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Abstract: Let G be a simple graph with finite vertex set V(G) and S = {−1, 1, 2}. A signed total
Roman k-dominating function (STRkDF) on a graph G is a function f : V(G) → S such that (i) any
vertex y with f (y) = −1 is adjacent to at least one vertex t with f (t) = 2, (ii)

∑
t∈N(y) f (t) ≥ k holds for

any vertex y. The weight of an STRkDF f , denoted by ω( f ), is
∑

y∈V(G) f (y), and the minimum weight
of an STRkDF is the signed total Roman k-domination number, γk

stR(G), of G. In this article, we prove
that the decision problem for the signed total Roman k-domination is NP-complete on bipartite and
chordal graphs for k ∈ {1, 2}.
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1. Introduction

In this paper, G is a simple graph with finite vertex set V = V(G) and edge set E = E(G). Assume
s ∈ V(G) and S = {−1, 1, 2}, we will use the following notations.

name symbol de f inition
order n or n(G) the vertex number of G
the open neighborhood of s N(s) N(s) = {u ∈ V(G) | us ∈ E(G)}
the closed neighborhood of s N[s] N[s] = {s} ∪ N(s)
the degree of s degG(s) degG(s) = |N(s)|
a leaf of G a vertex of degree 1
a support vertex of G a vertex adjacent to a leaf
a strong support vertex of G a vertex adjacent to at least two leaves
leaf neighbors Ls the set of leaves adjacent to s
the minimum degree of G δ(G) δ(G) = min{degG(s) | s ∈ V(G)}
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If there is a function f meeting the following conditions: (i) each vertex y with f (y) = −1 has at
least one neighbor t with f (t) = 2, (ii)

∑
t∈N(y) f (t) ≥ k for any vertex y ∈ V , and then f is called a

signed total Roman k-dominating function (STRkDF). Let F(G) denote the set of all the STRkDFs
of G. The weight of an STRkDF f , denoted by ω( f ), is defined to be the value

∑
y∈V(G) f (y). The

signed total Roman k-domination number of G, denoted γk
stR(G), is weight of an STRkDF f where

ω( f ) = min{ω(g) | g ∈ F(G)}. An STRkDF of weight γk
stR(G) is called a γk

stR(G)-function. The
signed total Roman k-domination number must exist if δ(G) ≥ k

2 . For an STRkDF f , let Vr = {t ∈
V(G) : f (t) = r} for r ∈ S . Because this partition determines f , we then write f = (V−1,V1,V2)
equivalently. The signed total Roman domination number and signed total k-domination number was
introduced and investigated in [12,14]. This parameter is introduced and investigated in a more general
setting [9, 11]. There are several works that considered the decision problems for the signed Roman
domination parameters (see [1–3, 13]). For more details on Roman domination and its variants, we
refer the reader to the recent book chapters and surveys [4–8].

In this article, we will show that the decision problems for the signed total Roman k-domination
numbers for k ∈ {1, 2} are NP-hard. In other words, there are no polynomial algorithms to compute
this parameter unless P=NP.

2. Complexity result

In this section we will give the NP-complete result for the signed total Roman k-domination problem
on bipartite and chordal graphs for k ∈ {1, 2}.

Signed total Roman k-domination problem(STRkDP) for k ∈ {1, 2}:
Instance: A graph G and a positive integer ` ≤ |V(G)|.
Question: Does G have an STRkDF with weight at most ` ?

We will prove that STRkDP is NP-complete by reducing the especial case of Exact Cover by 3-sets
(X3C) to which we refer as X3C3. The NP-completeness of X3C3 was proven in 2008 by Hickey et
al. [10].

X3C3
Instance: A set of elements X and a collection C of m 3-element subsets of X where | X |= m = 3q,

with the condition that every element appears in exactly 3 members of C .
Question: Does there exist a subcollection C ′ ⊂ C with the condition that each element of X

appears in exactly one member of C ′ ?
Now we show that the problem above is NP-hard, even when restricted to the case k = 1 and to

bipartite and chordal graphs.

Theorem 1. Problem STR1DP is NP-Complete for bipartite and chordal graphs.

Proof. Clearly STR1DP is a member of NP since we can verify that a function f : V(G) → S has
weight at most ` and determine whether f ∈ F(G) in polynomial time. Now let us transform any
instance of X3C3 into an instance G of STR1DP satisfying that STR1DP has a solution if and only if
X3C3 has a solution. Let X = {x1, x2, . . . , x3q} and C = {C1,C2, . . . ,C3q} be an arbitrary instance of
X3C3.

First we construct the bipartite graph G1. For each xi ∈ X, we create a single vertex xi to which we
associate a copy of the graph Hi, obtained from a cycle ui piviyiui by adding two pendant edges at each
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of vertices ui, pi, vi, as shown in Figure 1 by adding the edge yixi. For each C j, we create a vertex c j

to which we associate a copy of the graph H′j as shown in Figure 1 by adding the edges c jz j and c jw j.

Now to obtain the graph G1, we add edges c jxi if xi ∈ C j. Since G1 has no cycle of odd length, G1 is a
bipartite graph (see Figure 2). Now let A = {c1, c2, . . . , c3q} and set ` = q.
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z j w j

w1
j

w2
j

z1
j

z2
j t j

t1
j t3

j
t2

j

Hi H′j

Figure 1. The graphs Hi and H′j.

To prove that this is indeed a transformation, we only need to show that γ1
stR(G1) ≤ ` if, and only if,

there is a truth assignment for X that satisfies all clauses in C . This aim can be obtained the following:
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Figure 2. NP-completeness of STR1D for bipartite graphs, here q = 2 and γ1
stR(G1) = 2.

Suppose that C ′ is a solution of X3C3. Define the signed total 1- Roman dominating function f on
G1 of weight ` as follows: for every i ∈ {1, ..., 3q}, let f (ui) = f (vi) = f (pi) = f (zi) = f (wi) = f (ti) = 2
and f (yi) = 1; for every C j ∈ C ′, let f (c j) = 2 and for every C j < C ′ let f (c j) = 1; and let f (xi) = −1.
Note that since C ′ exists, |C ′| = q, and so the number of c j’s with weight 2 is q, having disjoint
neighborhoods in {x1, x2, . . . , x3q}. Now it is straightforward to see that f is a signed total Roman 1-
dominating function with weight ω( f ) = q = `.

Conversely, assume there exists a function h ∈ F(G1) with ω(h) ≤ `. Among all these functions,
let f = (V−1,V1,V2) be one such function that assigns smallest possible values to the leaves of G1.
Clearly f assigns a positive value to each support vertex. We claim that f (x) = −1 for any leaf x of
G1. Suppose, to the contrary, that f (x) ≥ 1 for some leaf of G1. Without loss of generality that we may
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assume that x ∈ V(H1) ∪ V(H′1). First let x ∈ V(H1). If f (p1
1) ≥ 1 and f (p2

1) ≥ 1, then the function
g defined by g(p1) = 2, g(p1

1) = −1, g(p2
1) = 1 and g(u) = f (u) otherwise, is a STR1DF of G1 of

weight less than ω( f ) which is a contradiction. Thus we may assume that f (p1
1) = −1. It follows that

f (p1) = 2. Likewise, we may assume that f (u1
1) = f (v1

1) = −1 implying that f (u1) = f (v1) = 2. Since
f has minimum weight, we deduce that f (p2

1) = −1. Hence x ∈ {u2
1, v

2
1}. If f (y1) ≥ 1, then similarly

we have f (u2
1) = −1 and f (v2

1) = −1 which leads to a contradiction. Hence f (y1) = −1. Now the
function g defined by g(x) = −1, g(y1) = 1 and g(u) = f (u) otherwise, is a STR1DF of G1 of weight
ω( f ) contradicting the choice of f . Now let x ∈ V(H1). If f (ti

1) ≥ 1 and f (tk
1) ≥ 1 for some i , k,

then the function g defined by g(ti
1) = −1, g(t1) = 2 and g(u) = f (u) otherwise, is a STR1DF of G1

of weight less than ω( f ) which is a contradiction. Thus we may assume without loss of generality
that f (t1

1) = f (t2
1) = −1. It follows that f (t1) = 2. Then we have f (t1) + f (c1) ≥ 1. If f (z1

1) ≥ 1
and f (z2

1) ≥ 1, then the function g defined by g(z1
1) = −1, g(z1) = 2 and g(u) = f (u) otherwise, is

a STR1DF of G1 of weight less than ω( f ) which is a contradiction again. Hence we assume that
f (z1

1) = −1. Likewise, we may assume that f (w1
1) = −1. Since f is a STR1DF of G1, we must have

f (z1) = f (w1) = 2. Since f has minimum weight, we deduce that f (t3
1) = −1. Thus x ∈ {z2

1,w
2
1}. If

f (c1) ≥ 1, then the function g defined by g(z2
1) = g(w2

1) = −1 and g(u) = f (u), otherwise is a STR1DF
of G1 of weight less than ω( f ) which is a contradiction again. Hence f (c1) = −1. Now the function
g defined by g(x) = −1, g(c1) = 1 and g(u) = f (u) otherwise, is a STR1DF of G1 of weight ω( f )
contradicting the choice of f . This proves the claim. Thus f (y) = 2 for every support vertex y of G1.
Since

∑
u∈N(zi)−{c j}

f (u) =
∑

u∈N(wi)−{c j}
f (u) = 0, we must have f (c j) ≥ 1 for every j. Also, we observe

that
∑

u∈N(ui)−{yi}
f (u) = 0 and

∑
u∈N(vi)−{yi}

f (u) = 0, and thus we must have f (yi) ≥ 1 for every i. It
follows clearly that no xi needs to be assigned a positive value under f , and thus xi ∈ V−1 for every i.
If yi ∈ V2 for some i, then we can reassign yi and any cr adjacent to xi the values 1 and 2, respectively.
So we may assume that yi ∈ V1 for every i. Now, since f has weight at most ` = q, and every xi needs
to be adjacent to a vertex assigned a 2, there must exist q vertices of A assigned a 2 under f and the
remaining vertices of A belongs to V1. On the other hand, since each c j has exactly three neighbors in
X, we conclude that C ′ = {C j : f (c j) = 2} is an exact cover for C .

Now we construct the chordal graph G2. For each xi ∈ X, we create a single vertex xi to which we
associate a copy of the graph Fi, obtained from a cycle ui piviyiui by adding the edge uivi , adding one
pendant edge at pi and three pendant edges at ui and vi, as shown in Figure 3 by adding the edge yixi.
For each C j we create a vertex c j to which we associate a copy of the graph F′j as shown in Figure 3,
by adding the edges c jz j and c jw j. Now to obtain the graph G2, we add edges c jxi if xi ∈ C j and all
edges between vertices c j‘s. Clearly, any cycle in G2 with length at least four has a chord and hence
G2 is a chordal graph (see Figure 4). Let A = {c1, c2, . . . , c3q} and set ` = q.

yi

viui

pi

z j w j

Fi F′j

Figure 3. The graphs Fi and F′j.
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Figure 4. NP-completeness of STR1D for chordal graphs , here q = 2 and γ1
stR(G2) = 2.

To prove that this is indeed a transformation, we only need to show that γ1
stR(G2) ≤ ` if, and only if,

there is a truth assignment for X that satisfies all clauses in C . This aim can be obtained the following:
Suppose that C ′ is a solution of X3C3. Define a signed total 1-Roman dominating function g on G2 of
weight ` as follows: for every i ∈ {1, 2, . . . , 3q}, g(ui) = g(vi) = g(zi) = g(wi) = g(pi) = 2, g(yi) = 1;
if C j ∈ C ′, then let g(c j) = 2 and if C j < C ′, then let g(c j) = 1; and let g(xi) = −1. Note that since
C ′ exists, |C ′| = q, and so the number of c j’s with weight 2 is q, having disjoint neighborhoods in
{x1, x2, . . . , x3q}. Now it is straightforward to see that g is a signed total Roman 1- dominating function
with weight ω(g) = q = `.

Conversely, assume there exists a function h ∈ F(G2) with ω(h) ≤ `. Among all these functions, let
g = (V−1,V1,V2) be one such function that assigns smallest possible values to the leaves of G2. As in
the proof for bipartite graph, we can show that g(x) = −1 for any leaf x of G2, and thus g(y) = 2 for
every support vertex y of G2. Since

∑
u∈N(zi)−{c j}

g(u) =
∑

u∈N(wi)−{c j}
g(u) = 0, we must have g(c j) ≥ 1 for

every j. Also, for G2 we observe that
∑

u∈N(ui)−{yi}
g(u) = 1 and

∑
u∈N(vi)−{yi}

g(u) = 1, and thus we must
have g(yi) ≥ 1 for every i. It follows clearly that no xi needs to be assigned a positive value under g
and thus xi ∈ V−1 for every i. If yi ∈ V2 for some i, then we can reassign yi and any cr adjacent to xi

the values 1 and 2, respectively. So we may assume that yi ∈ V1 for every i. Now, since g has weight
at most ` = q, and every xi needs to be adjacent to a vertex assigned a 2, there must exist q vertices of
A assigned a 2 under g and the remaining vertices of A belongs to V1. On the other hand, since each c j

has exactly three neighbors in X, we conclude that C ′ = {C j : g(c j) = 2} is an exact cover for C .

The case k = 2

Theorem 2. Problem STR2DP is NP-Complete for bipartite and chordal graphs.

Proof. Similar as the proof of the Theorem 1, clearly STR2DP is a member of NP since we can
verify that a function f : V(G) −→ S has weight at most ` and determine whether f ∈ F(G) in
polynomial time. Now let us transform any instance of X3C3 into an instance G of STR2DP satisfying
that STR2DP has a solution if and only if X3C3 has a solution. Let X = {x1, x2, . . . , x3q} and C =
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{C1,C2, . . . ,C3q} be an arbitrary instance of X3C3. We now construct the bipartite graph G3 and the
chordal graph G4, respectively.

di

bi

ai

ei

pi

yi

Ei

w j

u j v j

z j

t j

E′j

Figure 5. The graphs Ei and E′j.

For each xi ∈ X, we create a single vertex xi to which we associate a copy of the graph Ei as shown
in Figure 5 by adding the edge yixi. For each C j, we create a vertex c j to which we associate a copy of
the graph E′j as shown in Figure 5 by adding the edges c ju j and c jv j. Now to obtain the graph G3, we
add edges c jxi if xi ∈ C j. It is clear that G3 has no cycle of odd length and so G3 is a bipartite graph
(see Figure 6). Let A = {c1, c2, . . . , c3q}, and set ` = q. To prove that this is indeed a transformation, we
only need to show that γ2

stR(G3) ≤ ` if, and only if, there is a truth assignment for X that satisfies all
clauses in C . This aim can be obtained the following:
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Figure 6. NP-completeness of STR2D for bipartite graphs , here q = 2 and γ2
stR(G3) = 2.

Suppose that C ′ is a solution of X3C3. Define a signed 2-Roman dominating function f on G3 of
weight ` as follows: for every i ∈ {1, 2, . . . , 3q} let
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f (x) =



2 if x ∈ {ai, bi, di, ei, pi, ui,wi, zi, vi, ti},

1 if x = yi,

2 if x = c j and c j ∈ C ′,

1 if x = c j and c j < C ′,

−1 otherwise.

Note that since C ′ exists and |C ′| = q, the number of c j‘s with weight 2 is q, having disjoin neigh-
borhoods in {x1, x2, . . . , x3q}. It is easy to see that f is signed total Roman 2-dominating function with
weight ω( f ) = q.

Conversely, first assume there exists a function h ∈ F(G3) withω(h) ≤ `. Among all these functions,
let f = (V−1,V1,V2) be one such function that assigns smallest possible values to the leaves of G3. As
in the proof of Theorem 2 for bipartite graph, we can show that f (x) = −1 for any leaf x of G3, and
thus f (y) = 2 for every support vertex y of G3. Since

∑
u∈N(ui)−{c j}

f (u) =
∑

u∈N(vi)−{c j}
f (u) = 2, we must

have f (c j) ≥ 1 for every j. Also, we observe that
∑

u∈N(ai)−{yi}
f (u) = 1 and thus we must have f (yi) ≥ 1

for every i. It follows clearly that no xi needs to be assigned a positive value under f , and thus xi ∈ V−1

for every i. If yi ∈ V2 for some i, then we can reassign yi and any cr adjacent to xi the values 1 and
2, respectively. So we may assume that yi ∈ V1 for every i. Now, since f has weight at most ` = q,
and every xi needs to be adjacent to a vertex assigned a 2, there must exist q vertices of A assigned a 2
under f and the remaining vertices of A belongs to V1. Now since each c j has exactly three neighbors
in X, we conclude that C ′ = {C j : f (c j) = 2} is an exact cover for C .

Now we construct the chordal graph G4.

yi

wi
zi

piqi

u j

r j

v j

Ki K′j

Figure 7. The graphs Ki and K′j.

Similar as above, for each xi ∈ X, we create a single vertex xi to which we associate a copy of the
graph Ki as shown in Figure 7 by adding the edge yixi. For each C j, we create a vertex c j to which
we associate a copy of the graph K′j as shown in Figure 7 by adding the edges c ju j and c jv j. Now
to obtain the graph G4 we add edges c jxi if xi ∈ C j and all edges between vertices c j‘s. Clearly, any
cycle of G4 with length at least four has a chord and so G4 is a chordal graph (see Figure 8). Let
A = {c1, c2, . . . , c3q}, and set ` = q. To prove that this is indeed a transformation, we only need to show
that γ2

stR(G4) ≤ ` if, and only if, there is a truth assignment for X that satisfies all clauses in C . This
aim can be obtained the following:
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Figure 8. NP-completeness of STR2D for chordal graphs , here q = 2 and γ2
stR(G4) = 2.

Suppose that C ′ is a solution of X3C3. Define a signed 2-Roman dominating function g on G4 of
weight ` as follows: for every i ∈ {1, 2, . . . , 3q} let

g(x) =



2 if x ∈ {qi, pi, zi,wi, ui, vi, ri},

1 if x = yi,

2 if x = c j and c j ∈ C ′,

1 if x = c j and c j < C ′,

−1 otherwise.

Note that since C ′ exists and |C ′| = q, the number of c j‘s with weight 2 is q, having disjoin neigh-
borhoods in {x1, x2, . . . , x3q}. It is easy to see that g is signed total Roman 2-dominating function with
weight ω(g) = q.

Conversely, first assume there exists a function h ∈ F(G4) with ω(h) ≤ `. Among all these
functions, let g = (V−1,V1,V2) be one such function that assigns smallest possible values to the leaves
of G4. As in the proof of Theorem 2 for bipartite graph , we can show that g(x) = −1 for any leaf x of
G4, and thus g(y) = 2 for every support vertex y of G4. Since

∑
u∈N(ui)−{c j}

g(u) =
∑

u∈N(vi)−{c j}
g(u) = 2,

we must have g(c j) ≥ 1 for every j. Also, we observe that
∑

u∈N(wi)−{yi}
g(u) = and thus we must have

g(yi) ≥ 1 for every i. It follows clearly that no xi needs to be assigned a positive value under g, and
thus xi ∈ V−1 for every i. If yi ∈ V2 for some i, then we can reassign yi and any cr adjacent to xi the
values 1 and 2, respectively. So we may assume that yi ∈ V1 for every i. Now, since g has weight at
most ` = q, and every xi needs to be adjacent to a vertex assigned a 2, there must exist q vertices of
A assigned a 2 under g and the remaining vertices of A belongs to V1. Now since each c j has exactly
three neighbors in X, we conclude that C ′ = {C j : g(c j) = 2} is an exact cover for C . �
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