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Abstract: The inverse Frobenius-Perron problem (IFPP) is a collective term for a family of problems
that requires the construction of an ergodic dynamical system model with prescribed statistical
characteristics. Solutions to this problem draw upon concepts from ergodic theory and are scattered
throughout the literature across domains such as physics, engineering, biology and economics. This
paper presents a survey of the original formulation of the IFPP, wherein the invariant probability density
function of the system state is prescribed. The paper also reviews different strategies for solving this
problem and demonstrates several of the techniques using examples. The purpose of this survey is
to provide a unified source of information on the original formulation of the IFPP and its solutions,
thereby improving accessibility to the associated modeling techniques and promoting their practical
application. The paper is concluded by discussing possible avenues for future work.
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1. Introduction

In the first half of the 20th century, Borel [1], Rényi [2], and Ulam and von Neumann [3] revealed
that nonlinear deterministic systems with unsophisticated evolution rules may exhibit complex and
seemingly random behavior. Initially regarded as mathematical curiosities, these systems started to
attract greater attention when, with the advent of modern, powerful computing technology in the 1970s,
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it was discovered that systems with chaotic behavior are more prevalent and widespread than initially
thought. The same period witnessed growing interest in the application of concepts from ergodic theory
to study chaotic systems from a probabilistic perspective (see, for instance, [4, 5]). This approach
has proven successful in numerous application areas and its maturation has led not only to deeper
understanding of how chaotic dynamics emerge in systems, but also to powerful tools and methods for
analyzing and modeling chaotic systems.

The probabilistic approach to the analysis of chaotic systems considers the temporal evolution of
state probability density functions, instead of individual state trajectories. Rechard [6] investigated
what became known as the Frobenius-Perron operator (FPO) of a one-dimensional discrete-time
system. This operator maps a state density function at one time instant to the evolved density function
at the next time instant. Subsequent analysis of the FPO and its properties answered fundamental
questions on the existence and uniqueness of state density functions that remain unchanged from
one time instant to the next (i.e., invariant density functions), which play a central role in ergodic
theory [7–9]. In turn, this led to the derivation of sufficient criteria for the ergodicity of certain
families of systems [4, 5]. Armed with Birkhoff’s ergodicity theorem [10, 11] and robust methods for
approximating the FPO [12–14], analysts gained the capability to compute statistics and approximate
the invariant density of ergodic systems without the troublesome issue of numerical inaccuracy
associated with sensitive dependence on the initial state.

Whereas techniques for the probabilistic analysis of chaotic systems have matured over the years,
the modeling problem (specifically, the synthesis of a dynamical system model such that it exhibits
prescribed statistical characteristics) has only received attention in the research literature from the
1980s onwards. Multiple formulations of this problem, which collectively became known as the inverse
Frobenius-Perron problem (IFPP) [15–28], have been considered. Solutions to this family of problems
are of interest from both theoretical and practical perspectives. These solutions not only provide insight
into bifurcation routes and the transition from the non-chaotic to the chaotic regime, but also reveal
how structural features of a map give rise to certain statistical characteristics [29, 30]. Solutions to the
IFPP have also been successfully applied to model systems and processes encountered in practice, such
as the motion of fluids [31] and neural processes pertaining to the olfactory system [32]. In addition,
these solutions have led to the design of more robust cogged bits for rock drills [33], more efficient
random signal generators [34] and improved radar waveforms [35].

The original and most widely considered formulation of the IFPP requires the construction of a
one-dimensional ergodic map with a prescribed invariant state density function [15–18]. Solutions to
this problem formulation may, in general, be divided into three categories according to the strategy
employed to construct the map. These are the topological conjugation [15], direct solution [16]
and matrix solution [17, 18] strategies. The solution strategies have revealed that maps which are
structurally distinct and possess different higher-order statistics may share the same invariant density.
In these cases, the original formulation of the IFPP does not have a unique solution. This observation,
together with the growing need for simulation environments that provide more realistic models of
systems and processes, have stimulated interest in solving a more general formulation of the IFPP [19].
This formulation involves the prescription of both the invariant density and autocorrelation function
(or equivalently, by the Wiener-Khinchin theorem, the power spectrum) of an ergodic map. Several
steps have been taken towards solving this more general problem [19–23]; however, theory regarding
the capacity of certain map families to simultaneously realize a prescribed invariant density and
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autocorrelation function is currently incomplete, and a general analytical solution that permits the
independent selection of these functions remains elusive.

More recently, a third formulation of the IFPP, which requires the derivation of a one-dimensional
ergodic map from causal sequences of observed density functions, has emerged [24–28, 36]. This
problem is encountered in applications where individual trajectories of the system state cannot
be observed directly, such as particle image velocimetry for flow visualization [37] and flow
cytometry [38]. A matrix solution to this problem formulation has been proposed [24, 25] and
generalized to stochastically perturbed systems [26] and systems driven by an external input [27, 28].
This solution generates semi-Markov maps with piecewise constant invariant density functions that
approximate the invariant density of the system that generated the observed densities (refer to sections
2.2.1 and 5 for details). In the absence of noise and under the assumption of perfect density estimation,
the approximation error can be made arbitrarily small by refining the partition∗. This approach provides
the opportunity to model not only the asymptotic behavior of the unknown system, but also its transient
dynamics; by only considering the invariant density, solutions to the first formulation of the IFPP do
not necessarily produce maps with dynamical properties (such as the Lyapunov exponent and fixed
points) that are consistent with those of the unknown system. In contrast, the solution to the third
problem formulation [25–28] has been shown to successfully recover the true structure of continuous
nonlinear maps, thereby demonstrating its potential to produce more faithful models when compared
to earlier solutions.

In this paper, we review the strategies and methods that have been proposed for solving the original
formulation of the IFPP. With reference to the wide dispersal of these solutions across literature in
diverse technical domains such as physics, engineering, biology and economics, the objective of
this survey is to provide an information source that unifies these contributions, thereby improving
accessibility to the corresponding modeling tools and methods. Furthermore, we illustrate several
of the solution strategies and methods using examples, with the aim of promoting their practical
application. The paper is concluded by discussing possible avenues for future work.

The remainder of this paper is set out as follows. Background on the probabilistic characterization
of ergodic maps, as required to solve the original problem formulation, as well as the definition of the
class of piecewise monotonic maps, which are typically constructed during the solution of the IFPP, are
provided in section 2. Section 3 presents the original formulation of the IFPP. Strategies for solving
this problem formulation, together with a review of existing techniques, are presented in section 4.
Section 5 presents a brief overview of recent developments in the domain. Section 6 considers future
research topics.

2. Background

This section presents the necessary background on the probabilistic analysis of one-dimensional
maps. The reader is referred to [4, 5] for a comprehensive treatment of the subject. The class of
piecewise monotonic maps is subsequently defined; in general, solutions to the IFPP construct ergodic
maps from this large family of maps. Two subsets of these maps, the Markov and semi-Markov maps,
allow a matrix solution to the IFPP.

∗The solution proposed in [25] (and its generalization in subsequent works) addresses the problem of estimating the unknown Markov
partition. Other matrix-based reconstruction techniques assume this partition is known.
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2.1. Probabilistic analysis of one-dimensional maps

We consider a one-dimensional dynamical system with a nonlinear evolution rule S : Ω → Ω,
where Ω is the state space which, for simplicity without any loss of generality, is assumed to be the
unit interval Ω = [0, 1] (note that any map defined on an arbitrary, compact interval of R may be
transformed to a map on Ω via topological conjugation with a linear mapping). Systems which exhibit
sensitive dependence on the initial state are considered. This implies continual repulsion of a trajectory
by almost every state in Ω; consequently, almost all trajectories are aperiodic. In this case, the system
gives rise to behavior that appears stochastic, and may be investigated using concepts from ergodic
theory. To accommodate this investigation, let X1 denote a real random variable on the probability
space (Ω,B, P1), which represents the initial state of the dynamical system. Here, B denotes the Borel
σ-algebra on Ω and P1 is a probability measure. We assume that S is surjective and measurable on B.
It follows that the random variables X2, X3, . . ., defined by Xn+1 = S (Xn) for n ≥ 1, have corresponding
probability measures

Pn+1(B) = Pn

(
S −1(B)

)
, B ∈ B.

We only consider probability measures that are absolutely continuous with respect to the Borel measure
µ. From the Radon-Nikodym theorem, this implies the existence of a function f1 ∈ D(Ω) associated
with X1, where D(Ω) = { f ∈ L1(Ω) : f ≥ 0 and ‖ f ‖ = 1} denotes the set of all probability density
functions on Ω. The density function f1 satisfies P1(B) =

∫
B

f1(x)dµ(x) for all B ∈ B. We require that
S is nonsingular with respect to the Borel measure µ; this implies that each measure Pn, n > 1, is also
absolutely continuous with respect to µ, and is associated with a corresponding density fn ∈ D(Ω).

We consider the linear operator PS : L1(Ω) → L1(Ω), referred to as the Frobenius-Perron operator
(FPO). This operator characterizes the evolution of densities under iteration of the map S according to
the expression fn+1 = PS fn for n ≥ 1. The FPO is uniquely defined by the expression∫

B
(PS f )(x)dµ(x) =

∫
S −1(B)

f (x)dµ(x), B ∈ B.

It can be shown thatPS is a Markov operator, in the sense that f ≥ 0 impliesPS f ≥ 0 and ‖PS f ‖ = ‖ f ‖;
these properties imply that PS maps from one density function to another, as expected.

We restrict our attention to ergodic systems. Formally, a map S is referred to as ergodic if
every S -invariant set B ∈ B is a trivial subset of Ω; i.e., S −1(B) = B implies either µ(B) = 0
or µ(Ω \ B) = 0. Ergodicity corresponds to the property that almost every trajectory visits every
infinitesimal neighborhood of every state in the state space. It can be shown that an ergodic system
permits at most one absolutely continuous invariant (ACI) measure P∗, where P∗(B) = P∗(S −1(B))
for all B ∈ B. This measure corresponds to the asymptotic likelihood of a trajectory passing through
a particular region B ⊂ Ω of the state space at a fixed time instant. Moreover, ergodicity implies
asymptotic independence of measurable sets (events) [4].

Let f∗ denote the density function corresponding to the measure P∗. A measure P∗ is S -invariant if
and only if f∗ is a fixed point of the FPO PS ; i.e., PS f∗ = f∗. We refer to f∗ as an invariant density of
S . The concept of an invariant density is important when investigating the convergence properties of
the FPO. In general, it can be shown that the FPO is non-expansive; i.e., ‖PS f − PS g‖ ≤ ‖ f − g‖ for
f , g ∈ L1(Ω). This property is not sufficient to guarantee the existence of a unique fixed point of PS (in
contrast, the stronger requirement of contractiveness guarantees, by the Banach fixed point theorem,
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the existence of a unique fixed point [39]). However, if the map S is ergodic, it follows that a fixed
point f∗ of the FPO is unique. Furthermore, ergodicity is equivalent to the sequence {Pn

S f } converging
in the Cesàro sense to the invariant density f∗ for all f ∈ D(Ω).

One consequence of ergodicity is the asymptotic equivalence of averages computed over trajectories
of the map and ensemble averages. More formally, we have

1
N

N∑
n=1

h ◦ S n−1(x1)
N
−→
∞

∫
Ω

h(x) f∗(x)dµ(x) (2.1)

for any integrable function h and almost all starting points x1. The practical utility of (2.1), which
is an often-quoted extension of Birkhoff’s individual ergodic theorem (see, for instance, [4]), is that
it provides a means for computing averages without suffering from inaccuracy due to finite precision
arithmetic and the sensitivity of S on the initial state. Instead of computing averages over individual
trajectories, one may alternatively compute ensemble averages.

Equation (2.1) has a further consequence. If we set h(x) = χB(x), where

χB(x) ,

 1, if x ∈ B,

0, if x < B,

is the characteristic function of the set B, then the asymptotic fraction of trajectory points that fall
within B is equal to P∗(B) for almost every trajectory. In an asymptotic sense this implies that the
distribution of points in almost every trajectory is consistent with the invariant density.

We conclude this section by observing that it is not always feasible to derive an expression for
the invariant density function of an ergodic map. To overcome this problem, Ulam [12] proposed a
numerical method whereby a matrix representation of the FPO is constructed over a partition of the
state space, and the invariant density is approximated with a piecewise defined function that coincides
with the leading eigenvector of this matrix. Li [13] proved that this approximation converges to the
true invariant density function as the partition becomes finer. The method was later generalized to
multi-dimensional maps [14].

2.2. Piecewise monotonic maps

Now we introduce the class Γ(Q) of piecewise monotonic and surjective maps. These maps are
defined over a partition of the map domain. Let P(Q) = {q1, q2, . . . , qM+1} denote the partition points
of the partition Q = {Q1,Q2, . . . ,QM}, where Qm = (qm, qm+1) denotes the partition intervals and
0 = q1 < q2 < . . . < qM+1 = 1 with integer M > 1.

Definition 2.1 (Class Γ(Q)). A surjective map S : Ω → Ω is piecewise monotonic [5] (i.e., S ∈ Γ(Q))
if there exists a partition Q of the unit interval such that (i) each branch function S m , S |(qm,qm+1) is a
Cr function, for some r ≥ 1, that can be extended to a Cr function over [qm, qm+1], and (ii) |S ′m| > 0 for
m = 1, 2, . . . ,M, where S ′m , dS m/dx.

Let S ∈ Γ(Q) (an example is plotted in Figure 1). The pre-image S −1(B) of any Borel set B ∈ B
can then be expressed as a finite union of Borel sets, which implies that S −1(B) ∈ B. Hence, S is a
Borel measurable function. Furthermore, it follows from Villani’s lemma [40] that S is nonsingular
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Figure 1. Example of a piecewise monotonic map S .

with respect to the Borel measure; i.e., µ(B) = 0, B ∈ B implies µ(S −1(B)) = 0. Since each branch
function S m is strictly monotonic and continuous, it also follows that S m is invertible over its image.

Sufficient conditions for the existence of ACI measures were derived in [5, 7].

Theorem 2.1 (Existence of ACI measures [5, 7]). Let S ∈ Γ(Q). If |S ′m| ≥ α > 1 over all partition
intervals Qm, and the function h(·) , 1/|S ′(·)| is of bounded variation, where S ′ is the appropriate
one-sided derivative at the partition points P(Q), then S admits an ACI measure with a corresponding
invariant density of bounded variation.

An expression may be derived for the evolution of distribution functions under iteration of a
piecewise monotonic map, in addition to an explicit representation of the FPO; these expressions are
manipulated to solve the IFPP directly in section 4.2.

The distribution function Fn evolves under iteration of S ∈ Γ(Q) according to [23]

Fn+1(x) =
∑

m∈N(x)

∣∣∣Fn ◦ S −1
m (x) − Fn

(
qm+dm

)∣∣∣ +
∑

m∈M(x)

Fn(qm+1) − Fn(qm), (2.2)

where N(x) , {m : x ∈ S (Qm)}, M(x) , {m : x ≥ y′m}, y′m , sup{S (Qm)} and

dm =

 0, if S ′m(x) > 0,
1, if S ′m(x) < 0.

(2.3)

The FPO PS corresponding to a map S ∈ Γ(Q) has the explicit representation [5]

(PS fn)(x) =
∑

m∈N(x)

fn ◦ S −1
m (x)∣∣∣S ′m ◦ S −1
m (x)

∣∣∣ . (2.4)
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2.2.1. Markov and semi-Markov maps

We introduce two subsets of the piecewise monotonic map family, namely the Markov and semi-
Markov maps. The structures of these maps accommodate matrix solutions to the IFPP, as illustrated
in section 4.3.

Informally, a map S ∈ Γ(Q) is Q-Markov if the image of each partition interval Qm ∈ Q under S
can be expressed as a union of intervals from the same partition Q. A formal definition, which takes
into account that the partition intervals Qm are open, is provided in what follows. We use Q̄m = cl{Qm}

to denote the closure of interval Qm.

Definition 2.2 (Q-Markov map). A map S ∈ Γ(Q) is Q-Markov if

cl{S (Qm)} =
⋃

k∈W(m)

Q̄k

for each Qm ∈ Q, where W(m) ⊆ {1, 2, . . . ,M} for m = 1, 2, . . . ,M.

The Folklore theorem establishes conditions for both the existence and uniqueness of ACI measures
for Q-Markov maps that are piecewise C2. This theorem originated from the work of Rényi [2], who
considered piecewise onto transformations. The Folklore theorem refers to the aperiodicity property
of a map. The map S ∈ Γ(Q) is aperiodic if, for each m = 1, 2, . . . ,M, there exists some q > 0 such
that S q(Q̄m) = Ω.

Theorem 2.2 (Folklore theorem [5]). Let S ∈ Γ(Q) denote an aperiodic Q-Markov map, where each
branch function S m can be extended to a strictly monotonic C2 function on the closed interval Q̄m. If
S satisfies |S ′m| ≥ 1 + ε for all m and some ε > 0 (i.e., S is piecewise expanding), then it has a unique
ACI measure P∗.

A Q-Markov map S ∈ Γ(Q) that satisfies the conditions of the Folklore theorem is necessarily
ergodic, since its invariant measure P∗ is unique. Furthermore, since the measure is absolutely
continuous, there exists a corresponding invariant density function f∗. This density function can be
chosen as a piecewise continuous function with discontinuities only at the partition points P(Q), and
satisfying K−1 ≤ f∗(x) ≤ K for some K > 0.

We next consider the semi-Markov maps, first introduced in [18].

Definition 2.3 (R(Q)-semi-Markov map). Let Q denote a partition of Ω, and let the non-empty set
of open intervals {R(m)

1 ,R(m)
2 , . . . ,R(m)

c(m)} constitute a partition of Q̄m for each m. Let R denote the unit-
interval partition containing the intervals R(m)

j for all m = 1, 2, . . . ,M and j = 1, 2, . . . , c(m). The map
S ∈ Γ(R) is R(Q)-semi-Markov if the image of each of the intervals R(m)

j under S is an interval of the
partition Q; i.e.,

S
(
R(m)

j

)
∈ Q, m = 1, 2, . . . ,M, j = 1, 2, . . . , c(m).

Let S ∈ Γ(R) denote an R(Q)-semi-Markov map (an example is plotted in Figure 2). Since the
closure of each Qm ∈ Q has a partition consisting of intervals in R, and each of the intervals in R
is mapped to an interval in Q, the map S is also R-Markov. Hence, S is ergodic if it satisfies the
conditions of the Folklore theorem.
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Figure 2. Example of an R(Q)-semi-Markov map S .

We consider ergodic Markov and semi-Markov maps with linear branch functions and ACI measure
P∗ in the remainder of this section. Each of these piecewise linear maps possesses a piecewise
constant invariant density function. In particular, Boyarsky [41] and Góra [18] proved that any such
Q-Markov or R(Q)-semi-Markov map has an invariant density function f∗ that is piecewise constant
over the intervals of the partition Q. Furthermore, these maps permit a matrix representation of the
corresponding FPO if involvement is restricted to density functions that are piecewise constant on Q.
Let fn denote such a density function, and let S ∈ Γ(R) denote a piecewise linear R(Q)-semi-Markov
map with branches S j,m , S |R(m)

j
given by

S j,m(x) = ∆ j,mx + b j,m,

where ∆ j,m, b j,m ∈ R, m = 1, 2, . . . ,M and j = 1, 2, . . . , c(m). It can be verified using (2.4)
that the density fn+1 = PS fn is also piecewise constant on Q. We introduce the column vector
fn , [ fn,1, fn,2, . . . , fn,M]T as the explicit representation of the density fn, where fn,m , fn|Qm; the
representations fn and fn will be used interchangeably. Using (2.4) it can be shown that vector fn+1,
which represents density fn+1, is given by

fn+1 = PS fn, n ≥ 1,

where PS = [pk,m] is the M × M matrix representation of the FPO PS , with elements

pk,m =


∑

j∈T (k,m)

∣∣∣∆ j,m

∣∣∣−1
, if |T (k,m)| > 0,

0, if |T (k,m)| = 0,
(2.5)

and
T (k,m) ,

{
j : S

(
R(m)

j

)
= Qk

}
.

The matrix PS is referred to as the Frobenius-Perron matrix (FPM).
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The FPM of a piecewise linear R(Q)-semi-Markov map S has several properties that are relevant
to the matrix strategy for solving the IFPP. In what follows, we assume that the map satisfies the
conditions of the Folklore theorem and is therefore ergodic. In the case where the partition Q is
uniform, the map structure imposed by the semi-Markov property leads to a FPM PS that is column
stochastic (this term implies that the matrix has elements which satisfy 0 ≤ p j,m ≤ 1, and each matrix
column sums to unity). Selecting v1 = [1, 1, . . . , 1]T reveals that vT

1 = vT
1 PS ; this implies that PS has

at least one eigenvalue λ1 equal to unity. Furthermore, since S is aperiodic, there exists some natural
number t such that Pt

S is positive. Hence, PS is primitive, and the Perron-Frobenius theorem [42–44]
may be used to characterize the matrix. It follows that the unity eigenvalue λ1, referred to as the Perron
eigenvalue, is a simple root of the characteristic polynomial of the matrix. All remaining eigenvalues
of PS are strictly smaller than λ1 in absolute value, which implies that the matrix has a spectral radius
of unity. The right eigenvector w1 associated with the Perron eigenvalue, referred to as the right Perron
eigenvector, satisfies w1 = PS w1; hence, w1 ≡ f∗ coincides with the unique piecewise constant invariant
density function f∗. The Perron-Frobenius theorem guarantees that the elements of f∗ are positive.

In the more general case of a piecewise linear R̃(Q̃)-semi-Markov map S̃ defined over a nonuniform
partition Q̃, it can be shown that the FPM PS̃ has a unity eigenvalue λ̃1. This eigenvalue is associated
with a left eigenvector ṽ1 that coincides with the lengths of the intervals in Q̃. It follows that PS̃ is
similar to a stochastic matrix; specifically, PS̃ = D−1PD, where D is a diagonal matrix with diagonal
elements equal to the lengths of the intervals in Q̃, and P is a column stochastic matrix†. Since
similar matrices share the same characteristic polynomial, prior observations regarding the eigenvalue
spectrum of PS (the FPM corresponding to a semi-Markov map S over a uniform partition Q) also
apply to PS̃ , provided that P is a primitive matrix.

3. The original problem formulation: IFPP-I

In this paper we consider the original formulation of the IFPP, denoted by IFPP-I. Let fP ∈ D(Ω),
where fP > 0 a.e., denote a probability density function (the subscript indicates that the density function
is prescribed). IFPP-I requires the construction of a nonsingular map S : Ω→ Ω with ACI measure P∗
that satisfies

P∗(B) =

∫
B

fP(x)dµ(x), B ∈ B.

The measure P∗ is required to be the unique S -invariant measure. This implies that the map S must
be ergodic with invariant density function f∗ = fP, which is the unique fixed point of the FPO PS

corresponding to S .

4. Solution strategies

Solutions to IFPP-I may generally be divided into three categories with respect to the strategy
employed to construct the ergodic map. These are the topological conjugation, direct solution and
matrix solution strategies. Each strategy is outlined in a separate section below. We present examples
that illustrate how IFPP-I is solved using each strategy and review the relevant literature.

†In this case, map S̃ is a topological conjugate of another semi-Markov map S over a uniform partition and with FPM PS = P.
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Figure 3. Quadratic polynomial density functions considered in the examples.

The examples provided in the following sections involve the construction of ergodic maps with
invariant densities from the family of quadratic polynomials

fP(x) = ax2 + bx + c (4.1)

defined over the unit interval, with coefficients

a = 3(y1 + y0) − 6, b = −2(y1 + 2y0) + 6, c = y0,

where y0 , fP(0) and y1 , fP(1) are free parameters to be prescribed. The corresponding distribution
function is given by

FP(x) =
a
3

x3 +
b
2

x2 + cx, (4.2)

and the region of valid parameter pairs (y0, y1) is defined by 0 < y0 + y1 < 3 +
√

y0y1, if 0 ≤ y1 ≤ 3,
3 −
√

y0y1 < y0 + y1 < 3 +
√

y0y1, if 3 < y1 ≤ 4.

The density functions considered in the examples, with the corresponding parameter pairs (y0, y1), are
presented in Figure 3.

4.1. Topological conjugation solution strategy

4.1.1. Outline

Let X1 denote a random variable on the probability space (Ω,B, P1), where the measure P1 is
absolutely continuous with respect to the Borel measure µ. Suppose that S : Ω → Ω is a measurable
and nonsingular map, and let Xn+1 = S ◦ Xn, where n ≥ 1. Define a homeomorphism h : Ω → Ω

with derivative that satisfies |h′| > 0 a.e. Since h is continuous, it is Borel measurable, and hence the
functions defined by

Yn = h ◦ Xn, n ≥ 1,

AIMS Mathematics Volume 6, Issue 10, 11200–11232.
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Figure 4. Functional relationships between random variables representing the states of two
dynamical systems with maps S and S̃ . The reverse conjugate relationship is shown in gray.

are random variables on (Ω,B, P̃n), where P̃n = Pn ◦ h−1. Furthermore, since h is nonsingular [40], the
absolute continuity of Pn implies that the measures P̃n are also absolutely continuous. Hence, each Yn

has a corresponding density function f̃n.
The invertibility of h implies that the sequence of random variables {Yn} may be interpreted as

representing the evolution of the unknown state of a one-dimensional dynamical system having the
map S̃ as evolution rule, such that Yn+1 = S̃ (Yn). In particular, with reference to Figure 4, we have

S̃ = h ◦ S ◦ h−1. (4.3)

The maps S̃ and S are referred to as topological conjugates with h as the conjugating function or
transformation [15,45,46]. Topological conjugation establishes an equivalence relation between maps,
such that the maps of any class generated by topological conjugation share the same properties of
ergodicity, mixing and exactness (a definition of the latter two concepts may be found in [4]). The
property that ergodicity is preserved under conjugation is proved in the following theorem.

Theorem 4.1 (Conjugation preserves ergodicity).

Proof. Let S be ergodic with ACI measure P∗ and invariant density f∗ > 0 a.e. The measure
P̃∗ = P∗ ◦ h−1 then satisfies, for any B ∈ B,

P̃∗
(
S̃ −1(B)

)
= P∗

(
S −1 ◦ h−1(B)

)
= P∗

(
h−1(B)

)
= P̃∗(B),

where the second step follows from the S -invariance of P∗. It follows that P̃∗ is S̃ -invariant. We
now prove that P̃∗ is unique by contradiction. Assume that a second distinct S̃ -invariant measure Ũ∗
exists. Then, due to S being the topological conjugate of S̃ with conjugating function‡ g = h−1, the
corresponding measure U∗ = Ũ∗ ◦ g−1 is necessarily S -invariant and distinct from P∗. However, since
S is ergodic, the S -invariant measure is unique. The assumption that Ũ∗ is S̃ -invariant then contradicts
the original statement that measure P∗ is S -invariant. Hence, there exists no measure other than P̃∗ that
is S̃ invariant. Theorem 4.2.2 from [4] then implies that S̃ is ergodic. �

‡It is assumed here that |g′| > 0 a.e.
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Topological conjugation presents a means for solving IFPP-I. Suppose that S is an ergodic map
with a known ACI measure P∗ and f∗ > 0 a.e. To solve IFPP-I, we design an ergodic map S̃
that is a topological conjugate of S and with invariant density function f̃∗ equal to the prescribed
density fP. This is achieved by deriving a conjugating transformation h such that the invariant measure
P̃∗ = P∗ ◦ h−1 corresponds to fP. To illustrate how the transformation h may be derived, we consider
the distribution functions F∗ and F̃∗ associated with measures P∗ and P̃∗, respectively. From (2.2) we
have, for an increasing function h,

F̃∗ = F∗ ◦ h−1.

Assume that the distribution functions F∗ and FP, where FP is associated with the prescribed density
fP, are both homeomorphisms from Ω onto itself. Selecting F̃∗ = FP leads to

h = F−1
P ◦ F∗. (4.4)

If h′ > 0 a.e., h is nonsingular and satisfies the conditions for a conjugating transformation. The
ergodic map S̃ is then given by (4.3). The topological conjugation solution strategy is illustrated in the
following example.

Example 4.1 (Topological conjugation solution). Ergodic maps S̃ with the invariant density functions
plotted in Figure 3 are constructed. We consider the ergodic maps S = S T and S = S B, defined by

S T (x) =

 2x, if 0 ≤ x < 1
2 ,

−2(x − 1), if 1
2 ≤ x ≤ 1,

and

S B(x) =

 2x, if 0 ≤ x < 1
2 ,

2
(
x − 1

2

)
, if 1

2 ≤ x ≤ 1.

These maps are referred to as the tent map and Bernoulli map, and are plotted in Figures 5(c) and 5(f),
respectively. Both of these maps possess a uniform invariant density function, which corresponds to a
distribution function F∗(x) = x. Substitution of (4.4) into (4.3) then produces the map S̃ T , a topological
conjugate of the tent map, given by

S̃ T (x) =

 F−1
P (2FP(x)), if 0 ≤ x < F−1

P

(
1
2

)
,

F−1
P (−2FP(x) + 2), if F−1

P

(
1
2

)
≤ x ≤ 1,

and the map S̃ B, a topological conjugate of the Bernoulli map, given by

S̃ B(x) =

 F−1
P (2FP(x)), if 0 ≤ x < F−1

P

(
1
2

)
,

F−1
P (2FP(x) − 1), if F−1

P

(
1
2

)
≤ x ≤ 1,

where FP is defined in (4.2). The maps S̃ T and S̃ B are plotted in Figures 5(d, e) and Figures 5(g, h)
respectively, and the invariant density function of each conjugate map is plotted, in the same color, at
the top of the same column (Figures 5(a, b)). Due to the strict monotonicity and smoothness of FP and
F−1

P , the conjugate maps S̃ have the same number of branches as the underlying map S ; furthermore,
the positivity or negativity of each branch slope is also preserved under conjugation with h = F−1

P .
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Invariant densities

(a) (b)

(c) (d) (e)

(f) (g) (h)

Maps S Topologically conjugate maps S̃

Figure 5. Topologically conjugate maps S̃ constructed during the
solution of IFPP-I.

which is conjugate to the Bernoulli map, is also antisymmetric (Fig. 5(g)). In gen-1

eral, any map S̃ with symmetric invariant density function fP , where S̃ is conjugate2

to a symmetric (antisymmetric) map S with symmetric invariant density function3

f∗ via the conjugating transformation of (12), is also symmetric (antisymmetric).4

However, in the case where the density function fP lacks symmetry, the domain of5

each branch of the map S may change under conjugation (blue and green maps of6

Figs. 5(e,h)).7

Figure 5. Topologically conjugate maps S̃ constructed during the solution of IFPP-I.

In certain cases, topological conjugation also preserves symmetry. We refer to a function G : Ω → Ω

as symmetric around x = x0 if it satisfies

G(x) = G
(

x0 − 1
x0

x + 1
)
, if 0 ≤ x ≤ x0,

antisymmetric around x = x0 if it satisfies

G(x) = 1 −G
(

x0 − 1
x0

x + 1
)
, if 0 ≤ x < x0,

AIMS Mathematics Volume 6, Issue 10, 11200–11232.
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and translationally symmetric around x = x0 if

G(x) = G
(
1 − x0

x0
x + x0

)
, if 0 ≤ x < x0.

Maps that are symmetric, antisymmetric or translationally symmetric around x0 = 1/2 are simply
referred to as symmetric, antisymmetric or translationally symmetric. The tent map is an example of
a symmetric map, whereas the Bernoulli map is both antisymmetric and translationally symmetric.
For the symmetric density functions in the example, it is found that (i) the corresponding map S̃ T ,
which is conjugate to the tent map, is also symmetric (Figure 5(d)), and (ii) the map S̃ B, which is
conjugate to the Bernoulli map, is also antisymmetric (Figure 5(g)). In general, any map S̃ with
symmetric invariant density function fP, where S̃ is conjugate to a symmetric (antisymmetric) map
S with symmetric invariant density function f∗ via the conjugating transformation of (4.4), is also
symmetric (antisymmetric). However, in the case where the density function fP lacks symmetry, the
domain of each branch of the map S may change under conjugation (blue and green maps of Figures
5(e,h)).

Apart from selecting the number of branches of the conjugate map S̃ (in the case of a smooth
conjugating transformation) and the sign of each branch slope through the choice of the underlying map
S , the topological conjugation strategy provides no direct opportunity to select structural characteristics
such as the branch domains of S̃ . In contrast, the direct solution and matrix solution strategies discussed
in sections 4.2 and 4.3 provide greater opportunity to select the characteristics of each map branch.
This implies that the topological conjugation strategy is a less attractive option for solving the more
general formulations of the IFPP, where the ability to prescribe the branch structure of the resulting
map becomes relevant. However, with topological conjugation, the conjugate map is guaranteed to be
ergodic provided that the underlying map S is itself ergodic.

4.1.2. Literature

Grossman and Thomae [15] formally introduced topological conjugation as an approach towards
solving IFPP-1. The authors constructed equivalence classes of ergodic maps that are conjugate to
maps from the family of piecewise linear transformations S v : Ω→ Ω, defined by

S v(x) = (−1)[vx]vx mod 1,

where v ∈ R and [·] denotes the integer part of its argument. These maps are ergodic for all v > 1
and possess a uniform invariant density function for integer v ≥ 2. Maps S̃ = F−1

P ◦ S v ◦ FP with
the invariant densities listed in Figure 6 were derived; for convenience, we provide expressions for the
distribution functions and their inverses.

Using topological conjugation to design chaotic noise generators, van Wyk and Steeb [47] derived
an expression that may be solved for the required conjugating transformation h. This expression
contains both the invariant density f∗ of the underlying map S and the prescribed invariant density
fP, and is given by

h−1(x) =

∫ x

−∞

fP(z)
f∗ ◦ h−1(z)

dz.
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Figure 6. Probability density functions with corresponding distribution functions and their
inverses (adapted from [15]).
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The expression was solved analytically to obtain (4.4). A map topologically conjugate to a Bernoulli-
type map with selectable discontinuity (as studied in [48]), and with an exponential invariant density,
was constructed.

Berlinet and Biau [49] constructed exact maps with prescribed invariant density functions for the
purpose of nonuniform random variate generation (in this approach, map trajectories are used as
random variate sequences§). These maps are topologically conjugate to the maps S (x) = vx ( mod 1)
with integer v > 1. The maps obtained via topological conjugation preserve the number of branches
and the positivity of the branch slopes of the underlying map, and may therefore be interpreted
as a generalization of the class of linear congruential random number generators from uniform to
nonuniform distributions. The statistics of maps with invariant density corresponding to the Gumbel
probability distribution, with distribution function given by FP = exp(− exp(−x)), x ∈ R, were
investigated numerically.

Pingel et al. [30] demonstrated a technique for constructing symmetric maps with asymmetric
invariant density functions that is related to topological conjugation (see also [50]). This approach
was first considered in [51]. Let S = S T denote the tent map. Now, consider the map

S̃ (x) = U−1 ◦ S ◦ u(x),

where u : Ω → Ω is a conjugating transformation that is antisymmetric and satisfies u′(x) > 0 for all
x ∈ Ω, and where U(x) = u(x) + v(x), such that v is symmetric and v(0) = 0. The functions u and
v may be (uniquely) selected to realize a symmetric map S̃ with a prescribed invariant density fP. In
particular, if we select U = FP, where FP is the distribution function corresponding to the prescribed
invariant density, and decompose FP into antisymmetric and symmetric components according to

u(x) =
FP(x) + (1 − FP(1 − x))

2

and
v(x) =

FP(x) − (1 − FP(1 − x))
2

,

then S̃ is symmetric with invariant density function f̃∗ = dU/dx that need not be symmetric. However,
as the mapping between trajectories of S and S̃ is no longer one-to-one, the uniqueness of the invariant
density (and hence the ergodicity of S̃ ) cannot be guaranteed.

4.2. Direct solution strategy

4.2.1. Outline

In general, direct solutions to IFPP-I encountered in the literature construct complete¶ maps from the
class of piecewise monotonic maps Γ(Q) (refer to Definition 2.1). The direct solution strategy involves
the solution of either expression (2.2) or (2.4), which characterizes the evolution of distribution and
density functions (respectively), under the unknown map S ∈ Γ(Q). We outline the direct solution
strategy using (2.2); equivalent expressions that involve density functions are provided towards the end
of the section.

§From Birkhoff’s ergodic theorem it follows that the distribution of the random variates produced using this technique is
asymptotically consistent with the invariant density of the map (see, for instance, [4]).

¶Each of the branches of a complete map stretches over the entire codomain of the map.
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In the case of a complete piecewise monotonic map S with M partition intervals, (2.2) may be
simplified to obtain

Fn+1(y) =

M∑
m=1

∣∣∣Fn ◦ S −1
m (y) − Fn

(
qm+dm

)∣∣∣,
where P(Q) = {q1, q2, . . . , qM+1} and dm is defined in (2.3). Now assume that S is ergodic with
unique ACI measure P∗ and corresponding distribution function F∗. Substituting y = S 1(x) and setting
Fn+1 = Fn = F∗ leads to

F∗(S 1(x)) =

M∑
m=1

∣∣∣F∗ ◦ S −1
m ◦ S 1(x) − F∗

(
qm+dm

)∣∣∣, if q1 < x < q2. (4.5)

Consider the case where P∗(B) = 0 ⇔ µ(B) = 0, such that F∗ is monotonically increasing and
continuous, and therefore invertible. Equation (4.5) may then be manipulated to obtain

S 1(x) = F−1
∗

 M∑
m=1

∣∣∣F∗ ◦ S −1
m ◦ S 1(x) − F∗

(
qm+dm

)∣∣∣, if q1 < x < q2. (4.6)

This expression for the first branch S 1 of the map S is dependent on the remaining branches of the
map, as well as the partition points of Q and the constants d1, d2, . . . , dM. We observe that each of the
functions

um(x) , S −1
m ◦ S 1(x), m = 2, 3, . . . ,M,

appearing in (4.6) maps branch domain Q1 onto Qm. Considering the expression S m ◦ um(x) = S 1(x),
we recognize that each function um defines an implicit relationship between branches S 1 and S m. This
is illustrated in Figure 7; we refer to these functions as inter-branch correspondence functions. Now,
assume that the first branch S 1 is to be monotonically increasing, such that d1 = 0. In the direct solution
strategy we select the partition Q and specify each of the inter-branch correspondence functions um,
thereby also specifying the value of dm for all m > 1 (i.e., the function um implicitly determines whether
the slope of branch S m is positive or negative). Equation (4.6) may then be solved for the first branch
S 1; setting F∗ = FP leads to

S 1(x) = F−1
P

 M∑
m=1

∣∣∣FP ◦ um(x) − FP
(
qm+dm

)∣∣∣, if q1 < x < q2, (4.7)

where u1(x) , x and d1 = 0. The remaining branches are then given by

S m(x) = S 1 ◦ u−1
m (x), if qm < x < qm+1, m > 1. (4.8)

Inter-branch correspondence functions provide control over the structure of the map. These functions
may, for example, be selected as to introduce symmetry between map branches. This is illustrated in
the following example.
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(0,0)

(0,1)

(1,0)

q1 q2 q3 q4

S1 S2 S3

u2(x ) u3(x )x

S1(x )

Figure 7. A piecewise monotonic map S with three branches and inter-branch correspon-
dence functions u2 and u3.

Example 4.2 (Direct solution). Consider the two-interval partition Q = {Q1,Q2}, where Q1 = (0, β),
Q2 = (β, 1) and 0 < β < 1. We construct two sets of complete maps S with branch functions S 1 = S |Q1

and S 2 = S |Q2 , such that each map in the first set is symmetric around x = β, and each map in
the second set is translationally symmetric around x = β. We require branch S 1 of each map to be
monotonically increasing. Using piecewise linear maps, the expected branch correspondence of these
symmetric and translationally symmetric maps is illustrated in Figures 8(c, f) respectively. In order to
preserve symmetry, it is expected that the branch functions satisfy

S 2(x) = S 1

(
β(x − 1)
β − 1

)
(Map set 1) (4.9)

and

S 2(x) = S 1

(
β(x − β)

1 − β

)
(Map set 2). (4.10)

We first consider the symmetric maps of set 1. From (4.9), the function u2(x) = S −1
2 ◦ S 1(x) is derived

as
u2(x) =

β − 1
β

x + 1.

Since S 1 and S 2 are monotonically increasing and decreasing, respectively, we have that d1 = 0 and
d2 = 1. Observing that FP(0) = 0 and FP(1) = 1, we have, from (4.7),

S 1(x) = F−1
P

(
FP(x) + 1 − FP

(
β − 1
β

x + 1
))
,

and, from (4.8),

S 2(x) = F−1
P

(
FP

(
−
β(x − 1)

1 − β

)
+ 1 − FP(x)

)
.
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Invariant densities

(a) (b)

(c) (d) (e)

(f) (g) (h)

Branch correspondence Maps S

Figure 7. Symmetric and translationally symmetric maps S con-
structed by direct solution of IFPP-I.

that the first branch S1 of the map is monotonically increasing. An expression for1

S1 may then be obtained by solving the differential equation2

S′1(x) =

M∑
m=1

(−1)dmu′m(x)fP ◦ um(x)

fP ◦ S1(x)
, S1(0) = 0,

where u′m(x) , dum(x)/dx and fP is the prescribed invariant density function (as3

before, d1 = 0 and u1(x) , x). The remaining branches may then be derived from4

Figure 8. Symmetric and translationally symmetric maps S constructed by direct solution of
IFPP-I.

Substituting the distribution function of (4.2) into these expressions leads to the maps of Figures 8(d, e).
These maps possess the invariant densities of Figures 8(a, b), which correspond to the parameter sets
indicated in Figure 3.

Considering the translationally symmetric maps of set 2, we derive u2(x) = S −1
2 ◦S 1(x) from (4.10),

u2(x) =
1 − β
β

x + β.

Since both branches of each map are monotonically increasing, we have that d1 = 0 and d2 = 0. It
follows that

S 1(x) = F−1
P

(
FP(x) + FP

(
1 − β
β

x + β

)
− FP(β)

)
AIMS Mathematics Volume 6, Issue 10, 11200–11232.
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and

S 2(x) = F−1
P

(
FP

(
β(x − β)

1 − β

)
+ FP(x) − FP(β)

)
.

Substitution of (4.2) into these expressions leads to the maps plotted in Figures 8(g, h), with
corresponding invariant densities plotted in Figures 8(a, b).

The example illustrates that the direct solution of IFPP-I, unlike the topological conjugation strategy,
provides the opportunity to specify not only the domain of each branch function (through the choice of
partition Q), but also the functional relationship between the branches.

The direct solution strategy presented thus far involves the solution of (2.2) for the unknown map S .
An alternative approach is the solution of (2.4), which characterizes the evolution of density functions
under S . In this approach, the partition Q and inter-branch correspondence functions um of the map
are again selected. We assume that the first branch S 1 of the map is monotonically increasing. An
expression for S 1 may then be obtained by solving the differential equation

S ′1(x) =

M∑
m=1

(−1)dmu′m(x) fP ◦ um(x)
fP ◦ S 1(x)

, S 1(0) = 0, (4.11)

where u′m , dum/dx and fP is the prescribed invariant density function (as before, d1 = 0 and u1(x) , x).
The remaining branches may then be derived from (4.8). Whereas this approach leads to the same
map as obtained by solving (2.2), the differential equation of (4.11) may be solved numerically if
expressions for the distribution function and its inverse are unavailable.

The topological conjugation solution strategy may be interpreted as a special case of the direct
solution strategy. Let S̃ = h ◦ S ◦ h−1 denote a topological conjugate to S , and assume that h : Ω→ Ω

and its inverse are Cr functions, where r ≥ 1. Suppose that S ∈ Γ(Q) is a complete map. Then
S̃ ∈ Γ(Q̃) is also a complete map, where Q̃ , {Q̃1, Q̃2, . . . , Q̃M} and Q̃m , (h(qm), h(qm+1)). We define
the inter-branch correspondence functions ũm : Q̃1 → Q̃m of this map as

ũm(x) = S̃ −1
m ◦ S̃ 1(x), m > 1.

It can then be shown that

ũm(x) = h ◦ S −1
m ◦ S 1 ◦ h−1(x)

= h ◦ um ◦ h−1(x).

Hence, the inter-branch correspondence functions of S̃ are topological conjugates of the inter-branch
correspondence functions of the underlying map S . The topological conjugation solution strategy
is thus equivalent to the direct solution strategy with a particular set of inter-branch correspondence
functions.

We conclude this section by observing that maps constructed using the direct solution strategy are
not necessarily guaranteed to be ergodic, unlike maps obtained via topological conjugation. However,
if the map S ∈ Γ(Q) is complete, it is necessarilyQ-Markov. If S then satisfies the remaining conditions
of the Folklore theorem, it is ergodic and the invariant density is unique.
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4.2.2. Literature

Ershov and Malinetskii [5,16] solved IFPP-I directly for unimodal maps with an arbitrary invariant
density function fP > 0. The authors derived an expression for S that contains the complementary
distribution function corresponding to the prescribed density. It was proved that the map is the unique
unimodal solution for the prescribed inter-branch correspondence function and invariant density.
However, the authors do not state conditions under which the map is ergodic.

Koga [52] solved IFPP-I directly for two-branch maps that are either symmetric or translationally
symmetric (with inter-branch correspondence functions u2(x) = 1−x and u2(x) = x+1/2, respectively).
The maps were derived by solving

S ′1(x) =
fP(x) + fP(1 − x)

fP ◦ S 1(x)

and

S ′1(x) =
fP(x) + fP

(
x + 1

2

)
fP ◦ S 1(x)

for the symmetric and translationally symmetric maps, respectively. Expressions were derived for maps
with sinusoidal and polynomial invariant densities, and maps with invariant density that corresponds to
the truncated Gaussian distribution were obtained numerically. It was verified that all maps are ergodic,
which implies that the invariant density of each map is unique.

Diakonos and Schmelcher [29] solved IFPP-I directly for symmetric unimodal maps with the
symmetric beta density as invariant density (this is commonly referred to as the doubly symmetric
case in the literature). The authors derived an implicit defining equation for the maps; this expression
is identical to that obtained using the technique of Ershov and Malinetskii [5, 16] with an inter-branch
correspondence function u2(x) = 1 − x. Hence, these are the unique unimodal and symmetric maps
with the symmetric beta invariant density. The authors investigated the analytical properties of each
map in the region around its maximum, as well as the bifurcation routes of the maps.

Pingel et al. [30] generalized the work of Diakonos and Schmelcher [29] to asymmetric unimodal
maps by defining an explicit inter-branch correspondence function. These maps are equivalent to
those obtained using the technique from [5, 16], and are therefore the unique unimodal maps with
the prescribed invariant density and branch correspondence. The technique was applied to construct
maps with invariant density functions corresponding to the beta distribution with arbitrary choice
of parameters. The analytical and dynamical properties of the maps were characterized, and their
Lyapunov exponents and autocorrelation functions were investigated.

In a series of papers, Huang used the direct solution strategy to design unimodal maps with
branches that have a reciprocal relationship [53], unimodal maps with closed functional forms [54]
and complete maps with more than two branches [55, 56]. Venegeroles [57] used the direct solution
strategy to construct maps with branches that are related by explicit inter-branch correspondence
functions. More recently, Boyarsky et al. [58] considered approximate solutions to IFPP-I for the
case where the map S is restricted to a specific region of the codomain, as defined by ‘lower’ and
‘upper’ maps S L, S U : Ω→ Ω such that S L(x) ≤ S (x) ≤ S U(x) for all x ∈ Ω. An algorithm was
provided for directly solving an expression containing the explicit form of the corresponding FPO for
a sequence of piecewise defined maps, thereby approximating a prescribed invariant density. These

AIMS Mathematics Volume 6, Issue 10, 11200–11232.



11221

maps are appropriate for situations where the trajectories of the system should not evolve in a free and
unrestricted manner over time, such as the modeling of gross domestic product growth.

4.3. Matrix solution strategy

4.3.1. Outline

Matrix solutions to IFPP-I construct ergodic and piecewise linearQ-Markov andR(Q)-semi-Markov
maps (refer to section 2.2.1 and Definitions 2.2 and 2.3). These maps possess invariant density
functions that are piecewise constant over the partitionQ. Hence, we can only approximate a prescribed
invariant density function fP that is not piecewise constant when constructing these maps. However,
these matrix solutions provide considerable freedom to select the structural characteristics of the map
(i.e., the number of branches, the partitions of the map domain and the image of each branch), thereby
allowing us to construct a family of distinct maps that approximate the same prescribed invariant
density. This capability is relevant when solving more general formulations of the IFPP, as control
over the map’s structure affords us the opportunity to select the characteristics of the map’s power
spectrum [23].

We proceed by describing a process that several matrix solutions to IFPP-I follow to construct
piecewise linear R(Q)-semi-Markov maps. This process consists of three steps, namely (i) the
prescription of a density function f̂P that is piecewise constant over a selected partition Q, such that
f̂P approximates the required invariant density fP and has elements strictly greater than zero, (ii) the
generation of a matrix P with the characteristics required of an FPM, in addition to the appropriate
left and right Perron eigenvectors, and (iii) the subsequent construction of a map S with FPM PS

equal to P. The left Perron eigenvector of the FPM belonging to an ergodic R(Q)-semi-Markov map
has elements that coincide with the lengths of the intervals in partition Q, whereas the right Perron
eigenvector coincides with f∗, the map’s invariant density. Hence, the matrix P has to be constructed
with left and right Perron eigenvectors that are consistent with the approximation f̂P. The construction
of a map S with FPM equal to P is achieved by using (2.5), which relates the slopes of the linear map
branches to the entries of the FPM.

The generation of matrix P in step (ii) above is first considered in the case of a uniform partitionQ of
the unit interval; generalization to a nonuniform partition is considered thereafter. In the uniform case,
the FPM PS of a piecewise expanding and aperiodic (and therefore ergodic) R(Q)-semi-Markov map is
necessarily column stochastic and primitive. We may then design matrix P to be column stochastic and
primitive, and to possess the prescribed right Perron eigenvector. This problem has been considered in
the literature and different approaches to solving it have been proposed (see, for instance, [18,50,59])‖.
In general, there exist multiple stochastic matrices with the same right Perron eigenvector, and any of
the different techniques for constructing these matrices may be applied in the context of solving IFPP-I.

In the following example, we illustrate the matrix solution of IFPP-I by constructing ergodic and
piecewise linear R(Q)-semi-Markov maps over a uniform partition Q. The invariant densities of the
maps are selected to approximate the quadratic polynomial densities defined in (4.1) and Figure 3.

‖In contrast to the conventional linear inverse problem, where the matrix equation y = Px is to be solved for unknown x, the problem
considered here does not involve matrix inversion. Rather, the goal is to construct a stochastic matrix P that satisfies (P − I)x = 0 for a
given x , 0.
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Example 4.3 (Matrix solution). Let Q = {Q1,Q2, . . .QM} denote the uniform partition with M
intervals, such that Qm = (qm, qm+1), and qm = (m − 1)/M for m = 1, 2, . . . ,M + 1. The piecewise
constant invariant density prescribed for S , denoted by f̂P = [ f̂P,1, f̂P,2, . . . , f̂P,M]T , is chosen to
approximate fP. The elements f̂P,m are selected as

f̂P,m =
1

µ(Qm)

∫
Qm

fP(x)dµ(x)

= M
[
FP(qm+1) − FP(qm)

]
,

thereby ensuring that the distributions corresponding to f̂P and fP assign equal probability to each
interval Qm.

Using the technique proposed by Góra and Boyarsky [18], we now derive a column stochastic
matrix P with right Perron eigenvector equal to f̂P. This technique produces a three-band stochastic
matrix, which is a square stochastic matrix having nonzero elements only in the main diagonal and
the diagonals immediately above and below the main diagonal. We first define g = [g1, g2, . . . gM]T as
g = [2 max{ fP,m}]−1f̂P. The nonzero entries in the first and last columns of the matrix P = [pk,m] are
then given by

p1,1 = 1 − g2,

p2,1 = g2,

pM−1,M = gM−1,

pM,M = 1 − gM−1.

The remaining matrix entries are given by

pm−1,m = gm−1,

pm,m = 1 − gm−1 − gm+1,

pm+1,m = gm+1,

where m = 2, 3, . . . ,M − 1. Having generated the matrix P, we construct an R(Q)-semi-Markov map
S with FPM PS equal to P. This involves the selection of a partition R(m) = {R(m)

1 ,R(m)
2 , . . . ,R(m)

c(m)}

for each interval Qm (refer to Figure 2 for a guiding example). In general, there exist multiple valid
partitions of each Qm. Equation (2.5) implies that each nonzero entry in column m of the FPM requires
at least one subinterval in R(m) to be mapped to the corresponding interval in Q (specifically, if the
nonzero entry is the kth element of column m, the subinterval is mapped to interval Qk). Each zero
entry in column m requires that no subinterval in R(m) must be mapped to the corresponding interval in
Q. We choose R(m) so that each consecutive subinterval in this partition is mapped to a unique interval
Qk, but in the same order as the corresponding nonzero entries appear in column m of the FPM. Let
v1,m < v2,m < . . . < vw(m),m denote the indices of the w(m) nonzero entries in column m of P. We select
c(m) = w(m) and T (k,m) , { j : S (R(m)

j ) = Qk} as

T (k,m) ,

 {`}, if ∃ ` : v`,m = k,

∅, otherwise,
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for k,m = 1, 2, . . . ,M. Let the branch functions S j,m(x) , S |R(m)
j

be given by S j,m(x) = ∆ j,mx + b j,m.

Equation (2.5) then implies that |∆ j,m|
−1 = pi,m, where i = v j,m; we select the branch slopes as

∆ j,m = p−1
i,m. Finally, we derive the y-intercept b j,m of each branch. Since

r(m)
j = qm +

1
M

v j,m−1∑
k=1

pk,m,

where R(m)
j , (r(m)

j , r(m)
j+1), we find that

b j,m = −∆ j,mr(m)
j + qi, i = v j,m.

Figure 9 contains plots of semi-Markov maps that were constructed with invariant densities that
approximate the quadratic polynomial density fP of (4.1) with parameters y0 = y1 = 1/3 (this density
is plotted in blue). Three maps with uniform partitions of 4, 8 and 16 intervals were constructed. These
maps are plotted in Figures 9(a, c, e), respectively. The piecewise constant invariant density function
of each map is plotted in black in Figures 9(b, d, f). The three-band property of the FPM is reflected
by the structure of each map, where branches are concentrated around the line y = x. This observation
reveals that the approach towards constructing matrix P has a direct impact on the structure of the
resulting map. The plots also reveal that a finer partition produces a more accurate fit to the prescribed
invariant density function.

To illustrate how the choice of invariant density affects the structure of the map, the matrix solution
strategy was used to construct maps with invariant densities that approximate the quadratic polynomial
invariant density functions fP of Figure 3. The resulting maps are plotted in Figures 10(c) to 10(h).
These maps were designed with a uniform partition of eight intervals, and possess the invariant
densities plotted in Figures 10(a, b).

We conclude this section by considering the construction of R̃(Q̃)-semi-Markov maps S̃ with
invariant density f∗ that is equal to some prescribed piecewise constant density f̂P defined over a
nonuniform partition Q̃. The steps for solving this problem are similar to the solution steps in the
case of a uniform partition. In the nonuniform case, the map S̃ is also designed such that its FPM PS̃

is equal to a matrix P̃, which is similar to a column stochastic matrix. The matrix P̃ is selected such
that its left and right Perron eigenvectors are consistent with the required invariant density f̂P over the
nonuniform partition. However, P̃ is obtained in a different manner than the uniform case. Consider an
approach whereby the nonuniform partition is obtained by stretching or contracting the corresponding
intervals of a uniform partition. This is achieved by the similarity transformation

P̃ = D−1PS D, (4.12)

where PS is the column stochastic FPM of an ergodic R(Q)-semi-Markov map S with uniform partition
Q, and D is a diagonal matrix with positive entries along the diagonal that determine the degree
of stretching or contraction of each interval. Since similar matrices share the same characteristic
polynomial, P̃ and PS share the same eigenvalues. Let the left and right Perron eigenvectors of PS

be denoted by v1 and w1, and the same eigenvectors of P̃ by ṽ1 and w̃1. It follows that

ṽ1 = Dv1 (4.13)
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Map S Invariant density

(a) (b)

(c) (d)

(e) (f)

Figure 8. Semi-Markov maps S with invariant density approx-
imating the quadratic polynomial density fP with parameters
y0 = y1 = 1/3.

Figure 9. Semi-Markov maps S with invariant density approximating the quadratic poly-
nomial density fP with parameters y0 = y1 = 1/3.

and
w̃1 = D−1w1. (4.14)

Recall that v1 = [1, 1, . . . , 1]T . Since the left Perron eigenvector ṽ1 of P̃ must be a nonzero scalar
multiple of q, where q is a column vector with entries equal to the lengths of the intervals in the
nonuniform partition Q̃, we have from (4.13) that the diagonal of D must equal q. In order to ensure
that w̃1 = f̂P, we then consider (4.14) and require that w1 = Df̂P. We construct a column stochastic
matrix PS with right Perron eigenvector w1 using any of the proposed techniques, and then compute P̃
from (4.12). The map S̃ is then designed with FPM PS̃ equal to P̃ using the relationship between the
slopes of the map branches and the entries of the FPM, as set out in (2.5); further details are provided
in [18].
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Invariant densities

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Semi-Markov maps with invariant density functions ap-
proximating the quadratic polynomial densities fP of Fig. 3.

Figure 10. Semi-Markov maps with invariant density functions approximating the quadratic
polynomial densities fP of Figure 3.

4.3.2. Literature

Friedman and Boyarsky [17] proposed a matrix technique for constructing ergodic maps with
invariant densities from a class of piecewise constant density functions with relative minima equal to
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zero. The technique uses methods from the domain of graph theory. However, due to the restrictiveness
of the class of achievable invariant densities, this technique was found to be of limited practicality.

Consider any density function fP that is piecewise constant over a partition of a compact real
interval. Góra and Boyarsky [18] proved that there exists at least one piecewise linear and expanding
semi-Markov map with an invariant density equal to fP. The proof is constructive and therefore
presents a solution to IFPP-I. This solution∗∗ requires the generation of a three-band stochastic matrix
P and the construction of a piecewise linear semi-Markov map on a uniform partition such that its
FPM matches P. The solution was generalized to piecewise constant invariant densities on nonuniform
partitions using topological conjugation. Recently, this solution was generalized further by introducing
K-band matrices, where K > 3 [50].

Rogers et al. [60] proposed a matrix solution to IFPP-I that involves the construction of semi-
Markov ergodic maps with piecewise constant invariant densities over a uniform partition. The
proposed solution uses an M×M FPM with a predefined structure that is fully specified by a set of 2M
real valued parameters. This structure leads to a simplified expression for the right Perron eigenvector
of the FPM, which coincides with the invariant density of the map. Rogers [61] demonstrated how
a suitable choice of parameters allows for the selection of an arbitrary right Perron eigenvector and
piecewise constant invariant density, and generalized the solution to nonuniform partitions. The
correlation properties of trajectories generated by the resulting maps were investigated numerically
in [62]. The solution was also extended to randomly switched chaotic maps and chaotic maps of
higher dimensions. Convergence properties of Rogers’ solution to IFPP-I [60], together with further
examples of ergodic maps that were constructed using this solution, were provided in [63].

5. Brief overview of recent developments

In this section we present a brief excursion into the more recent developments. Due to significant
additional analytical machinery of a rather sophisticated nature required, as well as space limitations,
a full discussion would require an independent survey in its own right. Hence, we forgo a detailed
review and only provide a summary of several key contributions.

McDonald and van Wyk [21] addressed the problem of constructing an ergodic map with a
prescribed invariant density and a multimodal power spectrum that has prescribed mode center
frequencies and bandwidths. The authors proposed a technique for generating a column stochastic
matrix P that involves recursive Markov state disaggregation [59]. Starting with an elementary one-
state Markov chain, this algorithm recursively divides (or disaggregates) each state of the Markov chain
into a pair of equiprobable states, thereby constructing a Markov chain with an arbitrary number of
states. The state transition matrix of the final Markov chain is then selected as the matrix P. Using this
algorithm, the authors generated several column stochastic matrices with distinct eigenvalue spectra††

and constructed semi-Markov maps with matching FPMs. It was shown that these maps possess
time correlation functions with distinct characteristics and different rates of decay. The authors also
constructed topological conjugates of these maps with invariant densities that are piecewise constant
approximations of the beta density function.
∗∗This solution was demonstrated in example 4.3.
††It can be shown that each eigenvalue belonging to the (non-defective) second-order FPM of a semi-Markov map corresponds to a

particular mode of the power spectrum [64]. More specifically, the modulus of the eigenvalue is inversely proportional to the mode’s
bandwidth, and its argument coincides with the center frequency of the mode.
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McDonald and van Wyk [22] constructed ergodic semi-Markov maps with the uniform invariant
density and power spectra consisting of five modes. These maps possess 3 × 3 column stochastic first-
order FPMs with a predefined expression formulated in terms of the eigenvalue spectrum of the matrix.
It was proved that any of the possible column stochastic matrix eigenvalue spectra may be chosen for
these matrices. It was also shown that the bandwidths and center frequencies of two power spectrum
modes may be prescribed through selection of the FPM eigenvalue spectrum.

More recently, McDonald and van Wyk [23] introduced a new collection of semi-Markov maps that
is referred to as the family of hat maps. Following a matrix approach, the authors constructed piecewise
linear hat maps with piecewise constant invariant densities and multimodal power spectra. It was
demonstrated that the structure of hat maps affords the opportunity to select the bandwidth and center
frequency of each mode in the map’s power spectrum. A nonlinear branch transformation that allows
for the construction of piecewise nonlinear hat maps with prescribed invariant densities was proposed.
This transformation was used to construct maps with invariant density equal to the beta density function
and two-mode power spectra with prescribed mode center frequencies and bandwidths.

Nie and Coca [24, 25] proposed a technique for modeling the unknown evolution rule of a
one-dimensional dynamical system from causal sequences of state density functions generated by
the system. This technique assumes that the unknown map S is R(Q)-semi-Markov, and involves
estimation of the unknown partition Q from the invariant density function of S . A piecewise constant
approximation of each state density function is then constructed over this partition. After substituting
the vectors corresponding to these density functions into the matrix equation for density evolution, the
equation is solved for the matrix representing the unknown map’s FPO (i.e., the FPM of S ). The ergodic
map is then reconstructed in the same manner as the third step of the matrix solution strategy for IFPP-I
(see also [18]). The authors also extended the technique by constructing semi-Markov approximations
of unknown ergodic maps that are continuous and asymptotically stable from sequences of state density
functions. This was achieved using a novel algorithm for deciding whether each branch of the map is
monotonically increasing or decreasing (recall that the entries of the FPM are nonnegative; hence, it
cannot be deduced whether the branch corresponding to each entry has a positive or negative slope from
the FPM alone). The authors provided examples that demonstrate the technique’s ability to reconstruct
unknown piecewise linear semi-Markov maps, as well as the logistic map S (x) = 4x(1 − x), from
sequences of density functions.

Nie and Coca [26] generalized the technique proposed in [25] to approximate the evolution rule
of an unknown stochastically perturbed dynamical system, which is of practical relevance when
constructing models from measurements that are corrupted by noise. Under the assumption that
the unknown map is semi-Markov, the authors formulated a matrix representation of the system’s
transfer operator in terms of the map’s FPM. An algorithm was proposed for estimating this FPM from
sequences of causal density functions generated by the stochastically perturbed system, where it is
assumed that the density function of the perturbation is known. The unknown map is reconstructed
from the estimate of the FPM as before. The technique was also extended to approximate continuous
nonlinear maps. Examples were presented that demonstrate the improved accuracy of the technique
when used to approximate an unknown semi-Markov map and the logistic map in higher noise levels,
as compared to the original technique presented in [25].

Nie et al. [27] considered the problem of constructing a semi-Markov map that approximates the
unknown map of a one-dimensional dynamical system that is driven by an external control input and
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subjected to an additive stochastic perturbation. Following a similar approach as in [26], the authors
formulated a matrix representation of the system’s transfer operator in terms of the FPM corresponding
to the semi-Markov map. An algorithm was proposed for estimating the latter matrix from sequences
of density functions generated by the system (here it is assumed that the density functions of the noise
and control inputs are both known a priori). The map is constructed from the FPM as before. It is
noteworthy that this solution to the IFPP presents a new approach to solving the control problem for
stochastically perturbed autonomous systems, where the goal is to determine the optimal input density
function such that the dynamical system has the desired equilibrium distribution.

Nie et al. [28] proposed a technique for inferring the evolution rule of an unknown one-dimensional
dynamical system driven by an external stochastic input from stationary densities generated by the
system. In this scenario the density function of the input is varied, and the stationary density of
the system is observed in each case. Conditions under which each input density leads to a unique
stationary density were stated. The proposed technique constructs a matrix approximation of the
unknown map’s FPO, and generates a semi-Markov map with FPM equal to this matrix. An example
was presented wherein a semi-Markov approximation of the logistic map was obtained from stationary
density functions generated by the map.

6. Conclusions and future work

In this paper we surveyed the inverse Frobenius-Perron problem, its formulations, as well as three
solution strategies to the original problem formulation (IFPP-I). Several examples were provided to
illustrate the techniques, with the aim of promoting their practical application.

In the topological conjugation strategy, IFPP-I is solved by transforming an existing ergodic map
with known invariant density to an ergodic map with the prescribed invariant density. We proved that
this strategy is a special case of the direct solution strategy. Due to the one-to-one nature of the mapping
between the trajectories of the original map and those of its topological conjugates, ergodicity can be
guaranteed when solving IFPP-I. However, this strategy provides less freedom to select the structure
of the map, as compared to the other solution strategies.

The direct solution strategy produces complete maps that are unique for a prescribed invariant
density, branch structure and set of inter-branch correspondence functions. Unlike the topological
conjugation solution strategy, ergodicity of the direct solution is not necessarily guaranteed; further
investigation of this topic may lead to relaxed criteria for ergodicity. Furthermore, the direct solution
strategy has, to the best of our knowledge, not yet been generalized to the case of incomplete maps. We
anticipate that such a generalization would prove useful when solving more general formulations of
the IFPP, where the power spectrum characteristics of the map are prescribed. Another topic for future
work in this context is the uniform approximation of singular maps by locally ”sterile” expansive
maps [65].

The matrix solution strategy has the limitation of only producing maps with piecewise constant
invariant densities, which can only approximate nonuniform and continuous density functions.
However, this strategy provides more freedom to select the structure of the map, and may be used to
generate multiple distinct maps with the same invariant density. This characteristic is of interest when
solving the more general problem formulations. Whereas the matrix solution strategy demonstrated
here only generates maps with linear branch functions, it was recently shown that the generalization of

AIMS Mathematics Volume 6, Issue 10, 11200–11232.



11229

this solution to piecewise nonlinear semi-Markov maps leads to a broader class of attainable invariant
density functions. This allows for an exact match to a prescribed invariant density while retaining some
control over the structure of the map and thereby its power spectrum characteristics.
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Montréal, 2015.
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