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Abstract: For one spatial variable, a new kind of coupled system for nonlinear wave equations of
Emden-Fowler type is considered with boundary value and initial values. Under certain conditions
on the initial data and the exponent p, we show that the viscoelastic terms lead our problem to be
dissipative and that the global solutions cannot exist in L? beyond the given finite time i.e.,

)
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1. Introduction

Let x € (r;,rp),t € [1,T), T > 0,u; = uy(t, x) and u, = u,(t, x). We consider a new kind of coupled
system of Emden-Fowler type wave equations in viscoelasticities with strong nonlinear terms

P Outt = Uy, + flt,ui (8) Uixx (t — 5) ds = fi(ur,uz)  1n[1,T) X (r1,12),

wi(1, x) = uio(x) € H*(ry, o) N Hy(r1,12),

(1.1)
Auui(1, x) = uyy (x) € Hy(ry, 1),
u(t,r1)) =ui(t,r,) =0 in[1,7),
where i = 1,2 and
{ fi€1, &) = & + EPPIE + &) + 16 PE 6P (1.2)
HE1L,E) = &+ EPPTVE + &) + 1EPEIEIFT, '

for p > —1, r; are real numbers and the scalar functions y; (so-called relaxation kernels) are assumed
only to be nonincreasing u; € C'(R*,R") satisfying

;mm>o,yif e u(s)ds =1> 0. (1.3)
0

Many issues in physics and engineering pose problems that deal with coupled evolution equations.
For example, in diffusion theory and some mechanical applications, such evolution equations are in
the form of a system of nonlinear hyperbolic equations. An important example of such systems goes
back to [13], which introduced a three-dimensional system of space similar to our system, without
dissipations. (see [1,11,12,16,17]).

The Emden-Fowler equation has an impact on many astrophysics evolution phenomena. It has been
poorly studied by scientists until now, essentially of the qualitative point of view.

In 1862, Land [15] proposed the well known Lane-Emden equation

@M@@+ﬁﬂ:0, (1.4)

where p = 1.5 and 2.5. When p = 1, Eq (1.4) has a solution u = sin#/¢, and when p = 5, the explicit

solution is given by u = 1/+/1 + #2/3 ([2,3, 14]).
The generalization of such equation is given by

8,(tp8tu) +1u’ =0, t>0.

It was considered by Fowler [4-7] in a series of four papers during 1914-1931.
Next, the generalized Emden-Fowler equation

Opu+a®)ul’sgnu =0, >0,

was studied by Atkinson et al.
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Recently, M. R. Li in [8] considered and studied the blow-up phenomena of solutions to the Emden-
Fowler type semilinear wave equation

POuu—uy =u”  in[1,T)X(ry,r).

The present research aims to extend the study of Emden-Fowler type wave equation to the case when
the viscoelastic term is injected in domain [ry, r,] where there is no result about this topic as equations
and as coupled systems. Thus, a wider class of phenomena can be modeled.

The main results here are to exhibit the role of viscoelasticities, which makes our system (1.1)
dissipative. When the energy is negative, the blow up of solutions in L? at finite time given by

2 2 2 ) 2 rz 2 .
InT" = —— ol”d Dusouty — |t d ’
n p.,.](;frl |utio X)(;L (uoul |u0|) x)

will be the main result in Theorem 3.1.
The plan of this article is as follows. We present some notations and assumptions needed for our
results in section 2. Section 3 is devoted to the blow up result of solutions.

2. Preliminaries and position of problem

Under some suitable transformations, we can get the local existence of solutions to Eq (1.1). Taking
the first transform
7 =1n1, vi(T, x) = u(t, x),

fori =1,2, we have
Uixx = Vixxs 8[”,' = t‘lﬁTvi, tzc')t,ui = —8Tvl- + E)TTV,-.
Then problem (1.1) takes the form

OreVi = Viey + [ Hi()Vixe(T = $)ds = Oovi + fi(vi,va)  in [0,InT) X (ry, 1),

vi(0,x) = ujp(x) in (ry, 1),
(2.1)
a‘rvi(O’ x) = uil(x) in (rh 7'2),

vi(r,r)) =vi(t,r) =0 in[0,InT).
To make the second transformation, let
vi(t, x) = e"Pwi(t, X).
Since we have
A vi(t, x) = €0, wi(t, x) + %eT/ 2wi(T, X),

1
Bervi(T, X) = €20 wi(1, X) + €20, wil(t, X) + Ze” wi(t, X),
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then Eq in (2.1) can be rewritten as
T 1
€0 w; — ePwipy + f e(T_S)/lei(S)Wixx(T —s)ds = ZeT/ZWi + fi(eT/ZWIa ewy),

0

and converted to
g 1 2 2 2
OuWi — Wias + f e Pp(s)Win(t = 5)ds = Zwi + e fi(ePwn, P wa), (2.2)
0

with the corresponding initial and boundary conditions. Throughout this paper, we shall write w; =
w;(t, x) where no confusion occurs. The following technical Lemma will play an important role.

Lemma 2.1. Foranyy € C! (0, InT; H(ry, r2)) and i = 1,2, we have
%) !
f f e ui(8)y et — $)0y(1) ds dx
Il 0
1 ' P " 2
= Ec’?t( f e "PPut - p) f y(p) = yx(0)I* dx dp)
0 r

1 f %)
—Eat( f e ui(s) ds f |yx<t>|2dx)
0 r

1 )
+— f e PPt - p) f ye(p) — (O dxdp
0 r

AN

N =

! 1)
f R T () f ve(p) = yo(OF dxdp
0 r

1 "2
+5¢ Pt f y(0)* dx.

Proof. 1t’s not hard to see

1) !
f f e Ui(8)y et — $)0,y(D) ds dx
r 0

/ 2
3 f e_s/z,ui(s) f vi(t — $)0;y(t)dx ds
0 e

A 1)
- f e PPt - p) f y(p)0y.(t)dxdp
0 r

- fo e PPyt - p) f (v(p) = y:0))0y.(0) dx dp

t 2
- f e Ppi(s)ds f V(D)3 (1) dx.
0 r
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Consequently, we obtain

153 t
f f P p(8)y.alt — )3y(1) ds dx
1 0

1 A o 1)
= 3 f e ! f“/zu,-(r—p)a,( f () — y.()] dx)dp
0 r

1 ! 1)
) f e‘”zu,(s)dsa,( f (D) dx),
0 r

which implies

1) !
f f i)yt = $)0,y(r) ds dx
r 0

1 ! L %)
= Eat( f e" PPyt - p) f |yx<p)—yx<r>|2dxdp)
0 r
1 ' 2 & 2
2 f e PPt - p) f ve(p) = (O dxdp
0 r
1

! 1)
-5 f e PRt — p) f ve(p) = yo(OF dxdp
0 r

1 o "2
——a,( f e Pui(s)ds f |yx<r>|2dx)
2 0 r
l -1/2,, " 2
43¢ ) | P da.
rt

This completes the proof.

The modified energy associated to problem (2.2) is introduced as

2 r 2 t )
2E, (1) = Zf |0wil* dx + Z (1 — f e u(s) a’s)f Iwil* dx
i=1 Y i=1 0 gl
2 ! 1D
+) f e PPpi(r - p) f Wirp) = wi O dxdp
i=1 0 r

1 2 1) 1 1)
- f wil? dx — —— @+ f (|wl + w4 2|w1wzlp+2)dx,
4 7 r p + 2 rl

and

2 | 2 L&
2E,(0) = Zf (uil - 5”:‘0) dx + Z f lutiox|* dx — 1 Zf ol dx
im1 Vn izl v im1 Vn

(2.3)
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1 " 2p+2 2
—m ltro + ua0l*P*? + 2luiunl’** | dx.
I

For this energy, Lemma 2.3 leads to
0,E,(t) <0.

As in [10], one can easily verify that

2
e—t/2 Z atwiﬁ‘(et/zwl, et/2u2) — e(p+1)t0t(|wl + W2|2(p+2) + 2|W1W2|p+2),
i=1

20 +2)

and

2
e '? Z wifi(e*wy, e*w,) dx = e(’”l)t(lwl + w2 4 2|w1wz|p+2).
P

Next, we introduce the Dirichlet-Poincaré’s inequality in one spatial variable.

Lemma 2.2. Foranyv e Hé(rl , 1), we have

T _ 2 )
f |v|2dxs% f v dx.

Proof. From (2.1), we have w(t, r;) = w(t, ;) = 0. By the Fundamental Theorem of Calculus

w(s) = fs w.dx.

IW(S)ISf lwldx.

Recall the Cauchy-Schwar’s inequality

ffgdxs(ffzdx)l/z(fg2dx)l/2.

Apply this with f =1, g = |w,| to get

Therefore

lw(s)l

IA

S /
(f walza’X)1 (5=t
r

PSRNV 12
([ wiPdx) 2= )"
ry

IA

Squaring both sides gives

wis)P < f wilPdx)(rs = 1),

and finally we integrate over [r|, r,] to give the required.

(2.4)

(2.5)

(2.6)

O
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Now, in order to deal with nonlinear terms (1.2) which are considered as a sources of dissipativity in
(2.2), we need the next important Lemma. This Lemma shows that the energy functional is decreasing.

Lemma 2.3. Suppose that v € C'(0,InT; Hy(r1,r2)) N C*0,InT; L*(ry, rp)) is a solution of the semi-

linear wave equation (2.2). Then fort > 0, we have

+1 ! "2
E, (1) < E,(0) — 2p(p ) f ePHDs f (|w1 + w2 4 2|w1wz|p+2)dxds.
O r

Proof. Taking the L? product of (2.2); with d,w; yields

1) 193 1o !
f 0,w;0w;dx — f WiOW; dx + f f e‘sﬂﬂi(s)wixx(t —85)dso,w; dx
r1 rl r O

1 ) )
=7 f w;0w; dx + e_t/zf fiePwy, e*w)o,w; dx,
r I

fori = 1,2. Adding each other, we have

2
1 " 2 2 1 2
Ezat f (180 + wisf” = 21wl dx
2 1) !
Z f f e pi(IWinnlt = $)0wi(1) ds dx
I/ZZI Aw, fi(ewy, e*w,) dx.
i=1

n

Thus, by Lemma 2.1 and (2.4), we obtain

1o "2 1

52,0 f (180w, + sl = Jbwif* | dx

i=1 1

1 2 ! %)

+§Zat( f e PPpi(r - p) f |w,-x<p>—w,-x(r)|2dxdp)
i=1 0 r

1 2

-5 0,0 f e Pui(s)ds f Wi dx)

1< [

22 f PP - p) f Wir(p) = wi(OF dx dp
i=1 Y0

I [

—52 f 0t = p) f Wir(p) = wi O dxdp

(1) f Wi ()* dx

2.7)
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1 "2
= 012 8,(6("“”‘[1 [le +wy PPt 4 2|w1wz|p+2])dx

Pl [ 2(0+2) o+2
e | |11 + w7 4 2wyl *? | dx.

Dropping the positive terms from the left-hand side, we have

P +1 1)t " 2(p+2) +2
O.E, (1) < ———¢¥* Wy + w22 4 2w wolP | dx,
20+ 2) . [ ]

which gives the conclusion by integrating both sides with respect to . O

Remark 2.4. Concerning the local existence, we can follow the steps of results in [9] as equations,
with some modifications imposed by the existence of the memories terms, where we replace the operator

1 . .. .
0y—ADbyo,— A(l - fo ui(t—s) ds) with some conditions on the exponent p. The local existence results
for one equation still valid for a coupled system in the same type.

3. Blow up result

We prove that (u, u») blows up in L? at finite time T* in the following Theorem.
Theorem 3.1. Let p > —1 and (r, — r)* < 8. Suppose that

2
(ur,10) € (C'(0, T; Hy(r1,12)) 0 C*(0, T L2(r1, 1)),

is a weak solution of (1.1) with

2 ,2 1
e(0) := Zf Uip (u,-l - Euio) dx>0 and E,0)<O.
i=1 Y1

Assume that [ satisfies
204p+9) + (o + D(p +2)(rs = 1) <]
2(4p% + 16p + 17) _'

Then there exists T such that

2 s
Zf ;> dx — +c0  ast — T*,
i=1 Y7

where

2 2
InT* = [%(Zfz luiol* dx)(z f 2 (2uioui1 - |Mio|2) dx)_l-
=1 i1 Yn

24x+9)+ (x+ D(x+2)(ry — 1)
2(4x2+16x + 17) ’

Remark 3.2. Let

gx) =

AIMS Mathematics Volume 6, Issue 1, 442-455.
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Now that (r, — 1) < 8 holds, we have

4x* +18x+ 19
2 (4x2 + 16x + 17)°

dx8(x) = (2 =r)* =8) <0.

Thus by the monotonicity and p > —1, we obtain

("2—”1)2

2 = [liin gy <gx)<g(-1H=1.

Hence the assumptions of Theorem make sense.

Remark 3.3. In the case of r; = 0 and r, = 1, we introduce the example of u;(t) satisfying (1.3) and
assumptions of Theorem 3.1. Let

9
p>—1 and @ =e* for k> I

w0 dk—1 (1
I=1- [ etwimrg === 2 ).
‘ﬁe %1 \38

The condition g(p) < l is equivalent to

Then we have

9 8o+ 18

AR VI TSI

We need to state and prove the next intermediate Lemma.

Lemma 3.4. Under the assumptions in Theorem 3.1, we have

)
e(p“)’f (|w1 + wy PPt 4 2|w1w2|p+2) dx
r

2 s 1
>(p+2) ) f (100w + v = 1wl dx
i=1 Y

2 9] !
+p+2) ), f f e PPt = p) win(p) = win(D dp dx.
i=1 Y Y0

Proof. Let
)
L(t) = e("”)tf (|w1 + w2 4 2|w1w2|"+2) dx.
r

We have

2

W = o), [ [|atwi|2+(1— [ e-P/zu,(p)dp)W—}Uw,-ﬁ]dx
0

i=1 Y7
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+(p+2) Z f f TRt = p) wi(p) = wi D) dp dx
i=1
—2(p +2) E(1),

by (2.3). Since
E,(1) <0,

holds by (2.7), we have

Lo > <p+2)z f owiP + Th? = 7o) dx

+(p+2)2 f f SRt~ p) widp) = wi (DI dpdx,
i=1

by (1.3) and Lemma 2.3.
We are now ready to prove Theorem 3.1

Proof. (of Theorem 3.1)
Let

2 ry
A() = f lwi(z, x)* dx.
Then we have
2 >
9,A(f) = 2 Z f wit, X)0,wi(t, x) dx,
i=1 n

and

2 r 2 r
A = 2 f wi(t, X)0,wi(t, x) dx + 2 f 10,w;(t, X)|* dx
2 9] ! 1
= 2 Z f (Wiwixx - Wif €_p/2#i(P)Wixx(l —-p)dp + _|Wi|2 + |5th'|2
i=1 Y 0 4
2 r
+2 f e Pw, fi(ePwy, e*w,) dx
[ (=l + S 1)
= 2 f = wirl™ + =wi|” + [0wi|” ) dx
i=1 ! 4

2 1) !
2 [ [ et~ prdpds+ 220,
i=1 rl 0

By Lemma 2.4 and similar computation to Lemma 2.1 with Young’s inequality

b<a2+9b2
a —
26 2’
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fora,b > 0 and 8 > 0, we have

2 1o !
2y, f f e P (p)wiwint — p) dp dx
i=1 Y J0
2 1) !
-2 f f P (pwilwi(t = p) = win ()] dp dx
i=1 r1 0
2 %) !
¥2)" f f e (p)lwidF dp dx
i=1 Y 0
1 2 5] t P )
>(2-3)0 [ [ et apax
( 0); r 0
2 15} !
-0 f f e PPt = plwin(p) = wi 0 dp dx,
i=1 v J0

where 6 is a positive constant to be chosen later. This estimate implies that

2 ry 1
GAt) 2 2 f (= i + Zwif* + 10wif) dx
i=1 Y
1 2 19} !
-2 f fo e "Pu(p)wiF dp dx
i=1 Y7
2 9 !
-0y f f e PPt = p)lwin(p) = wid ) dp dx
i=1
+2(p+2)Z f 0wil? + lwil? - |w|)

1200 +2) f f PRyt~ ) Iwap) — waOF dpdx,

by using Lemma 3.4. Hence we choose 6 = 2(p + 2) to obtain

2 r 1
dA®D) = 2 f (= i + 2wl + 10wif) dx
i=1 s
1 2 %) !
_ PRu(p)win®? dpd
2(p+2);f” foe (Pwi (O dp dx
: " 2 2 1 2
+2<p+2>; f (10wl + Iwi? = Z 1) dix
2 ry
2(p+3) f |0,wi|* dx
-1 \w> (™
2 2)[-2— ;
+( (0+2)1 2(p+2));f” wirl® dx

\%
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2

2
2
Seon <p+1>;£ Wil dx

S 4P+ 16p+ 17 S,
> 2(p+3) Z f |0, wil* dx + 0 +2) (- gp) Z f lwil” dx,
i=1 Y7 =1 YN

by Lemma 2.2, we have
2 s
FuA) 2 2p+3) ) f 0w dx, 3.1)
i=1 Y71

where g(p) is defined in Remark 3.2. Now under the assumption e¢(0) > 0, (3.1) yields
0,A(t) = 0,A(0) > 0,
and
A(t) > A(0) + 0,A(0)t > A(0) > 0.

Here, thanks to e(0) > 0, A(0) > 0 follows. Hence we have just showed that A(¢) blows up. To complete
the proof, we’ll prove that the blow-up time 77 is finite. As in [8], let us now set

J(@) = A, 2k=p+1>0.
We have only to show that J(7) reaches O in finite time. Then we have
8,J(t) = —kA(H ™ 19,A(t) < 0,
and

0ud(t) = —kAW[AMBAWD) - (k+ DIAWD|

2 r
< kAW [0,A0) - 200+ 3) ) f Owil* dx|
i=1 Y"1
< 0, (32)

by using Cauchy-Schwarz and Holder’s inequalities. Integrating (3.2) twice, we have
0 < J(t) <JO)+9,J(0).
Noting that J’(0) < 0, we take
roo _JO 1 Siy 7 ol dx )" ZZ: frz .
JO) p+lyr, frlrz wowadx P+ 1 S,

so that J(#) — O as t — T7. Thus for a solution w; of (2.2), we obtain

2 r2
A(r) = Z f wi(t, X)|* dx — +oo,
i=1 r

ast — Ti‘. Since
2
Z f ui(t, )2 dx = e"A(t) = tA(In 1),
=1 T

holds for all 7 € [1,exp T ") by denoting w; = w;(t, x), the conclusion follows right away together with
T" =expTyj. i
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