)
∫ t

0
(t − s)α−1Y(s)ds, ∀t ∈ I, α > 0.

Then
Y(t) ≤ m(t)Eα[Γ(α)p(t)tα],

where Eα(w) :=
∑∞

k=0
wk

Γ(αk+1) , ∀w ∈ R, is called the single parameter Mittag-Leffler function.
Several inequalities on fractional derivative are given in the following.

Lemma 2.2. [21] Assume that Y : I → RN is a continuous differentiable function, and the matrix
P ∈ RN×N is a positive definite. Then we have

1
2

CDα[YT (t)PY(t)] ≤ YT (t)PCDαY(t),

for any α ∈ (0, 1).

Lemma 2.3. [22] Suppose W : R→ R+ is a continuous function satisfying

CDαW(t) ≤ −ωW(t), ∀α ∈ (0, 1),

where ω is a positive constant. Then the following inequality holds:

W(t) ≤ W(0)Eα(−ωtα), ∀t ≥ 0.

We present Leray-Schauder alternative theorem which plays an crucial role in our proofs.

Lemma 2.4. [23] Assume that X is a Banach space, the set Q ⊆ X is nonempty and convex with 0 ∈ Q,
and G : Q → Q is an upper semicontinuous multifunction which has compact convex value and maps
bounded sets to relatively compact sets, then one of the following arguments is valid:
(i) Γ = {x ∈ Q : z ∈ βG(z), β ∈ (0, 1)} is an unbounded set;
(ii) the multifunction G(·) has a fixed point, i.e. there exists x ∈ Q such that z ∈ G(z).

Let Eα,β(w) :=
∑∞

k=0
wk

Γ(αk+β) , ∀w ∈ R be the two parameter Mittag-Leffler function. For notational
convenience, set Mα = max

t∈I
‖Eα(Atα)‖, M̂α = max

t∈I
‖Eα,α(Atα)‖, ME = ‖(Q − Eα(Abα)−1‖. Throughout

the article, we assume b >M
1

1−α withM := (ME Mα+1)M̂αMλ

α
, where Mλ is a positive constant.

3. Fractional iterative differential equations

Consider the following fractional iterative vector differential equations

CDαx(t) + Ax(t) = f (t, x(t), x[2]
+ (t)), t ∈ I,

x(b) = Qx(0), (3.1)

where x[2]
+ (t) = (x1(‖x‖), x2(‖x‖), · · · , xn(‖x‖)), A : RN → RN is a linear operator, f : I × RN × RN → RN

is a Carathéodory function. The required assumptions are given below.
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H(A) : A : RN → RN is a bounded, linear positive definite operator, that is, for any y ∈ RN , there
exists a constant c ∈ R+ such that 〈Ay, y〉 ≥ c‖y‖2.

H( f ) : f : I × RN × RN → RN is a Carathéodory function such that
(i) for any v, u ∈ RN , there exists a nonnegative function λ ∈ L∞[0, b] with ‖λ‖∞ ≤ Mλ

2 , such that
‖ f (t, v, u)‖ ≤ λ(t), ∀t ∈ [0, b];

(ii) for any t ∈ I, and v1, v2, u1, u2 ∈ RN , there exists a nonnegative function µ ∈ L∞[0, b], such that

〈 f (t, v1, u1) − f (t, v2, u2), v1 − v2〉 ≤ µ(t)‖v1 − v2‖
2,

where ‖µ‖∞ < c, c is the positive constant provided in assumption H(A).

Theorem 3.1. Assume that H(A) and H( f ) hold, then the fractional iterative differential system (3.1)
has a unique solution.

Proof. It is easy to verify that the problem (3.1) is equivalent to the following integral iterative
equation [24]

x(t) = Eα(Atα)x(0) +

∫ t

0
(t − τ)α−1Eα,α(A(t − τ)α) f (τ, x(τ), x[2]

+ (τ))dτ, ∀t ∈ I. (3.2)

Define an operator T1 : C([0, b]; RN)→ C([0, b]; RN) by

T1x(t) = Eα(Atα)x(0) +

∫ t

0
(t − τ)α−1Eα,α(A(t − τ)α) f (τ, x(τ), x[2]

+ (τ))dτ. (3.3)

We divide the proof process into three steps.
Step 1. The priori boundedness of the solutions for problem (3.1).
Invoke the definition of operator T1 and the hypothesis H( f )(i), to deduce

‖T1x‖C ≤ ‖x(0)‖‖Eα(Atα)‖C + max
t∈I
‖Eα,α(Atα)‖max

t∈I

∫ t

0
(t − s)α−1| f (s, x(s), x[2](s))|ds

≤ ‖x(0)‖Mα + ‖λ‖∞M̂α max
t∈I

∫ t

0
(t − s)α−1ds

≤ ‖x(0)‖Mα +
‖λ‖∞M̂α

α
bα, (3.4)

where Mα = max
t∈I
‖Eα(Atα)‖, M̂α = max

t∈I
‖Eα,α(Atα)‖, for any t ∈ I. Now, we estimate the initial value

‖x(0)‖. In Eq (3.2), taking t = b, we have

x(b) = Eα(Abα)x(0) +

∫ b

0
(b − τ)α−1Eα,α(A(b − τ)α) f (τ, x(τ), x[2]

+ (τ))dτ.

Since x(b) = Qx(0) and hypothesis H(A), it is easy to check that the determinant |Q− Eα(Abα)| , 0, so

x(0) = (Q − Eα(Abα))−1
∫ b

0
(b − τ)α−1Eα,α(A(b − τ)α) f (τ, x(τ), x[2]

+ (τ))dτ.

From the hypothesis H( f )(i), in a similar fashion as (3.4), we derive directly that

‖x(0)‖ ≤
ME M̂α‖λ‖∞bα

α
, (3.5)

AIMS Mathematics Volume 6, Issue 10, 11233–11245.



11238

where ME = ‖(Q − Eα(Abα))−1‖. Substitute (3.5) into (3.4) to obtain

‖T1x‖C ≤
(ME Mα + 1)M̂α‖λ‖∞

α
bα ≤ Mbα, (3.6)

whereM =
(ME Mα+1)M̂αMλ

α
. Due to b >M

1
1−α , one has ‖T1x‖C ≤ Mbα < b.

Step 2. The existence of the solution to problem (3.1).
To begin with, we show that T1x ∈ C([0, b]; RN) for any x ∈ C([0, b]; RN). For any t, t + δ ∈ [0, b],

and δ > 0, it follows from (3.3) that

|T1x(t + δ) − T1x(t)|

≤ ‖

∫ t+δ

0
(t + δ − s)α−1Eα,α(A(t + δ − s)α) f (s, x(s), x[2](s))ds

−

∫ t

0
(t − s)α−1Eα,α(A(t − s)α) f (s, x(s), x[2](s))ds‖

+ ‖[Eα(A(t + δ)α) − Eα(Atα)]x(0)‖

≤ ‖λ‖∞M̂α|

∫ t+δ

0
(t + δ − s)α−1ds +

∫ t

0
(t + δ − s)α−1 − (t − s)α−1ds|

+ ‖[Eα(A(t + δ)α) − Eα(Atα)]x(0)‖

≤
2‖λ‖∞M̂α

α
δα +

2‖λ‖∞M̂α

α
|(t + δ − a)α − (t − a)α|

+ ‖[Eα(A(t + δ)α) − Eα(At)α]x(0)‖.

When δ → 0, we have |T1x(t + δ) − T1x(t)| → 0, therefore T1x ∈ C([0, b]; RN). Taking xn → x ∈
C([0, b]; RN) where xn(t) := (x1n(t), x2n(t), · · ·, xnn(t)) ∈ RN and x(t) := (x1(t), x2(t), · · ·, xn(t)) ∈ RN for
t ∈ [0, b], we arrive at xin(‖x‖) → xi(‖x‖) for each i = 1, 2, · · ·, n, which together with the continuity
of (s, v) → f (t, s, v), yields |T1xn − T1x| → 0. Hence, T1 : C([0, b]; RN) → C([0, b]; RN) is continuous.
According to the prior estimation (Step.1) and applying Arzela-Ascoli theorem, we obtain that the
operator T1 : Ω→ Ω is completely continuous, where

Ω = {u ∈ C([0, b]; RN) : ‖u‖C ≤ b + 1}.

Thus, the existence of solutions for the differential iterative system (3.1) can be transformed into a fixed
point problem of T1. Define the mapping hε(x) = x− εT1(x) for x ∈ C([0, b]; RN), where ε ∈ [0, 1]. Let
p < h(∂Ω), for any ε ∈ [0, 1], this allows us to get

deg(hε,Ω, p) = deg(h1,Ω, p) = deg(IE − T1,Ω, p) = deg(h0,Ω, p) = deg(IE,Ω, p) = 1 , 0,

where IE is the identity map. Therefore, T1 has a fixed point on Ω, namely x = T1x, so the existence of
the solution x for differential iterative system (3.1) follows.

Step 3. The uniqueness of the solution for problem (3.1).
Suppose that x1, x2 ∈ C([0, b]; RN) are two solutions of the problem (3.1). Substitute x1 and x2

into (3.1) respectively, then take a difference and the inner product with x1 − x2, to obtain

AIMS Mathematics Volume 6, Issue 10, 11233–11245.
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〈x1(t) − x2(t), CDα(x1(t) − x2(t))〉 + 〈x1(t) − x2(t), A(x1(t) − x2(t))〉
= 〈x1(t) − x2(t), f (t, x1(t), x[2]

1+
(t)) − f (t, x2(t), x[2]

2+
(t))〉.

By virtue of the hypotheses H(A) and H( f )(ii), invoking Lemma 2.2, one gets

Dα‖x1(t) − x2(t)‖2 ≤ 2〈x1(t) − x2(t),Dα(x1(t) − x2(t))〉
≤ 2µ(t)‖x1 − x2‖

2 − 2c‖x1 − x2‖
2.

SetU(t) = ‖x1(t) − x2(t)‖2 for brevity, the above estimate can be simplified as

CDαU(t) ≤ 2(µ(t) − c)U(t).

Apply Lemma 2.3 to present

U(t) ≤ U(0)Eα(2(‖µ‖∞ − c)tα), ∀t ∈ I. (3.7)

Taking t = b in (3.7), one obtains

U(b) ≤ U(0)Eα((2‖µ‖∞ − c)bα). (3.8)

Since boundary condition xi(b) = Qxi(0) (i = 1, 2), one can find

U(b) = ‖x1(b) − x2(b)‖2

= ‖Qx1(0) − Qx2(0)‖2

= 〈Q(x1(0) − x2(0)),Q(x1(0) − x2(0))〉
= (x1(0) − x2(0))T QT Q(x1(0) − x2(0))
= ‖x1(0) − x2(0)‖2

= U(0). (3.9)

Hence, it follows from (3.8) that

U(0){1 − Eα[2(‖µ‖∞ − c)bα]} ≤ 0.

Due to the monotonicity of Mittag-Leffler function Eα(t)(t ≥ 0) and ‖µ‖∞ < c, we can conclude that
Eα[2(‖µ‖∞ − c)bα] < 1. BecauseU(0) = ‖x1(0)− x2(0)‖2 ≥ 0, we can deriveU(0) = 0. From (3.7), we
haveU(t) ≤ 0, and thenU(t) ≡ 0, that is, x1 ≡ x2, so the iterative differential equations (3.1) admits a
unique solution, which our desired result follows.

4. Nonlinear control problem with a multivalued disturbance

In this section, consider the following nonlinear iterative control with a multivalued disturbance:
CDαx(t) + Ax(t) ∈ f (t, x(t), x[2]

+ (t)) + U(t) + d(t, x), t ∈ I,
U(t) ∈ F(t, x),
x(b) = Qx(0),

(4.1)
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where A,Q f are present as in RPBVP (3.1), U : I → RN is a control input, F : I × RN → 2RN
\ {∅} is

a multifunction of observation data, and d : I × RN → 2RN
\ {∅} is a multivalued disturbance function.

The hypotheses on F and d are given as follows:
H(F) : F : I × RN → 2RN

\ {∅} is a multivalued mapping with closed convex value such that
(i) (t,w)→ F(t,w) is graph measurable for every (t,w) ∈ I × RN;
(ii) for almost all t ∈ I, w→ F(t,w) has a closed graph;
(iii) for every w ∈ RN and all t ∈ I, there exists a nonnegative function λ1 ∈ L∞[0, b] such that

|F| = sup{‖ f ‖; f ∈ F} ≤ λ1(t),

with ‖λ1‖∞ <
1
4 Mλ.

H(d) d : I × RN → 2RN
\ {∅} is a multivalued mapping with closed convex value such that

(i) ∀ x ∈ RN , t → d(t, x) is measurable;
(ii) ∀ t ∈ I, x→ d(t, x) is upper semicontinuity;
(iii) for all x ∈ RN and t ∈ I, |d(t, x)| ≤ 1

4 Mλ.

Theorem 4.1. If the assumptions H(A),H( f ), H(F) and H(d) are satisfied, then the problem (4.1)
admits at least one solution x ∈ C([0, b]; RN).

Proof. First, introduce a closed convex subset K in L∞(I; RN) defined by

K :=
{
u ∈ L∞(I; RN); ‖u‖∞ ≤

Mλ

2

}
.

According to Theorem 3.1, it is straightforward to deduce that the following equation{
CDαx(t) − f (t, x(t), x[2]

+ (t)) + Ax(t) = g(t), t ∈ I,
x(b) = Qx(0),

(4.2)

has a unique solution xg ∈ C([0, b]; RN) for each g ∈ K . Define an operator

L : D(L) ⊂ C([0, b]; RN)→ L∞([0, b]; RN),

by

Lx = Dαx − f (t, x(t), x[2]
+ (t)) + Ax, x ∈ D(L), (4.3)

where D(L) := {x ∈ C([0, b]; RN), x(b) = Qx(0)}. Since L : D(L) → K(⊂ L∞([0,T ]; RN)) is a
one-to-one mapping, then it holds that L−1 : K → D(L) exists. Now, we show that the operator

L−1 : K → D(L)

is completely continuous. For this, we will claim thatL−1 : K → D(L) is continuous. Assume gm → g
inK as m→ ∞, it remains to show that xm = L−1(gm)→ x = L−1(g) in D(L)(⊂ C([0, b]; RN)). Replace
x with xm in (4.2), then subtract (4.2) to get

CDα(xm(t) − x(t)) + A(xm(t) − x(t)) = gm(t) − g(t) + f (t, xm(t), x[2]
m+(t))

− f (t, x(t), x[2]
+ (t)).
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Taking the inner product with xm − x on the both side of above equation and using Lemma 2.2, implies

1
2

CDα‖xm − x‖2 ≤ 〈xm(t) − x(t), CDα(xm(t) − x(t))〉

≤ 〈x1(t) − x2(t), f (t, x1(t), x[2]
1+

(t)) − f (t, x2(t), x[2]
2+

(t))
−〈xm(t) − x(t), A(xm(t) − x(t))〉
−〈xm(t) − x(t), gm(t) − g(t)〉. (4.4)

Now integrate in time, invoking Proposition 2.1, to derive

1
2
‖xm − x‖2

≤
1

Γ(α)

∫ t

0
(t − τ)α−1〈xm(τ) − x(τ), f (t, xm(τ), x[2]

m+(τ)) − f (t, x(τ), x[2]
+ (τ)〉dτ

−
1

Γ(α)

∫ t

0
(t − τ)α−1〈xm(τ) − x(τ), A(xm(τ) − x(τ))〉dτ

−
1

Γ(α)

∫ t

0
(t − τ)α−1〈xm(τ) − x(τ), gm(τ) − g(τ)〉dτ

+
1
2
‖xm(0) − x(0)‖2. (4.5)

Analogous the priori estimate of the solution to those of Theorem 3.1, one can find that ‖xm‖C ≤ b,
which with xm ∈ C([0, b]; RN) and Arzela-Ascoli theorem together, implies that there exists a
subsequence xm (still denoted by itself) such that xm → x̂ in D(L) as m→ ∞. Taking the limit in (4.5),
this allow us to get

1
2
‖x̂ − x‖2 ≤ ‖x̂(0) − x(0)‖2 −

1
Γ(α)

∫ t

0
(t − τ)α−1〈x̂(τ) − x(τ), A(x̂(τ) − x(τ))〉dτ

+
1

Γ(α)

∫ t

0
(t − τ)α−1〈x̂(τ) − x(τ), f (τ, x̂(τ), x̂[2]

+ (τ)) − f (τ, x(τ), x[2]
+ (τ))〉dτ. (4.6)

Analogous analysis to (3.7), set Y = ‖x̂ − x‖2, then it follows from (4.6) that

Y ≤ Y(0) +
1

Γ(α)

∫ t

0
(t − τ)α−12(µ(τ) − c)Y(τ)dτ, (4.7)

which together with Lemma 2.1 leads to

Y(t) ≤ Y(0)Eα(2(‖µ‖∞ − c)tα), ∀t ∈ I. (4.8)

Arguing as in (3.8), we can conclude that Y(t) ≡ 0, i.e., x̂ ≡ x in D(L). This gives the continuity of
operator L−1. In light of a priori estimate of the solution, it is easy to verify that L−1(K) is a bounded
set in C([0, b]; RN). Thanks to Arzela-Ascoli theorem, L−1(K) ⊂ L∞([0, b]; RN) is relatively compact.
Therefore, L−1 : K → L∞([0, b]; RN) is completely continuous.

Define a multivalued Nemitsky operator N : L∞([0, b]; RN) → 2L∞([0,b];RN ) in terms of F(t, x) and
d(t, x) given by

N(x) = {v ∈ L∞([0, b]; RN); v(t) ∈ F(t, x) + d(t, x), a.e. t ∈ [0, b]}.
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Thanks to hypotheses H(F) and H(d), it results that the multivalued Nemitsky operator N(·) is
nonempty, closed, convex value, and upper hemicontinuous (Theorem 3.2, [25]). So we can see that
L−1 ◦ N : K → L∞([0,T ]; RN) is a upper hemicontinuous multifunction with closed, convex value,
and map a bounded set into a relatively compact set. Now consider the following fixed points problem

x ∈ L−1 ◦ N(x). (4.9)

For this, by using Lemma 2.4, it remains to show that the set Ω := {x ∈ L∞([0, b]; RN) : x ∈ ξL−1 ◦

N(x), ξ ∈ (0, 1)} is bounded. Let x ∈ Ω, then L( x
ξ
) ∈ N(x), which gives

CDα x
ξ
− f (t,

x(t)
ξ
,

x[2]
+ (t)
ξ

) +
Ax
ξ

= g1(t) + g2(t), (4.10)

where g1(t) ∈ F(x, t) and g2(t) ∈ d(x, t) for all t ∈ I. Likewise as in (3.2), the Eq (4.10) can be rewritten
as

x(t) = Eα(Atα)x(0) + ξ

∫ t

0
(t − τ)α−1Eα,α(A(t − τ)α) f (τ,

x(τ)
ξ
,

x[2]
+ (τ)
ξ

)dτ

+ξ

∫ t

0
(t − τ)α−1Eα,α(A(t − τ)α)(g1(τ) + g2(τ))dτ. (4.11)

The same arguments as in (3.4) and by taking into account H(F)(iii) and H(d)(iii), it follows
from (4.11) that

‖x‖C ≤ ‖x(0)‖Mα + (‖λ‖∞ + ‖λ1‖∞ +
Mλ

4
)M̂α max

t∈I

∫ t

0
(t − s)α−1ds

≤ ‖x(0)‖Mα +
MλM̂α

α
bα. (4.12)

Similar to the estimate ‖x(0)‖ of (3.4), it holds that

‖x(0)‖ ≤
ME M̂αMλbα

α
, (4.13)

which with (4.12) together gives that ‖x(t)‖ is uniformly bounded in I. Invoking Lemma 2.4, there
exists x ∈ D(L), such that x ∈ L−1 ◦ N(x). Obviously, x is the solution of problem (3.1). This proof is
thus complete.

5. Rotating boundary value problem of a fractional iterative neural network system

Consider the fractional iterative neural network model (FINN) described as follows:

Dαx(t) + Âx(t) = g(x(t), x[2]
+ (t)) + I(t), t ∈ I, (5.1)

where x : [0, b] → RN is the vector of neuron system; Â = diag(k1, k2, · · · , kN) is a constant diagonal
matrix with ki > 0(i = 1, 2, · · · ,N); g : RN × RN → RN represents the neuron input-output continuous
activation function satisfying the following assumptions:
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(i) For any u, v ∈ RN , there exists a nonnegative function λ̂ ∈ L∞[0, b] with ‖̂λ‖∞ ≤ Mλ

2 , such that
‖g(u, v)‖ ≤ λ̂(t), ∀t ∈ [0, b];

(ii) For any u1, u2, v1, v2 ∈ RN , there exists a nonnegative function µ̂ ∈ L∞[0, b], such that

〈g(u1, v1) − g(u2, v2), u1 − u2〉 ≤ µ̂(t)‖u1 − u2‖
2,

where ‖̂µ‖∞ < min{ki : i = 1, 2, · · ·,N}; the mapping of neuron inputs I : [0, b] → RN is continuous
with ‖I‖C ≤ 1

2 Mλ.
The initial value problem of this system (5.1) without iteration was studied in [16], where the

existence and uniqueness of equilibrium point was established. Here however considering the iterative
term and the rotating periodic boundary value condition, we guarantee the existence of a unique
rotational periodic boundary value solution to system (5.1) by using our results. It is easy to check
that all assumptions of Theorem 3.1 holds, so the following result for system (5.1) is present.

Theorem 5.1. Under the above assumptions, the problem (5.1) has a unique rotational periodic
boundary value solution.

It should be pointed out that the system (5.1) without iteration was examined in Song et al. [16]
where input function I(t) is continuous. Naturally, a question is whether the system (5.1) has a solution
if I(t) = (I1(t), · · ·,IN(t)) is discontinuous. The following work is to answer this question. For this,
we further hypothesize that I j ∈ Φ, ( j = 1, 2, · · · ,N) are nondecreasing monotone bounded, where
Φ : R → R represents the class of functions which have at most finite jumping discontinuities in
every closed interval. If there are only isolated jump discontinuities for any I j( j = 1, 2, · · · ,N), then
we deduce

R(I(t)) := ([I1,I1], [I2,I2], · · · , [IN ,IN])

where I j ≤ I j ≤ I j,I j = lim
ε→t j

I j(ε),I j = lim
ε→t j
I j(ε)( j = 1, 2, · · · ,N). Hence, in this way, the

problem (5.1) can be rewritten as the following differential inclusion:

Dαx(t) + Âx(t) ∈ g(x(t), x[2]
+ (t)) + R(I(t)). (5.2)

Here R(I(t)) can be treated as a multivalued disturbance item of problem (4.1). Then similar to the
argument of theorem 4.1, we can conclude the following theorem.

Theorem 5.2. Under the given assumptions, then the solution set of problem (5.2) is nonempty.

6. Conclusions

The rotational periodic problems of some fractional iterative systems in the sense of Caputo
fractional derivative are investigated in this paper. First we use the Leray-Schauder fixed point
theorem and topological degree theory to establish the existence and uniqueness of solution for a
fractional iterative equation with one sided-Lipschtiz condition on nonlinear term. Furthermore,
applying set-valued theory, the well posedness of a nonlinear control system with iteration term and a
multivalued disturbance is completed. Finally, to reflect the application of fractional iterative systems,
the existence of solutions for a iterative neural network system is demonstrated. Our future concerns
are to examine the stability for these fractional iterative systems which is still an open problem.
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6. M. Fečkan, J. R. Wang, H. Y. Zhao, Maximal and minimal nondecreasing bounded solutions of
iterative functional differential equations, Appl. Math. Lett., 113 (2020), 106886.
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