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Abstract: Topological graph indices have been of great interest in the research of several properties of
chemical substances as it is possible to obtain these properties only by using mathematical calculations.
The irregularity indices are the ones to determine the degree of irregularity of a graph. Albertson and
Bell indices are two of them. Edge and vertex deletion and addition are important and useful methods
in calculating several properties of a given graph. In this paper, the effects of adding a new edge or a
new vertex to a graph on the Albertson and Bell indices are determined.
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1. Introduction

Let G = (V, E) be a connected, undirected and unweighted simple graph having | V(G) |= n vertices
and | E(G) |= m edges unless stated. Simple means that we do not allow loops or multiple edges. For a
vertex v ∈ V(G), we denote the degree of v by dG(v) or briefly by dv. A vertex with degree one is called
a pendant vertex and we shall use the term pendant edge for an edge having a pendant vertex.

Topological graph indices are defined and used in many areas in recent years to study several
properties of different objects such as atoms and molecules solely by means of some mathematical
techniques. Several topological graph indices have been defined and studied by many mathematicians
and chemists as most graphs are generated from molecules by replacing atoms with vertices and
bonds between them with edges. These indices are defined as invariants measuring several physical,
chemical, pharmaceutical, biological properties of graphs which are modelling real situations. They
can be grouped mainly into three classes according to the way they are defined; by vertex degrees, by
distances or by matrices. The first graph index was defined in 1947 by Wiener to determine the
boiling points of alkanes [17]. In [8], the notion of energy in relation with the Estrada index of the
Phenylenes were studied. In [10], some physico-chemical parameters of alkanes were studied by
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means of three graph indices called reciprocal Randić index, reduced second Zagreb index and
reduced reciprocal Randić index. Two of the earliest defined topological graph indices are called the
first and second Zagreb indices defined in 1972 by Gutman and Trinajstic, [11], and are often referred
to due to their uses in QSAR and QSPR studies. In [3], some results on the first Zagreb index together
with some other indices are given. In [4], the multiplicative versions of these indices are studied.
Zagreb indices of subdivision graphs were studied in [15] and these were calculated for the line
graphs of the subdivision graphs in [14]. In [16], all versions of Zagreb indices of subdivision graphs
were studied. In [13], relations between indices and graph energy was considered.

If all the vertices of a graph have the same degree, then the graph is called regular. Regularity makes
calculations easier in many occasions and regular graphs usually form examples or counterexamples
in many areas of graph theory. A graph is not regular, called irregular, which has at least two unequal
vertex degrees. Irregularity may occur slightly or strongly. As a result of this, several measures for
irregularity have been defined and used by some authors. The most throughly investigated ones are the
Albertson index (which is also called irregularity index, third Zagreb index or Kekule index) defined
as

Alb(G) =
∑

uv∈E(G)

|du − dv|, (1.1)

see [1, 7, 9], the Bell index

B(G) =
∑

v∈V(G)

(
dv −

2m
n

)2

, (1.2)

see [2] and [9] and sigma index
σ(G) =

∑
uv∈E(G)

(du − dv)2. (1.3)

In this paper, we study the effect of adding a new edge to a graph on Albertson and Bell indices by
considering the possible ways of adding the new edge. We will construct a graph class such that Alb
index of the graphs in this class covers all positive even integers. We do the similar calculations for Bell
index. For both indices, we exclude adding a new edge which increases the number of components of
the graph.

2. Effect of edge addition on Albertson irregularity index

First we recall some properties of the Albertson index. First we note that the Albertson index Alb(G)
of a simple graph G is even: As the parities of each term |du − dv| and (du − dv)2 in these indices given
in Eqs (1.1) and (1.3) are the same, the result follows by the fact that the sigma index of a simple graph
is even, see [12].

We now study the effect of adding a new edge to a graph on its irregularity index. There are three
possible ways of adding a new edge. The new edge can be added to the graph either at a pendant vertex
or at a vertex of degree greater than 1 to form a new pendant edge, or between two existing vertices to
form a new non-pendant edge.

Theorem 2.1. Let G be a connected simple graph having at least three vertices. Let the neighbours
of the vertex u with degree dG(u) = t > 1 be v1, v2, · · · , vt with degrees dG(v1), dG(v2), · · · , dG(vt),
respectively. Let k be a positive integer such that dG(vi) ≤ dG(u) for i = 1, 2, · · · , k with k ≤ t, and
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dG(vi) > dG(u) for i = k + 1, k + 2, · · · , t. Then Alb(G) increases by 2k when a new pendant edge e is
added to G at u.

Proof. As dG(u) = t, we have

Alb(G) = k · dG(u) −
k∑

i=1

dG(vi) − (t − k)dG(u) +

t∑
i=k+1

dG(vi) +
∑

rs∈E(G),r,s,u

|dG(r) − dG(s)|

= (2k − t)t +

t∑
i=k+1

dG(vi) −
k∑

i=1

dG(vi) +
∑

rs∈E(G),r,s,u

|dG(r) − dG(s)|.

Secondly consider the graph G + e where e is the new pendant edge with end points u and w. Then
noting that dG+e(u) = t + 1 and dG+e(w) = 1, we have

Alb(G + e) = (2k − t)t + 2k +

t∑
i=k+1

dG+e(vi) −
k∑

i=1

dG+e(vi)

+
∑

rs∈E(G),r,s,u

|dG+e(r) − dG+e(s)|

giving the required result as the degrees of each pair of vertices r and s in the last sum increase by one
and as

∑t
i=1 dG+e(vi) =

∑t
i=1 dG(vi):

Alb(G + e) − Alb(G) = 2k.

Note that the last sum in each row taken over all edges of G which are not incident to the vertex u is
fixed and does not effect the Albertson index. �

This result means that the increase of the Albertson index when a new pendant edge e = uw is added
to a vertex u having degree dG(u) > 1 is equal to twice the number of the neighbouring vertices of u
which have degree less than or equal to dG(u).

Note that in Theorem 2.1, we had the condition that dG(u) = t > 1. We now specially mention a
frequently used and therefore very useful situation where dG(u) = t = 1, that is, the vertex u of G is a
pendant vertex:

Theorem 2.2. Let G be a connected simple graph with at least three vertices. If u is a pendant vertex,
then adding a new (pendant) edge to u does not change Alb(G).

Proof. Let u be a pendant vertex of the graph G and let v be its unique neighbour in G with degree
dG(v), see Figure 1. Then

Alb(G) = dG(v) − dG(u) +
∑

rs∈E(G),r,s,u

|dG(r) − dG(s)|

= dG(v) − 1 +
∑

rs∈E(G),r,s,u

|dG(r) − dG(s)|.
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Figure 1. Adding a pendant edge at a pendant vertex.

Adding a new pendant edge uw to G at u increases dG(u) by 1 and clearly dG+e(w) = 1 implying

Alb(G + e) = dG(v) − 2 + 2 − 1 +
∑

rs∈E(G),r,s,u

|dG(r) − dG(s)|

= dG(v) − 1 +
∑

rs∈E(G),r,s,u

|dG(r) − dG(s)|

as G + e has at least four vertices. That gives the result. �

The condition that G has at least three vertices is necessary as when G has only one vertex, it is
trivial; and if G has two vertices then G is P2 and adding a new edge to obtain P3 increases Alb(G) by
2.

Finally, we try to determine the effect of adding a new edge on Alb index, which joins two existing
non-adjacent vertices of G:

Theorem 2.3 (Joining two existing non-adjacent vertices of G). Assume that G is a connected simple
graph and let u and v be two non-adjacent vertices of G. Let dG(u) = t and dG(v) = k. Let us denote the
degrees of the t neighbours x1, x2, · · · , xt of u with r1, r2, · · · , rt, and the degrees of the k neighbours
y1, y2, · · · , yk of v with s1, s2, · · · , sk (some of xi’s could coincide with some of y j’s). Without loss of
generality, we can assume that ri ≤ t for 1 ≤ i ≤ t0 ≤ t and ri > t for t0 + 1 ≤ i ≤ t, and that s j ≤ k for
1 ≤ j ≤ k0 ≤ k and s j > k for k0 + 1 ≤ j ≤ k. If we add a new edge e = uv to G by joining the vertices
u and v, then

Alb(G + e) − Alb(G) = 2(t0 + k0 − min{k, t}).

Proof. Now

Alb(G) =

t∑
i=1

|dG(u) − ri| +

k∑
j=1

|dG(v) − s j| +
∑

rs∈E(G),r,s<{u,v}

|dG(r) − dG(s)|.

Let us add a new edge e = uv to join the non-adjacent vertices u and v in G. Denote the graph obtained
in this way by G + e. Then

Alb(G + e) =

t∑
i=1

|dG(u) + 1 − ri| +

k∑
j=1

|dG(v) + 1 − s j|

+ |dG(u) + 1 − (dG(v) + 1)| +
∑

rs∈E(G+e),r,s<{u,v}

|dG(r) − dG(s)|.
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Therefore

Alb(G + e) − Alb(G) =

t∑
i=1

(|t + 1 − ri| − |t − ri|)

+

k∑
j=1

(
|k + 1 − s j| − |k − s j|

)
+ |t − k|.

Now |t+1−ri|−|t−ri| = 1 or −1 according to ri ≤ t or ri > t, respectively. Similarly |k+1−s j|−|k−s j| =

1 or − 1 according to s j ≤ k or s j > k, respectively. Hence

Alb(G + e) − Alb(G) = t0 · 1 + (t − t0)(−1) + k0 · 1 + (k − k0)(−1) + |t − k|

= 2 (t0 + k0 − min{k, t}) .

�

Note that we can omit calculating the term |dG(u) − dG(v)| corresponding to the edges with
dG(u) = dG(v) by the definition of Albertson index Alb(G). We can apply this fact to paths and cycles.
Whenever there are n consecutive vertices on a path all of degree 2, replacing them with a single
vertex of degree 2 does not change the Albertson index. In [12], this method was called path
reduction. Similarly, if there are n successive vertices on a cycle all having degree 2, we can replace
them with only one vertex of degree 2. This is called cyclic reduction. These reduction ideas are very
useful in reducing the graphs under question to calculate the Alb(G). We can replace all branches of
length at least two with an edge. That is, we can calculate the Alb(G) for the graph on the right in
Figure 2 instead of calculating the same number which is the same for the graph on the left.

Figure 2. Path reduction: Both graphs have the same Albertson index.

For example, let Tr,s be the tadpole graph of order r + s obtained by adding a path of length s at a
vertex of a cycle of length r and let us want to calculate the Albertson index of the tadpole graphs T5,4,
T7,3 or in general Tr,s, with r ≥ 3 and s ≥ 1, instead, we can calculate only the Albertson index of T3,2

as all of these indices are the same after path and cyclic reduction.
The following transformation will be useful in solving the inverse problem for Albertson index:

Transformation 1. Let G be a graph possessing a vertex v of degree dG(v) ≥ 3. Let u be a pendant
vertex of G adjacent to v. Construct the graph G∗ by attaching two new pendant edges to u, cf. Figure
3 and 4.
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Figure 3. A graph G with a pendant vertex u.

Figure 4. Transformation 1 giving G∗.

The following result says that applying Transformation 1 to a connected simple graph having a
pendant vertex increases the Albertson index by 2:

Lemma 2.1. For any connected simple graph G, different from the null graphs and path graphs, with
at least four vertices,

Alb(G∗) = Alb(G) + 2. (2.1)

Proof. As dG(v) ≥ 3 and as Alb(G) = dG(v)− 1 +
∑

xy∈E(G−{u}) |dG(x)− dG(y)| and Alb(G∗) = dG(v)− 3 +

2 + 2 +
∑

xy∈E(G−{u}) |dG(x) − dG(y)|, we obtain the required result. �

Note that we had the condition that v is a vertex of degree at least 3 in defining Transformation 1.
If we omit this condition and allow that dG(v) could be any positive integer, then similarly to the proof
of Lemma 2.1, we would have

Alb(G) = Alb(G − u) + dG(v) − 1

for the graph G in Figure 3. The graph G + {e1, e2} in Figure 4 has

Alb(G + {e1, e2}) = Alb(G − u) + |dG(v) − 3| + 4.

Then we have,
Alb(G + {e1, e2}) − Alb(G) = |dG(v) − 3| − dG(v) + 5.

Now we have several cases to consider:
If dG(v) = 1, then G is P2 which has Albertson irregularity index equal to 0, and G + {e1, e2} is

S 4 = K1,3. In this case, the increase of Albertson irregularity index is 6 by Eq (2.1).

AIMS Mathematics Volume 6, Issue 1, 925–937.



931

If dG(v) = 2, then our graph G is as in Figure 5.

Figure 5. Graph G.

Applying Transformation 1 to G gives the graph in Figure 6.

Figure 6. Transformation 1 gives G∗.

Here the increase is 4 by Eq (2.1).
If dG(v) = 3, then the increase of Albertson index is equal to 2.

3. Effect of edge addition on Bell index

Secondly we focus on the Bell index. As it is defined by means of the average vertex degree, we
should concentrate on some properties of this special degree. Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)} be
a realizable degree sequence and G be one of its realizations. In [5], an invariant number denoted by
Ω(G) for a graph G was defined as

Ω(G) = a3 + 2a4 + 3a5 + · · · + (∆ − 2)a∆ − a1

=

∆∑
i=1

(i − 2)ai.

Some of its properties were studied in [5,6]. It is closely related to the cyclomatic number of the graph
gives direct information on all the realizations of a given degree sequence. Ω(G) has the following
important computational property: For any graph G,

Ω(G) = 2(m − n).
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In [5], the number r of the closed regions (faces) which are bounded by the edges of the graph G was
formulized by

r =
Ω(G)

2
+ 1.

Note that a closed region could be bounded by any n-cycle (n-gon) where n ≥ 3, a loop (1-gon) or
multiple edges (2-gon). Also in [6], some extremal problems on the numbers of components and loops
of all realizations of a given degree sequence. We now apply this new invariant Ω to Bell irregularity
index. First we prove the following lemma:

Lemma 3.1. The necessary and sufficient condition for the average vertex degree of a connected simple
planar graph to be greater than 2 is that Ω(G) ≥ 2.

Proof. Let the average vertex degree of a connected simple graph G be denoted by d. d > 2 iff m > n
iff G has at least two cycles iff Ω(G)

2 + 1 ≥ 2 by above iff Ω(G) ≥ 2. �

As we consider the integer values of the Bell index, we shall assume that the average vertex degree
d of G is an integer. In general, if n|2m, then d is a positive integer. In particular, when n is odd and
n|m, then d is a positive integer. We first have

Lemma 3.2. A tree Tn with n vertices has integer average vertex degree iff n|2. Hence no tree having
at least 3 vertices cannot have integer average vertex degree.

Proof. Let G � Tn be a tree with n vertices. Then it is well known that n = m + 1. Then the average
vertex degree is

d = 2m
n

=
2(n−1)

n
= 2 − 2

n

and for this number to be an integer we must have n|2. �

That is, among all trees, only those with 1 or 2 vertices can have integer average vertex degree.

Theorem 3.1. Let G be a connected graph. Adding a pendant edge to G does not change the average
vertex degree iff G is unicyclic. That is

dG+e = dG ⇔ r = 1.

Proof. Let the new pendant edge be e = uv as in Figure 7.

Figure 7. Adding a new pendant edge e.
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Let dG(u) be the degree of u in G. Then dG+e(u) = dG(u) + 1. Note that

dG =
∑

x∈V(G) dG(x)
n

= 2m
n

and
dG+e =

∑
x∈V(G+e) dG+e(x)

n+1
= 2m+2

n+1

as the degree of u increases by 1 and dG+e(v) = 1. Therefore to have dG+e = dG, we must have

2m
n

=
2m + 2
n + 1

and hence m = n. This means that Ω(G) = 2(m − n) = 0 and we have r = 1. That is G must be
unicyclic. �

Corollary 3.1. If G is a connected unicyclic graph, then dG = 2.

Proof. By Theorem 3.1, we know that m = n. So dG = 2m
n = 2. �

Theorem 3.2. The necessary and sufficient condition for Ω(G) = 0 is d = 2.

Proof. Ω(G) = 0 iff 2(m − n) = 0 iff m = n iff d = 2m
n = 2. �

Theorem 3.2 implies the following useful result:

Theorem 3.3. Let G be a connected simple graph. Then G is unicyclic iff m = n.

Proof.
G is unicyclic ⇔

Ω(G)
2 + 1 = 1

⇔ Ω(G) = 0
⇔ m = n.

�

Corollary 3.2. If Ω(G) = 0, then n ≥ 3.

Proof. By Theorem 3.2, d = 2. That is 2m
n = 2 implying m = n. We know that for a simple graph, we

have
m ≤

n(n − 1)
2

,

so the fact that m = n gives the required result. �

Theorem 3.4. Let G be a connected simple graph with average vertex degree d ≥ 2. Then

Ω(G) = (d − 2)n.

Proof. The fact that d = 2m/n implies that 2m = nd. As Ω(G) = 2(m − n), we obtain the result. �

We can now investigate the change of the Bell index under the addition of a pendant edge.
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Theorem 3.5. Let G be a connected unicylic graph and let u ∈ V(G) have degree dG(u). Then adding
a pendant edge to G at u increases the Bell index of G by 2dG(u) − 2.

Proof. Let G be a connected unicyclic graph. Then G + e is also a connected unicyclic graph as we add
a pendant edge. By Corollary 3.1, we have

dG = dG+e = 2.

Now
B(G) =

∑
x∈V(G)(dG(x) − dG)2

=
∑

x∈V(G−u)(dG(x) − 2)2 + (dG(u) − 2)2

and
B(G + e) =

∑
x∈V(G+e)(dG+e(x) − dG+e)2

=
∑

x∈V(G−u)(dG+e(x) − 2)2 + (dG+e(u) − 2)2 + (1 − 2)2

=
∑

x∈V(G−u)(dG(x) − 2)2 + (dG(u) − 1)2 + 1

implying that
B(G + e) − B(G) = 2dG(u) − 2

as required. �

Corollary 3.3. Let G be a connected unicyclic graph and let u ∈ V(G) be a pendant vertex. Adding a
new pendant edge to G at u does not change the Bell index.

Proof. As dG(u) = 1, by Theorem 3.5, the result follows. �

We can give another property of the average degree:

Theorem 3.6. Let G be a connected graph having at least three vertices and let u and v be two non-
adjacent vertices having degree dG(u) and dG(v), respectively. Let dG be an integer. If we add a new
edge e = uv to G, the obtained graph G + e has non-integer average vertex degree.

Proof. Let us assume that the degrees of the n vertices of G are dG(v1), dG(v2), · · · , dG(vn−2), dG(u) and
dG(v). Then the degrees of the same n vertices in G+e would be dG(v1), dG(v2), · · · , dG(vn−2), dG(u)+1
and dG(v) + 1. Hence

dG =

∑n−2
i=1 dG(vi) + dG(u) + dG(v)

n
is an integer by the assumption. Then

dG+e =
∑n−2

i=1 dG(vi)+dG(u)+dG(v)+2
n

= dG + 2
n

cannot be an integer as n ≥ 3. �

We now consider the general case of adding a new edge e which can be seperated into two: Adding
a new pendant edge at a vertex u of degree dG(u) and adding a new non-pendant edge between two
existing vertices u and v of the graph G. First we study the former case:
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Theorem 3.7. Let G be a connected graph. Let G + e be the graph obtained by adding a new pendant
edge e at an existing vertex u of degree dG(u). Then

B(G + e) − B(G) = −2
(
n − 3
n + 1

dG(u) + 4n − 3
)
.

Proof. Let e = uw. Recall that

B(G) =

(
dG(u) −

2m
n

)2

+
∑

v∈V(G),v,u

(
dG(v) −

2m
n

)2

.

The Bell index of G + e is

B(G + e) =
(
dG+e(u) − 2m+2

n+1

)2
+

(
dG+e(w) − 2m+2

n+1

)2
+

∑
v∈V(G+e),v,u,w

(
dG+e(v) − 2m+2

n+1

)2

=
(
dG(u) + 1 − 2m+2

n+1

)2
+

(
1 − 2m+2

n+1

)2
+

∑
v∈V(G),v,u

(
dG+e(v) − 2m+2

n+1

)2

as dG+e(u) = dG(u) + 1, dG+e(w) = 1 and as each vertex v of G + e different from u and w is a vertex of
G different from u. Hence

B(G + e) − B(G) = d2
G(u) + 1 + 4 (m+1)2

(n+1)2 + 2dG(u) − 4m+1
n+1 dG(u) − 4m+1

n+1

+
∑

v∈V(G+e),v,u,w

(
d2

G(v) − 4m+1
n+1 dG(v) + 4 (m+1)2

(n+1)2

)
+ 1 − 4m+1

n+1 + 4 (m+1)2

(n+1)2 − d2
G(u)

−4m
n dG(u) + 4m2

n2 +
∑

v∈V(G),v,u

(
d2

G(v) − 4m
n dG(v) + 4m2

n2

)
= −2

(
n−3
n+1dG(u) + 4n − 3

)
as

∑
v∈V(G),v,u dG(v) = 2m−2,

∑
v∈V(G),v,u 1 = n−1,

∑
v∈V(G+e),v,u,w dG+e(v) = 2mG+e−dG+e(u)−dG+e(w) =

2m − dG(u) and
∑

v∈V(G+e),v,u,w 1 = n − 1. �

Our last result deals with the case of adding a new non-pendant edge between two existing vertices
u and v of the graph G:

Theorem 3.8. Let G be a connected graph. Let G + e be the graph obtained by adding a new non-
pendant edge e between two existing vertices u and v of degrees dG(u) and dG(v) of G, respectively.
Then

B(G + e) − B(G) = 2
(
dG(u) + dG(v) + 1 −

4m + 2
n

)
.

Proof. Note that

B(G) =

(
dG(u) −

2m
n

)2

+

(
dG(v) −

2m
n

)2

+
∑

w∈V(G),w,u,v

(
dG(w) −

2m
n

)2

.

Similarly, the Bell index of G + e is

B(G + e) =
(
dG(u) + 1 − 2m+2

n

)2
+

(
dG(v) + 1 − 2m+2

n

)2
+

∑
w∈V(G),w,u,v

(
dG(w) − 2m+2

n

)2
.
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Hence
B(G + e) − B(G) = d2

G(u) + 1 + 4 (m+1)2

n2 + 2dG(u) − 4m+1
n dG(u) − 4m+1

n

+d2
G(v) + 1 + 4 (m+1)2

n2 + 2dG(v) − 4m+1
n dG(v) − 4m+1

n

+
∑

w∈V(G),w,u,v

(
d2

G(w) − 4m+1
n dG(w) + 4 (m+1)2

n2

)
−

[
d2

G(u) − 4m
n dG(u) + 4m2

n2 + d2
G(v) − 4m

n dG(v) + 4m2

n2

+
∑

w∈V(G),w,u,v

(
d2

G(w) − 4m
n dG(w) + 4m2

n2

)]
= 2

(
dG(u) + dG(v) + 1 − 4m+2

n

)
.

�

4. Conclusion

One of the ways of obtaining information on a graph by means of information on another graph
obtained from the first graph is the vertex and edge deletion and/or addition. When we know the
change of some parameter of a graph when a vertex or an edge is deleted or added, it is possible to
apply this operation successively and obtain the required parameter of a large graph by means of the
same parameter of a relatively smaller graph.

Regular graphs have some easily-guessed properties which makes irregular ones more popular. To
determine the irregularity of a graph, some irregularity indices such as Bell, Albertson, sigma indices
are introduced. In this work, the effect of edge and vertex addition on two of the irregularity indices,
Bell and Albertson indices, are determined.

As the irregularity is closely related to the variance of a graph, it is also possible to study the
connections between graph theory and statistics by means of the results given here.
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