
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(1): 404–419.
DOI:10.3934/math.2021025
Received: 15 July 2020
Accepted: 14 September 2020
Published: 15 October 2020

Research article

A fractional Landweber iterative regularization method for stable analytic
continuation

Fan Yang∗, Qianchao Wang and Xiaoxiao Li

School of Science, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People’s Republic
of China

* Correspondence: Email: yfggd114@163.com.

Abstract: In this paper, we consider the problem of analytic continuation of the analytic function
g(z) = g(x + iy) on a strip domain Ω = {z = x + iy ∈ C| x ∈ R, 0 < y < y0}, where the data is
given only on the line y = 0. This problem is a severely ill-posed problem. We propose the fraction
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accuracy of the proposed methods.
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1. Introduction

The problem for analytic continuation of an analytic function is encountered in many practical
applications (see,e.g., [1–4] and the references therein), and the numerical analytic continuation is a
more interesting and hard problem. It is well known, in general, to be ill-posed in the sense that the
solution does not depend continuously on the data. To obtain stable numerical algorithms for ill-posed
problems, some effective regularization methods must be adopted, and several nonclassical methods
have been developed rapidly in recent years. In [5], the authors used the fourier truncation
regularization method to solve this problem. In [6], the authors used the modified kernel method to
solve this problem. In [7], the authors used the generalized Tikhonov regularization method to solve
this problem. In [8], the authors used the optimal filtering method to solve this problem and obtained
the optimal error estimate. However in [5–8], the regularization parameter is chosen by the a priori
choice which depends on the a priori bound E. But in practice, the a priori bound doesn’t know for
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sure, and working with a wrong constant E may lead to the bad regularization solution. In [9], the
authors study a continuous fractional regularization method called FAR. In this work, it is strictly
proved that FAR is an accelerated algorithm relative to the comparable order optimal regularization
method if the fractional order is in the range of (1, 2). In [10], the authors study the convergence of
Landweber iteration for linear and nonlinear inverse problems in Hilbert scale. Different from the
usual application of Hilbert scale in the framework of regularization method, the case of s < 0 (for
Tikhonov regularization) corresponds to the weaker regularization standard in the regularization
method. In [11], the authors propose a new iterative regularization method for solving ill-posed linear
operator equations. The prototype of these iterative regularization methods is a second-order
evolution equation with linear vanishing damping term. It can not only be regarded as an extension of
asymptotic regularization, but also as a continuous simulation of Nesterov accelerated scheme. They
also discussed the application of the newly developed accelerated iterative regularization method with
a posteriori stopping rule in diffusion-based bioluminescence tomography, which is modeled as an
inverse source problem of elliptic partial differential equations with both Dirichlet and Neumann
boundary data. In [12,13], the authors used the modified Tikhonov regularization method to solve this
problem, and gave the error estimates between the regularization solution and the exact solution under
the a priori and a posteriori regularization parameter choice rules, respectively. However, under the a
posteriori regularization selection rule, the form of error estimation is logarithmic. In [14–17], the
authors used the iterative regularization method, wavelet regularization method, a modified Tikhonov
regularization method and a modified Lavrentiev iterative regularization method to solve this
problem. Under two regularization parameter choice rules, the Hölder type error estimates were all
obtained. In this paper, we use fraction Landweber iterative regularization method and Landweber
iterative regularization method to solve this problem. Landweber regularization method which is very
useful to solve the inverse problem overcomes the saturation phenomenon of Tikhonov regularization
method. The Landweber regularization method first comes from [18]. Now, the Landweber
regularization method has been used to solve a lot of inverse problem, one can see [19–24]. In [25],
Xiong firstly proposed Fractional Landweber regularization in 2017. Compared with the standard
Landweber method, it reduces the step of the iteration greatly.

We can sum up the problem as follows. Suppose the domain Ω is

Ω := {z = x + iy ∈ C|x ∈ R, 0 < y < y0, y0 > 0} (1.1)

in complex plane C, i is the imaginary unit and y0 is a positive constant. The function g(z) = g(x + iy)
is an analytic function in Ω. g(· + iy) ∈ L2(R2) for all y ∈ [0, y0]. The data at y = 0 is the given
measurement data, i.e., g(z)|y=0 = g(x) ∈ L2(R). Let the noise data be gδ(x), which belongs to L2(R).
And g(x), gδ(x) satisfy

‖g(·) − gδ(·)‖ ≤ δ, (1.2)

where δ is the noise level, ‖ · ‖ is L2(R) norm. Moreover, assume there holds the following a priori
bound

‖g(· + iy0)‖ ≤ E, (1.3)

where E is a fixed positive constant.
ĝ is the Fourier transform of the function g(x), which is expressed as follows

ĝ(ξ) :=
1
√

2π

∫ ∞

−∞

e−ixξg(x)dx, (1.4)
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and the inverse Fourier transform of the function ĝ(ξ) is

g(x) :=
1
√

2π

∫ ∞

−∞

eixξĝ(ξ)dξ. (1.5)

The L2(R) norm for g(x) is defined by

‖g‖L2(R) := (
∫ ∞

−∞

|g(x)|2dx)
1
2 , (1.6)

and by utilizing the Parseval formula,

‖g‖L2(R) := (
∫ ∞

−∞

|g(x)|2dx)
1
2 = (

∫ ∞

−∞

|ĝ(ξ)|2dξ)
1
2 . (1.7)

The problem that needs to be solved is wielding the measurement data g(x + iy)|y=0 to recover the data
g(x + iy) for 0 < y < y0. By using the inverse Fourier transform with the respect to the variable x,

g(z) = g(x + iy) =
1
√

2π

∫ ∞

−∞

ei(x+iy)ξĝ(ξ)dξ =
1
√

2π

∫ ∞

−∞

e−yξeixξĝ(ξ)dξ. (1.8)

Therefore, we get the following equation

̂g(· + iy)(ξ, y) = e−yξĝ(ξ), (1.9)

i.e.,
eyξ ̂g(· + iy)(ξ, y) = ĝ(ξ). (1.10)

Problem (1.10) also can be denoted by the linear operator equation

K̂(ξ) ̂g(· + iy)(ξ, y) = ĝ(ξ). (1.11)

where K̂(ξ) := eyξ is a multiplication operator. By [27], we know that problem (1.10) is a linear
ill-posed operator equation.

The clue of this paper is as follows. In section 2, fractional Landweber iterative regularization
method and the a priori error estimation are proposed. In section 3, the a posteriori error estimations
between the exact solution and the approximate solution are given. In section 4, several examples are
selected to show the effectiveness of this method for solving this problem.

2. The convergence error estimate with an a priori parameter choice rule

Now, we take on a regularization method which is called Landweber regularization method. And
the Eq (1.11) could be described as the following operator equation

̂g(· + iy)(ξ, y) = (I − aK̂ ∗ K̂) ̂g(· + iy)(ξ, y) + aK̂ĝ(ξ) (2.1)

to replace K̂ ̂g(· + iy)(ξ, y) = ĝ(ξ), where 0 < a < 1
‖K‖2 . Therefore, the form of iterative scheme is as

follows:  ̂g0,δ(· + iy)(ξ, y) = 0,
̂gm,δ(· + iy)(ξ, y) = (I − aK̂ ∗ K̂) ̂gm−1,δ(· + iy)(ξ, y) + aK̂ĝδ(ξ),

(2.2)
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m = 1, 2, 3, · · · is the iterative steps. Combined with noise disturbance term ĝδ(ξ), the approximate
solution obtained by Landweber iterative regularization method can be expressed as

̂gm1,δ(· + iy)(ξ, y) = Rm1(ξ, y)ĝδ(ξ), (2.3)

where

Rm1(ξ, y) =

e−yξ, ξ ≥ 0,
1−(1−ae2yξ)m1

eyξ , ξ < 0.
(2.4)

The fractional Landweber regularization solution is

̂gm,δ(· + iy)(ξ, y) = Rm(ξ, y)ĝδ(ξ), (2.5)

where

Rm(ξ, y) =

e−yξ, ξ ≥ 0,
[1−(1−ae2yξ)m]γ

eyξ , ξ < 0,
(2.6)

where 0 < γ < 1 is a constant.
Now, we first give some useful Lemmas.

Lemma 2.1. Take p > 0, q > 0, then

sup
s≤0

(1 − aeps)meqs ≤ (
q

aq + apm
)

q
p , (2.7)

where m, a are both positive constants and a satisfies 0 < a < 1
‖K‖2 .

Proof. Let F(s) := (1 − aeps)meqs. Based on lims→0 F(s) = lims→−∞ = 0, thus we can presume

F(s) ≤ sup
s≤0

F(s) ≤ F(s0),

where s0 < 0, satisfies F′(s0) = 0. We can easily calculate s0 = 1
p ln q

aq+amp , so we have

F(s) ≤ (1 −
q

q + mp
)m(

q
aq + amp

)
q
p ≤ (

q
aq + amp

)
q
p .

Lemma 2.2 [5]. If ‖g(· + iy0)‖ ≤ E, we obtain

‖g(· + iy)‖ ≤ E
y

y0 δ
1− y

y0 (1 + o(1)). (2.8)

Lemma 2.3. For 1
2 < γ < 1, 0 < a < 1

‖K‖2 and m ≥ 1, we can get

sup
ξ<0

[1 − (1 − ae2yξ)m]γ
1

eyξ ≤ a
1
2 m

1
2 .

Proof. Because 0 < a < 1
‖K‖2 , so we obtain 0 < ae2yξ < 1. We define two functions with β2 = ae2yξ:

ϕ(β) = a[1 − (1 − β2)m]2γβ−2

and
ψ(β) = [1 − (1 − β2)m]2γβ−2.
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Consequently, ϕ(β) = aψ(β). These two functions are continuous when β ∈ (0, 1).
For 1

2 < γ < 1 and β ∈ (0, 1), by Lemma 3.3 in [26], we obtain

ψ(β) ≤ m.

Therefore,

sup
ξ<0

[1 − (1 − ae2yξ)m]γ
1

eyξ ≤ a
1
2 m

1
2 .

Theorem 2.3. Assume (1.2) and (1.3) hold, if we select

m =
[E
δ

] 2y
y0 , (2.9)

then we obtain,
‖gm,δ(· + iy) − g(· + iy)‖ ≤ C1E

y
y0 δ

1− y
y0 + δ, (2.10)

where [m] denotes the largest integer less than or equal to m, C1 = ( y0−y
ay )

y0−y
2y +

√
a.

Proof. By the triangle inequality and Parseval equality, we have

‖gm,δ(· + iy)(ξ, y) − g(· + iy)(ξ, y)‖

= ‖ ̂gm,δ(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y)‖

≤ ‖ ̂gm,δ(· + iy)(ξ, y) − ̂gm(· + iy)(ξ, y)‖ + ‖ ̂gm(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y)‖.

Using (2.6), we obtain

‖ ̂gm,δ(· + iy)(ξ, y) − ̂gm(· + iy)(ξ, y)‖

= (
∫ ∞

−∞

|Rm(ξ, y)(ĝδ(ξ) − ĝ(ξ))|2dξ)
1
2

= (
∫ +∞

0
|e−yξ(ĝδ(ξ) − ĝ(ξ))|2dξ)

1
2

+ (
∫ 0

−∞

|
[1 − (1 − ae2yξ)m]γ

eyξ (ĝδ(ξ) − ĝ(ξ))|2dξ)
1
2

≤ (sup
ξ>0

e−yξ)(
∫ +∞

0
|ĝδ(ξ) − ĝ(ξ)|2dξ)

1
2

+ (sup
ξ<0

(
[1 − (1 − ae2yξ)m]γ

eyξ )2)
1
2 (
∫ 0

−∞

|ĝδ(ξ) − ĝ(ξ)|2dξ)
1
2

≤
[
(sup
ξ≥0

e−yξ) + (sup
ξ<0

[1 − (1 − ae2yξ)m]γ

eyξ )
]
(
∫ +∞

−∞

|(ĝδ(ξ) − ĝ(ξ))|2dξ)
1
2

≤ (1 + sup
ξ<0

B1(ξ))δ,

where B1(ξ) := [1−(1−ae2yξ)m]γ

eyξ . According to Lemma 2.3,we obtain

sup
ξ<0

B1(ξ) ≤
√

am,
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then,
‖ ̂gm,δ(· + iy)(ξ, y) − ̂gm(· + iy)(ξ, y)‖ ≤

√
amδ + δ. (2.11)

Because 0 < 1 − (1 − ae2yξ)m < 1 and 1
2 < γ < 1, so [1 − (1 − ae2yξ)m]γ > [1 − (1 − ae2yξ)m]. Futher, we

can get 1 − [1 − (1 − ae2yξ)m]γ < 1 − [1 − (1 − ae2yξ)m] = (1 − ae2yξ)m. By (1.10), lemma 2.1, and (1.3),
(2.6), we get

‖ ̂gm(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y)‖

= (
∫ ∞

−∞

|Rm(ξ, y)ĝ(ξ) −
1

eyξ ĝ(ξ)|2dξ)
1
2

= (
∫ 0

−∞

|(
[1 − [1 − (1 − ae2yξ)m]γ]

eyξ )ĝ(ξ)|2dξ)
1
2

≤ (
∫ 0

−∞

|
(1 − ae2yξ)m

eyξ−y0ξ
̂g(· + iy0)(ξ, y0)|2dξ)

1
2

= (
∫ 0

−∞

|
(1 − ae2yξ)m

eyξ−y0ξ
̂g(· + iy0)(ξ, y0)|2dξ)

1
2

≤ (sup
ξ≤0

(1 − ae2yξ)m

eyξ−y0ξ
)(
∫ 0

−∞

| ̂g(· + iy0)(ξ, y0)|2dξ)
1
2

≤ (sup
ξ≤0

(1 − ae2yξ)m

eyξ−y0ξ
)(
∫ +∞

−∞

| ̂g(· + iy0)(ξ, y0)|2dξ)
1
2

≤ (sup
ξ≤0

(1 − ae2yξ)m

eyξ−y0ξ
)E

≤ (
y0 − y

a(y0 − y) + 2amy
)

y0−y
2y E

≤ (
y0 − y
2may

)
y0−y

2y E ≤ (
y0 − y

(m + 1)ay
)

y0−y
2y E.

Then
‖ ̂gm(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y)‖ ≤ (

y0 − y
(m + 1)ay

)
y0−y

2y E. (2.12)

Due to m =
[E
δ

] 2y
y0 , we obtain

m ≤ (
E
δ

)
2y
y0 ≤ m + 1. (2.13)

Combining (2.11), (2.12) and (2.13), we obtain

‖gm,δ(· + iy)(ξ, y) − g(· + iy)(ξ, y)‖ ≤
[
(
y0 − y

ay
)

y0−y
2y +

√
a
]
E

y
y0 δ

1− y
y0 + δ.

3. The convergence error estimate with an a posteriori parameter choice rule

In the following text, the Morozov’s discrepancy principle is used to select regularization parameter
m. We choose m to satisfy the first occurrence of

‖K̂ ̂gm,δ(· + iy)(ξ, y) − ĝδ(ξ)‖ ≤ rδ, (3.1)
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where ‖ĝδ(ξ)‖ > rδ, and r > 1 is a constant.
Lemma 3.1. Suppose ρ(m) = ‖K̂ ̂gm,δ(· + iy)(ξ, y) − ĝδ(ξ)‖, we can deduce the following properties

(a) ρ(m) is a continuous function;

(b) lim
m→0

ρ(m) = ‖gδ‖;

(c) lim
m→∞

ρ(m) = 0;

(d) ρ(m) is a strictly decreasing function.

Lemma 3.2. If m is chosen by (3.1), then we can obtain

m ≤ C2(
E

(r − 1)δ
)

2y
y0 , (3.2)

here C2 =
y0
ay .

Proof. Because (1 − ae2yξ) ≤ 1 and 1
2 < γ < 1, so we have [(1 − ae2yξ)m−1]γ ≤ 1. According to (3.1),

(2.6), (1.10) and lemma 2.1, we obtain

rδ ≤ (
∫ +∞

−∞

|K̂Rm−1ĝδ(ξ) − ĝδ(ξ)|2dξ)
1
2

= (
∫ 0

−∞

|[(1 − ae2yξ)m−1]γĝδ(ξ)|2dξ)
1
2

≤ (
∫ 0

−∞

|ĝδ(ξ)|2dξ)
1
2

≤ (
∫ 0

−∞

|(ĝδ(ξ) − ĝ(ξ))|2dξ)
1
2 + (

∫ 0

−∞

|(1 − ae2yξ)m−1ĝ(ξ)|2dξ)
1
2

≤ δ + (
∫ 0

−∞

|(1 − ae2yξ)m−1ey0ξ ̂g(· + iy0)(ξ, y0)|2dξ)
1
2

≤ δ + (sup
ξ<0

ey0ξ(1 − ae2yξ)m−1)(
∫ 0

−∞

| ̂g(· + iy0)(ξ, y0)|2dξ)
1
2

≤ δ + (sup
ξ<0

ey0ξ(1 − ae2yξ)m−1)(
∫ +∞

−∞

| ̂g(· + iy0)(ξ, y0)|2dξ)
1
2

≤ δ + (sup
ξ<0

ey0ξ(1 − ae2yξ)m−1)E

≤ δ + E(
y0

2a(m − 1)y + ay0
)

y0
2y

≤ δ + E(
y0

amy
)

y0
2y .

So
m ≤

y0

ay
(

E
(r − 1)δ

)
2y
y0 .

Lemma 3.3. Using (1.2) and (3.1), we can obtain

‖K̂( ̂gm(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y))‖ ≤ (r + 1)δ. (3.3)
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Proof. Because (1 − ae2yξ) ≤ 1 and 1
2 < γ < 1, so we have [(1 − ae2yξ)m]γ ≤ 1. Therefore,we obtain

‖K̂( ̂gm(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y))‖

= (
∫ +∞

−∞

|K̂( ̂gm(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y))|2dξ)
1
2

= (
∫ 0

−∞

|[(1 − ae2yξ)m]γĝ(ξ)|2dξ)
1
2

≤ (
∫ 0

−∞

|ĝ(ξ)|2dξ)
1
2

≤ (
∫ 0

−∞

|(ĝ(ξ) − ĝδ(ξ))|2dξ)
1
2

+ (
∫ 0

−∞

|(1 − ae2yξ)mĝδ(ξ)|2dξ)
1
2

≤ (
∫ +∞

−∞

|ĝ(ξ) − ĝδ(ξ)|2dξ)
1
2 + rδ

≤ δ + rδ = (1 + r)δ.

Theorem 3.4. Assuming that the a priori condition (1.3) and the noise assumption (1.2) hold. If the
regularization parameter m = m(δ) satisfies the iteration stopping criterion (3.1), we can obtain the
following convergence error estimates:

‖gm,δ(· + iy)(ξ, y) − g(· + iy)(ξ, y)‖ ≤ C3E
y

y0 δ
1− y

y0 + δ, (3.4)

where C3 = [(r + 1)1− y
y0 +

√
y0
2y (r − 1)

−y
y0 ].

Proof. By Parseval’s theorem and triangle equation

‖gm,δ(· + iy)(ξ, y) − g(· + iy)(ξ, y)‖ (3.5)

= ‖ ̂gm,δ(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y)‖,

≤ ‖ ̂gm,δ(· + iy)(ξ, y) − ̂gm(· + iy)(ξ, y)‖,

+ ‖ ̂gm(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y)‖,
= I1 + I2.

Using (2.11) and lemma 3.2, we can approximate I1

I1 := ‖ ̂gm,δ(· + iy)(ξ, y) − ̂gm(· + iy)(ξ, y)‖ (3.6)

≤
√

amδ + δ (3.7)

≤
√

a
√

y0

2ay
(

E
(r − 1)δ

)
y

y0 δ + δ (3.8)

=

√
y0

2y
(

1
r − 1

)
y

y0 E
y

y0 δ
1− y

y0 + δ. (3.9)
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Because 0 < 1 − (1 − ae2yξ)m < 1 and 1
2 < γ < 1, so [1 − (1 − ae2yξ)m]γ > [1 − (1 − ae2yξ)m]. Futher,

we can get 1 − [1 − (1 − ae2yξ)m]γ < 1 − [1 − (1 − ae2yξ)m] = (1 − ae2yξ)m. Using Hölder inequality and
(1.3), (2.6), lemma 3.3, we can estimate I2

I2 := ‖ ̂gm(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y)‖

= (
∫ +∞

−∞

| ̂gm(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y)|2dξ)
1
2

= (
∫ 0

−∞

|
[1 − [1 − (1 − ae2yξ)m]γ]

eyξ ĝ(ξ)|2dξ)
1
2

≤ (
∫ 0

−∞

|
[1 − (1 − (1 − ae2yξ)m)]

eyξ ĝ(ξ)|2dξ)
1
2

= (
∫ 0

−∞

|
(1 − ae2yξ)m

eyξ ĝ(ξ)|2dξ)
1
2

= (
∫ 0

−∞

|
1

eyξ ĝ
y

y0 (ξ)(1 − ae2yξ)mĝ
y0−y

y0 (ξ)|2dξ)
1
2

≤ [(
∫ 0

−∞

|
1

eyξ ĝ
y

y0 (ξ)|
2y0

y dξ)
y

y0 · (
∫ 0

−∞

|(1 − ae2yξ)mĝ
y0−y

y0 (ξ)|
2y0

y0−y dξ)
y0−y

y0 ]
1
2

= [(
∫ 0

−∞

|e−2y0ξĝ2(ξ)|dξ)
y

y0 · (
∫ 0

−∞

|ĝ2(ξ)(1 − ae2yξ)
2my0
y0−y |dξ)

y0−y
y0 ]

1
2

≤ [(
∫ +∞

−∞

|e−2y0ξĝ2(ξ)|dξ)
y

y0 · (
∫ 0

−∞

|ĝ2(ξ)(1 − ae2yξ)2m|dξ)
y0−y

y0 ]
1
2

≤ E
y

y0 [(r + 1)δ]1− y
y0 .

Finally, based on the above two estimates, the a posteriori estimate is obtained as follows

‖ ̂gm,δ(· + iy)(ξ, y) − ̂g(· + iy)(ξ, y)‖ ≤ [(r + 1)1− y
y0 +

√
y0

2y
(r − 1)

−y
y0 ]E

y
y0 δ

1− y
y0 + δ.

4. Numerical implementation and numerical examples

In this section, we illustrate the effectiveness of the fractional Landweber iterative regularization
method for solving this problem through different examples. Examples are the same as those in [5].
For the sake of calculation, we fix y0 = 1 and the domain is

Ω := {z = x + iy ∈ C||x| ≤ 10, 0 < y < y0, y0 > 0}. (4.1)

The data g(x) has error, which is expressed as follows

gδ = g + εrandn(size(g)), (4.2)

where “randn(·)” generates a random number that obeys the standard normal distribution. Use the
following equation to express the noise level

δ = ‖gδ − g‖L2 :=

√√
1

M + 1

M+1∑
n=1

|gδ(n) − g(n)|2. (4.3)
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Under numerical calculation, we select M = 100, p = 2 and the a priori bound is E = ‖g‖L2 .
The way to calculate the approximate solution is fast Fourier transform. We present the error between
g(x + iy) and gm,δ(x + iy) under the means of L2 norm,

ea(g(x + iy)) := ‖gm,δ(x + iy) − g(x + iy)‖. (4.4)

Example 1. Take function

g(z) = e−z2
= e−(x+iy)2

= ey2−x2
(cos(2xy) − i sin(2xy)),

with g(x) = e−x2
, Reg(z) = ey2−x2

cos(2xy), Img(z) = ey2−x2
sin(2xy).

Example 2. Take function

g(z) = cos(z) = cos(x + iy) = cosh(y) cos(x) − i sinh(y) sin(x),

with g(x) = cos(x), Reg(z) = cosh(y) cos(x), Img(z) = − sinh(y) sin(x).
Figure 1 shows the comparison of the real parts of the exact solution and the approximate solution

at y = 0.5 and y = 0.9 for different noise levels ε = 0.1, 0.001 for example 1. Figure 2 shows the
comparison of the imaginary parts of the exact solution and the approximate solution at y = 0.5 and
y = 0.9 for different noise levels ε = 0.1, 0.001 for example 1.
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Figure 1. For example 1: (a) and (b) Real part at y = 0.5, ε = 0.1, 0.001, (c) and (d) Real
part at y = 0.9, ε = 0.1, 0.001.
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Figure 2. For example 1: (e) and (f) Imaginary part at y = 0.5, ε = 0.1, 0.001, (g) and (h)
Imaginary part at y = 0.9, ε = 0.1, 0.001.

Figure 3 shows the comparison of the real parts of the exact solution and the approximate solution
at y = 0.1 and y = 0.5 for different noise levels ε = 0.01, 0.001 for example 2. Figure 4 shows the
comparison of the imaginary parts of the exact solution and the approximate solution at y = 0.1 for
different noise levels ε = 0.01, 0.001 and y = 0.5 for different noise levels ε = 0.001 for example 2.

From Figures 1–4, we can find that the smaller the ε is, the better the computed approximation is.
And the bigger the y is, the worse the computed approximation is. The fitting effect of example 2 is
better than that of example 1.
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Figure 3. For example 2: (a) and (b) Real part at y = 0.1, ε = 0.01, 0.001 , (c) abd (d) Real
part at y = 0.5, ε = 0.01, 0.001.
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Figure 4. For example 2: (e) and (f) Imaginary part at y = 0.1, ε = 0.01, 0.001, (g) Imaginary
part at y = 0.5, ε = 0.001.
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Table 1 shows the error results for different y and ε in example 1. We take γ = 0.55 and γ = 1 for
comparison. According to the data in Table 1, we can see that the smaller the γ, the smaller the error
result. The larger y is, the smaller the error result is, which is consistent with the error estimation result
obtained in Section 3.

Table 1. Comparison of the error corresponding to Example 1 for various values of ε, γ and
y.

ε 0.01 0.001 0.0001
y = 0.3 γ = 0.55 Re 0.3185 0.0923 0.0755

Im 0.3111 0.0929 0.0788
γ = 1 Re 0.9560 0.7388 0.6420

Im 0.9406 0.7352 0.6383

y = 0.5 γ = 0.55 Re 0.2306 0.0831 0.0371
Im 0.2216 0.0857 0.0392

γ = 1 Re 0.3525 0.2821 0.2171
Im 0.3480 0.2760 0.1920

y = 0.9 γ = 0.55 Re 0.1718 0.0570 0.0068
Im 0.1851 0.0568 0.0100

γ = 1 Re 0.2874 0.1184 0.0874
Im 0.2659 0.1141 0.0916

Table 2 shows the results of example 1 for different iteration steps m for y and ε. We take γ = 0.55
and γ = 1 for comparison. From the data in Table 2, we can see that the smaller the γ, the smaller
the iteration steps m. When y is larger, the number of iteration steps m is larger, which means that the
better the image fitting effect, the greater the value of iteration steps m.

In addition, when γ = 0.55, the regularization method involved is fractional Landweber iterative
regularization method. When γ = 1, it is the standard Landweber iterative regularization method. It
can be seen from Tables 1–3 that the results of fractional Landweber iterative regularization method
are significantly less than those of Landweber iterative regularization method in terms of error and
iteration steps m. Therefore, the fractional Landweber iterative regularization method is more effective
than the Landweber iterative regularization method.
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Table 2. Comparison of the iterative steps m corresponding to Example 1 for various values
of ε, γ and y.

ε 0.01 0.001 0.0001
y = 0.3 γ = 0.55 9 17 23

γ = 1 21 38 44

y = 0.5 γ = 0.55 16 32 175
γ = 1 32 61 223

y = 0.9 γ = 0.55 37 56 218
γ = 1 65 89 334

5. Conclusion

In this paper, we use the fractional Landweber regularization method to solve the problem of
analytic continuation on strip domain. We not only give the a priori regularization parameter choice
rule, but also we give the a posteriori regularization parameter choice rule. Under these two parameter
selection rules, the corresponding convergence error estimates are obtained respectively. For the
ill-posed problem discussed in this paper, besides the fractional Landweber iterative regularization
method used in this paper, there are also other regularization methods, such as Tikhonov
regularization method, quasi-boundary regularization method and so on. In these methods, the
process of obtaining a priori and a posteriori error convergence estimates is similar, but in the results
obtained, Tikhonov regularization method will produce saturation effect, while the fractional
Landweber iterative regularization method will not produce saturation effect. Numerical examples
also show this regularization method is effective.
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