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1. Introduction

The continuous Radon transform was defined by [7] as

f̂ (p, φ) = R { f (x, y)} =

∞∫
−∞

∞∫
−∞

f (x, y) δ (p − x cos θ − y sin θ) dx dy (1.1)

where R { f (x, y)} is an integral of f over the line L(p, θ) for p = x cos θ − y sin θ.
Johann Radon in [2] demonstrated the generalizations involving the reconstruction of overall

hyperplanes. Orthogonal series representation of generalized function was studied by Pathak [1].
In [14] author developed expansions in distributions. The author in [12] studied a series of orthogonal
functions in a distributional sense. [11] applied generalized functions in harmonic analysis. A fast
butterfly algorithm for generalized Radon transform has been studied by [13]. The author described a
novel method for 3-D model content based on generalized Radon transform as in [9].

In [6], the finite continuous Radon transform of a function f (x, y) defined in the interval [−k, k] ×
[−l, l] was introduced by Lakshmi Gorty and Nitu Gupta as

R f
(
H

(
Vm, n, p

))
=

1
8kl

l∫
−l

k∫
−k

f (x, y)
[
1 + 2 cos π

(
p −

m
k

x −
n
l
y

)]
dx dy. (1.2)
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or

R f
(
H

(
Vm, n, p

))
=

1
8kl

l∫
−l

k∫
−k

f (x, y) δ
(
π
(
p − Vm, n · (x, y)

))
dx dy, (1.3)

for every m, n = 1, 2, 3, · · · where Vm, n · (x, y) = m
k x + n

l y.

Theorem 1.1. From (1.1), (1.2) and [6], assume f (t1, t2) as a function defined and absolutely
integrable on a rectangle {(t1, t2) : −k < x < k, −l < y < −l} then

cm, n =
1

8kl

l∫
−l

k∫
−k

f (t1, t2) δ
(
π
(
p − Vm, n · (t1, t2)

))
dt1dt2.

If f (t1, t2) is a bounded variation in [−k1, k1]× [−l1, l1], [−k < −k1 < k1 < k], [−l < −l1 < l1 < l] and

if (t1, t2) ∈ [−k1, k1] × [−l1, l1], then the series
∞∑

m, n=1
cm, n

[
1 + 2 cos π

(
p − m

k x − n
l y

)]
, converges to

1
2

[
f (−k, −l) + f (k, l)

]
.

This paper aims to extend classical finite continuous Radon transform [6] generalized functions
on certain spaces. The inversion formula due to the kernel method in a weak distributional sense
is analyzed. The technique employed in developing the transform is applied to solve certain partial
differential equations in Mathematical Physics. The earlier studies show the infinite range of Radon
transform, whereas the finite range of continuous Radon transform in a distributional sense is dealt
with for the first time in this text. The advantage of our study with distributional finite continuous
Radon transform over Fourier transform enables the projection at an angle θ.

In this text, notation and terminology is from [15] and the interval is considered as I = [−k1, k1] ×
[−l1, l1] .

From [6], we get
∆x, y, θ =

[(
sin2θ

)
∆x −

(
cos2θ

)
∆y

]
(1.4)

where ∆x = D2
x and ∆y = D2

y; l, k are real constants and Dx = d
dx and Dy = d

dy .

The following operational formula is easily computable.

∆x, y, θδ
(
π
(
p − Vm, n · (x, y)

))
=

[(
−λ2

m

)k
sin2θ cos2kθ −

(
−λ2

n

)k
cos2θ sin2kθ

]
δ
(
π
(
p − Vm, n · (x, y)

))
(1.5)

for every k = 0, 1, 2, · · · .

2. The testing function space Vp (I) and it’s dual

Let p be a real number, with 1 < p < ∞; φ (x, y) be an infinitesimally differentiable complex-valued
function in I in the given space VP (I).

γ
p
k (φ) = sup

I

∣∣∣∆x, y, θ φ (x, y)
∣∣∣ < ∞. (2.1)
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The collection of seminorms
(
γ

p
k

)
generates the topology of linear space Vp (I) . Thus Vp (I) is a

countably multinormed space analogous to [5].

Theorem 2.1. Vp (I) is complete and a Frchet space.

Proof. It can be proved with an argument similar to the one used by [8, 15, p. 253]. Let J denotes an
arbitrary compact subset of I. Let (x1, y1) be any fixed point in I and z = (x, y) be a variable point in
I.

Also, let D−1
x and D−1

y be the integral operators: D−1
x =

x∫
x1

· · · dx and D−1
y =

y∫
y1

· · · dy respectively.

Let
{
φm, n

}
be a Cauchy sequence in Vp (I). For each non-negative integer k, it follows from (2.1) that,

∆x, y, θ φm, n (x, y) converges uniformly in J as m, n→ ∞.
If k = 0, then

{
φm, n

}
converges uniformly in J as m, n→ ∞.

If k = 1, then
∆x, y, θφm, n (x, y) =

[(
sin2θ

)
∆x −

(
cos2θ

)
∆y

]
φm, n (x, y) . (2.2)

From (2.2), we can easily obtain,

D−1
x

[(
sin2θ

)
∆xφm, n (x, y)

]
=

(
sin2θ

)
D−1

x D2
x
(
φm, n (x, y)

)
=

(
sin2θ

)
Dx

(
φm, n (x, y)

)
−

(
sin2θ

)
Dx1

(
φm, n (x1, y)

)
(2.3)

and

D−1
x sin−2θD−1

x

[(
sin2θ

)
∆xφm, n (x, y)

]
= φm, n (x, y) − φm, n (x1, y) − (x − x1) Dx1

(
φm, n (x1, y)

)
.

(2.4)

Similarly from (2.2), it can be obtained as

D−1
y

[(
cos2θ

)
∆yφm, n (x, y)

]
=

(
cos2θ

)
D−1

y D2
y
(
φm, n (x, y)

)
=

(
cos2θ

)
Dy

(
φm, n (x, y)

)
−

(
cos2θ

)
Dy1

(
φm, n (x, y1)

)
(2.5)

and

D−1
y cos−2θD−1

y

[(
cos2θ

)
∆yφm, n (x, y)

]
= φm, n (x, y) − φm, n (x, y1) − (y − y1) Dy1

(
φm, n (x, y1)

)
.

(2.6)

The left-hand side of (2.3)–(2.6) converges uniformly in J.
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Then, it follows from these expressions that Dxφm, n (x, y), D2
xφm, n (x, y), Dyφm, n (x, y) and

D2
yφm, n (x, y) also converges, uniformly in J.

A simple induction process shows that Dk
xφm, n (x, y) and Dk

yφm, n (x, y) converges uniformly in J
as m, n → ∞ for each non-negative integer k. Thus, there exists an infinitesimally differentiable
function φ (x, y) defined in I such that Dk

xφm, n (x, y) → Dk
xφ (x, y) and Dk

yφm, n (x, y) → Dk
yφ (x, y) as

m, n→ ∞.
Finally, it is obvious that φ ∈ Vp (I) and φ (x, y) is the limit of the sequence φm, n (x, y) in this space.

Vp
′ (I) is the dual space of Vp (I). We assign to Vp

′ (I) the usual weak convergence. Thus the proof of
the theorem by [15, p. 253]. �

Properties analogous to [8] and [15] are:

Property 2.1. ∆x, y,θφ (x, y) =
2k∑
j=0

[(
sin2θ

)
∆

2k− j
x −

(
cos2θ

)
∆

2k− j
y

]
φ (x, y) .

Property 2.2. |〈 f , φ〉| ≤ K max
0≤k≤ s

γ
p
k (φ) for every φ ∈ Vp (I) for a positive constant K and a non-negative

integer s.

Property 2.3. Let f (x, y) be defined in I such that
l∫
−l

k∫
−k
| f (x, y)| dx dy exists.

Then |〈 f , φ〉| =
l∫
−l

k∫
−k

f (x, y) φ (x, y) dx dy, for f (x, y) generating a regular generalized function in

Vp
′ (I) .

Property 2.4. For each m, n = 1, 2, 3, · · · , the function δ
(
π
(
p − Vm, n · (x, y)

))
,

−k < x < k, −l < y < −l is a member of Vp (I). Using (1.5), we verify the same:

γ
p
k

(
δ
(
π
(
p − Vm, n · (x, y)

)))
= sup

I

∣∣∣∣∣[(−λ2
m

)k
sin2θcos2kθ −

(
−λ2

n

)k
cos2θsin2kθ

]
δ
(
π
(
p − Vm, n · (x, y)

))∣∣∣∣∣ < ∞,
for each k = 0, 1, 2, · · · .

3. Inversion theorem

Let f (x, y) = f (X), where X = (x, y) . The finite continuous Radon transform R f
(
H

(
Vm, n, p

))
of f is defined by (1.2) as follows:

R f
(
H

(
Vm, n, p

))
=

1
8lk

∫
I

f (X) δ
(
π
(
p − Vm, n · X

))
dX. (3.1)

The inner product from (3.1) can be written as:

R f
(
H

(
Vm, n, p

))
=

〈
f (X) ,

1
8lk

δ
(
π
(
p − Vm, n · X

))〉
. (3.2)

where δ
(
π
(
p − Vm, n · X

))
∈ Vp (I) for every m, n = 1, 2, 3, · · · .
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We now list some properties involving S M, N (τ, X) as in [3] where

S M, N (τ, X) =

N∑
n=1

M∑
m=1

1
8lk

δ
(
π
(
p − Vm, n · (τ)

))
δ
(
π
(
p − Vm, n · (X)

))
for M, N ∈ I+; ∀ M , N and X ∈ I which we shall need in the sequel.

Property 3.1. Let f ∈ Vp
′ (I) . For τ = (t1, t2) ∈ I follows:

l∫
−l

k∫
−k

〈
f (τ) , S M, N (τ, X)

〉
φ (x, y) dx dy =

〈
f (τ) ,

l∫
−l

k∫
−k

S M,N (τ, X) φ (x, y) dx dy
〉
. (3.3)

Property 3.2. Let α, β ∈ R for α ∈ (−k, k) and β ∈ (−l, l) respectively.

Then lim
M, N→∞

β∫
−β

α∫
−α

S M, N (τ, X) φ (x, y) dx dy = 1, (t1, t2) ∈ (−α, α) × (−β, β) .

Hence follows as a consequence of theorem 1.1, when f (t1, t2) = 1.

Theorem 3.1 (Inversion theorem). If R f
(
H

(
Vm, n, p

))
is distributional finite Radon transform of f

from (3.1), then

f (x, y) = lim
N, M→∞

N∑
n=1

M∑
m=1

R f
(
H

(
Vm, n, p

))
δ (u · X), (3.4)

converges in D′ (I).

Proof. Let φ (x, y) ∈ D (I). Assume the support of φ (x, y) ∈ [−α, α] ×
[
−β, β

]
where

−k < −α < α < k, −l < −β < β < l. From (3.4) it is equivalent in proving that〈
S M, N (τ, X) , φ (X)

〉
→ 〈 f (τ) , φ (τ)〉 (3.5)

as M, N → ∞.
Thus, it is represented as:〈 N∑

n=1

M∑
m=1

R f
(
H

(
Vm, n, p

))
δ
(
π
(
p − Vm, n · X

))
, φ (X)

〉
(3.6)

=

b∫
−b

a∫
−a

N∑
n=1

M∑
m=1

R f
(
H

(
Vm,n, p

))
δ
(
π
(
p − Vm, n · X

))
φ (X) dx dy (3.7)

=

b∫
−b

a∫
−a

N∑
n=1

M∑
m=1

〈
f (τ) ,

1
8lk

δ
(
π
(
p − Vm, n · τ

))〉
δ
(
π
(
p − Vm, n · X

))
φ (X) dx dy (3.8)

=

b∫
−b

a∫
−a

〈
f (τ) ,

N∑
n=1

M∑
m=1

1
8lk

δ
(
π
(
p − Vm, n · τ

))
δ
(
π
(
p − Vm, n · X

))〉
φ (X) dx dy (3.9)

=

b∫
−b

a∫
−a

〈
f (τ) , S M, N (τ, X)

〉
φ (X) dx dy (3.10)
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=

〈
f (τ) ,

b∫
−b

a∫
−a

S M, N (τ, X) φ (X) dx dy
〉

(3.11)

→ 〈 f (τ) , φ (τ)〉 . (3.12)

It can be observed that
N∑

n=1

M∑
m=1

1
8lkδ

(
π
(
p − Vm, n · τ

))
δ
(
π
(
p − Vm, n · X

))
is locally integrable over

[−k, k] × [−l, l] justifying (3.6) equals (3.7).
To prove (3.11) converges to (3.12), we need to prove that for each k = 0, 1, 2, · · · .

[
∆x, y, θ

]k

t
=

[(
sin2θ

)
∆k

t1 −
(
cos2θ

)
∆k

t2

] 
a∫

−a

b∫
−b

S M, N (τ, X) φ (X) dx dy − φ (τ)

→ 0 (3.13)

as M, N → ∞ uniformly ∀ t = (t1, t2) ∈ [−k, k] × [−l, l]. �

Thus (1.3) gives:[(
sin2θ

)
∆t1 −

(
cos2θ

)
∆t2

]
S M, N (τ, X) =

[(
sin2θ

)
∆x −

(
cos2θ

)
∆y

]
S M, N (τ, X) . (3.14)

Since the order of differentiation and integration in (3.13) is interchangeable, we can write

∆k
t, θ


α∫

−α

β∫
−β

S M, N (τ, X) φ (X) dx dy


=

α∫
−α

β∫
−β

[(
sin2θ

)
∆t1 −

(
cos2θ

)
∆t2

]
S M, N (τ, X) φ (X) dx dy

=

α∫
−α

β∫
−β

[(
sin2θ

)
∆x −

(
cos2θ

)
∆y

]
S M, N (τ, X) φ (X) dx dy, ( f rom (3.14))

=

α∫
−α

β∫
−β

S M, N (τ, X)
[(

sin2θ
)
∆x −

(
cos2θ

)
∆y

]
φ (X) dx dy.

Integration by parts and operating by ∆k
t, θ successively, it can be shown as:

∆k
t, θ


α∫

−α

β∫
−β

S M, N (τ, X) φ (X) dx dy


=

α∫
−α

β∫
−β

S M, N (τ, X)
[(

sin2θ
)
∆k

x −
(
cos2θ

)
∆k

y

]
φ (X) dx dy.
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From property 3.2, we have

∆k
t, θ


α∫

−α

β∫
−β

S M, N (τ, X) φ (X) dx dy − φ (τ)


=

α∫
−α

β∫
−β

S M, N (τ, X)


[(

sin2θ
)
∆k

x −
(
cos2θ

)
∆k

y

]
φ (X)

−
[(

sin2θ
)
∆k

t1 −
(
cos2θ

)
∆k

t2

]
φ (τ)

 dx dy

=

α∫
−α

β∫
−β

S M, N (τ, X)
[
ψ (X) − ψ (τ)

]
dx dy

where ψ (X) = ∆x, y, θφ (X) is a member of D′ (I) with support contained in (−α, α) × (−β, β) .
Thus the proof.

Theorem 3.2 (Uniqueness theorem). Let f , g ∈ Vp
′ (I) and the generalized finite continuous Radon

transform of f and g be R f
(
H

(
Vm, n, p

))
and Rg

(
H

(
Vm, n, p

))
respectively, as defined by (1.2). If

R f
(
H

(
Vm, n, p

))
= Rg

(
H

(
Vm, n, p

))
, then f = g in the sense of equality in D′ (I).

The obvious proof follows using (3.4).

Example 3.1. Consider a Dirac delta function δ
(
π
(
Vm, n · (τ) − k0

))
for k0 ∈ I. Since

δ
(
π
(
Vm, n · (τ) − k0

))
∈ E′ (I) and E′ (I) is a subspace of Vp

′ (I) , therefore
δ
(
π
(
Vm, n · (τ) − k0

))
∈ Vp

′ (I) . The generalized finite continuous Radon transform of
δ
(
π
(
Vm, n · (τ) − k0

))
is given as

Rδ
(
H

(
Vm, n, p

))
=

〈
δ
(
π
(
Vm, n · (τ) − k0

))
, δ

(
π
(
p − Vm, n · (τ)

))〉
=

1
8lk

δ
(
π
(
p − Vm, n · (k0)

))
∀ m, n = 1, 2, 3, · · · as in [4, p. 25] and [10, p. 260].
Now for any φ (X) ∈ D′ (I) ,〈 N∑

n=1

N∑
m=1

1
8lk

δ
(
π
(
p − Vm, n · (K)

))
δ
(
π
(
p − Vm, n · (X)

))
, φ (X)

〉

=

l∫
−l

k∫
−k

N∑
n=1

M∑
m=1

1
8lk

δ
(
π
(
p − Vm, n · (K)

))
δ
(
π
(
p − Vm, n · (X)

))
φ (X) dx dy

=

l∫
−l

k∫
−k

S M, N (K, X) φ (X) dx dy

→ φ (K)

where φ (K) =
〈
S M, N (K, X) , φ (τ)

〉
. Hence the proof.
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4. Operational theory

For arbitrary φ (X) ∈ Vp (I) and f ∈ Vp
′ (I) , define a generalized operator ∆∗x, y, θ on Vp

′ (I) for
adjoint operator of ∆x, y, θ on Vp (I) . It may be noted from [6] that, ∆x, y, θ is a self-adjoint operator.〈

∆∗x, y, θ f (X) , φ (X)
〉

=
〈

f (X) , ∆x, y, θφ (X)
〉
. (4.1)

Since φ (X)→ ∆x, y, θφ (X) is linear and continuous mapping; ∆x, y, θφ (X) ∈ Vp (I) when φ (X) ∈ Vp (I) .
Implies ∆∗x, y, θ is linear and continuous on V ′p (I) .

For any integer k, the method of induction gives:(
∆∗x, y, θ

)k
=

〈
f (X) ,

[(
sin2θ

)
(∆x)k

−
(
cos2θ

) (
∆y

)k
]
φ (X)

〉
(4.2)

and
(
∆∗x, y, θ

)k
is linear and continuous on V ′p (I) .

Therefore〈(
∆∗x, y, θ

)k
f (X) ,

1
8lk

δ
(
π
(
p − Vm, n · (x, y)

))〉
=

1
8lk

[(
−λ2

m

)k
sin2θcos2kθ −

(
−λ2

n

)k
cos2θsin2kθ

] 〈
f (X) , δ

(
π
(
p − Vm, n · (x, y)

))〉
.

Implies

R
{(

∆∗x, y, θ

)k
f
} (

H
(
Vm, n, p

))
=

[(
−λ2

m

)k
sin2θcos2kθ −

(
−λ2

n

)k
cos2θsin2kθ

]
R f

(
H

(
Vm, n, p

))
(4.3)

∀ m, n = 1, 2, 3, · · · which gives an operational formula.
From (4.1) and by self-adjoint operator property, we get

∆∗x, y, θ f = ∆x, y, θ f (4.4)

so that ∆∗x, y, θ can be replaced by ∆x, y, θ in (4.3).
Let P be a polynomial, where g is a given member of Vp

′(I), then

P
(
∆∗x, y, θ

)
u = g, (4.5)

for every X ∈ (−k, k) × (−l, l) .

Note that P
[(
−λ2

m

)k
sin2θ cos2kθ −

(
−λ2

n

)k
cos2θ sin2kθ

]
, 0, ∀ m, n = 1, 2, 3, · · · where u is an

unknown variable, generalized in Vp
′(I).

Applying generalized finite Radon transformation to (4.5) and using (4.4) follows:

P
[(
−λ2

m

)
sin2θ cos2θ −

(
−λ2

n

)
cos2θ sin2θ

]
Ru

(
H

(
Vm, n, p

))
= Rg

(
H

(
Vm, n, p

))
for every m, n = 1, 2, 3, · · · .
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Therefore

Ru
(
H

(
Vm, n, p

))
=

Rg
(
H

(
Vm, n, p

))
P

[(
−λ2

m
)

sin2θ cos2θ −
(
−λ2

n
)

cos2θ sin2θ
] . (4.6)

Applying inversion theorem 3.1 to (4.6), we get

u (x, y) = lim
M, N→∞

N∑
n=1

M∑
m=1

Rg
(
H

(
Vm, n, p

))
P

[(
−λ2

m
)

sin2θ cos2θ −
(
−λ2

n
)

cos2θ sin2θ
]δ (u · X) (4.7)

with equality in the sense of D′ (I) , which is a solution to (4.5). This solution is a restriction of
u ∈ Vp

′(I) to D (I) analogous to [8].
Hence the solution of a distributional differential Eq (4.5) is given by (4.7).

5. Application

In this section, an application of generalized finite continuous Radon transform using boundary
conditions is demonstrated. The Dirichlet’s problem is used to find a function v (x, y, z) on the
domain R {(x, y, z) : −π < x < π, −π < y < π, −π < z < π} , where V (x, y, z) satisfies the following
differential equation (

sin2θ
) ∂2v
∂x2 +

(
cos2θ

) ∂2v
∂y2 +

∂2v
∂z2 = 0, (5.1)

with the following boundary conditions:

(i) As x → −π, y → −π or x → π, y → π v (x, y, z) converges in sense of D′ (I) to zero on
Z ≤ z < ∞ for each Z > 0.

(ii) As z→ ∞, v (x, y, z) converges in sense of D′ (I) to zero.
(iii) As z→ 0+, v (x, y, z) converges in sense of D′ (I) to f (x, y) ∈ Vp

′ (I) .

Now (5.1) can be written as

[(
sin2θ

)
∆x −

(
cos2θ

)
∆y

]
v +

∂2v
∂z2 = 0. (5.2)

Applying generalized finite Radon transform to (5.2), we obtain

(
λ2

n − λ
2
m

)
sin2 (2θ) Rv

(
H

(
Vm, n, p

))
+
∂2Rv

(
H

(
Vm, n, p

))
∂z2 = 0,

for every m, n = 1, 2, 3, · · · where

Rv
(
H

(
Vm, n, p

))
=

〈
v (X, z) ,

1
8lk

δ
(
π
(
p − Vm, n · (X)

))〉
.

Thus
Rv

(
H

(
Vm, n, p

))
= A

(
Vm, n, p

)
e−(

√
λm−λn sin 2θ)z + B

(
Vm, n, p

)
e(√λm−λn sin 2θ)z (5.3)

where A
(
Vm, n, p

)
and B

(
Vm, n, p

)
are constants.
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From boundary conditions (ii), (iii) and considering lim
z→∞

Rv
(
H

(
Vm, n, p

))
= 0 and

lim
z→0+

Rv
(
H

(
Vm, n, p

))
= F (u) respectively gives B

(
Vm, n, p

)
= 0 and A

(
Vm, n, p

)
= F

(
Vm, n, p

)
in

(5.3).
Thus

Rv
(
H

(
Vm, n, p

))
= F

(
Vm, n, p

)
e−(

√
λm−λn sin 2θ)z. (5.4)

Now applying inversion theorem 3.1 to (5.4), we get

v (x, y, z) = lim
M, N→∞

N∑
n=1

M∑
m=1

F
(
Vm, n, p

)
e−(

√
λm−λn sin 2θ)zδ

(
π
(
p − Vm, n · (x, y)

))
.

Also

〈v (X, z) , φ (X)〉

=

∫
I

lim
M, N→∞

N∑
n=1

M∑
m=1

F
(
Vm, n, p

)
e−(

√
λm−λn sin 2θ)zδ

(
π
(
p − Vm, n · (x, y)

))
dX.

Therefore v (X, z) can be represented as a classical function:

v (x, y, z) =

∞∑
n=1

∞∑
m=1

F
(
Vm, n, p

)
e−(

√
λm−λn sin 2θ)zδ

(
π
(
p − Vm, n · (x, y)

))
. (5.5)

Here we note that λm = mπ
k cos θ , λn = nπ

l sin θ , as m, n → ∞, F
(
Vm, n, p

)
= O (us) for some s which is a

non-negative integer.
Also, we observe that (λm − λn)1/2 =

[(
m

k cos θ −
n

l sin θ

)
π
]1/2

as m, n → ∞, the factor

e−(
√
λm−λn sin 2θ) z, ensuring (5.5) converges uniformly on every plane in (x, y, z) of the form

Z ≤ z < ∞ (Z > 0) . Thus, we can use the operator
(
sin2θ

)
∂2

∂x2 +
(
cos2θ

)
∂2

∂y2 + ∂2

∂z2 under the summation

in (5.5). Since e−(
√
λm−λn sin 2θ)zδ

(
π
(
p − Vm, n · (x, y)

))
satisfies (5.1), so does v.

Further, we get
lim
z→0+

〈v (X, z) , φ (X)〉

= lim
z→0+

∞∑
n=1

∞∑
m=1

F
(
Vm, n, p

)
e−(

√
λm−λn sin 2θ)z 〈δ (π (

p − Vm, n · (x, y)
))
, φ (X)

〉
. (5.6)

lim
z→0+

〈v (X, z) , φ (X)〉 =

∫
I

∞∑
n=1

∞∑
m=1

F
(
Vm, n, p

)
δ
(
π
(
p − Vm, n · (x, y)

))
φ (X) dX. (5.7)

The step (5.6) is straightforward, which gives

lim
z→0+

〈v (X, z) , φ (X)〉 = 〈 f , φ〉 . (5.8)

Since (5.7) is convergent on Vp (I) and Z ≤ z < ∞ for each Z > 0 from (5.5), we can write [5] as

|v (x, y, z)| ≤
∞∑

n=1

∞∑
m=1

∣∣∣F (
Vm, n, p

)∣∣∣ e−(√λm−λn sin 2θ)z
∣∣∣δ (π (

p − Vm, n · (x, y)
))∣∣∣. (5.9)
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Now we can see that the series converges uniformly on −∞ < X < ∞.

Considering the limits x → −π, y → −π or x → π, y → π under the summation sign in
(5.9), verifies the boundary condition (i).

Similarly

|v (x, y, z)| ≤
∞∑

n=1

∞∑
m=1

∣∣∣F (
Vm, n, p

)∣∣∣ e−(√λm−λn sin 2θ) z
∣∣∣δ (π (

p − Vm, n · (x, y)
))∣∣∣→ 0

as z→ ∞, thus verifies the boundary condition (ii).

6. Conclusion

In this study, the classical finite continuous Radon transform has been extended to generalized
functions on certain spaces. The inversion formula due to the kernel method in a weak distributional
sense is also established. Application from Mathematical Physics is demonstrated to solve Dirichlet’s
problem in the concluding section.

7. Future Work

The inverse generalized finite continuous Radon transform can be studied for local tomography,
related medical and other imaging technologies. 3-D Model search and retrieval can be extended using
generalized finite continuous Radon transform. Researchers can also develop applications involving
angle θ in the engineering field.
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