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Abstract: This paper is concerned with the multidimensional stability of V-shaped traveling fronts
for a reaction-diffusion equation with nonlinear convection term in Rn (n ≥ 3). We consider two cases
for initial perturbations: one is that the initial perturbations decay at space infinity and another one
is that the initial perturbations do not necessarily decay at space infinity. In the first case, we show
that the V-shaped traveling fronts are asymptotically stable. In the second case, we first show that
the V-shaped traveling fronts are also asymptotically stable under some further assumptions. At the
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traveling fronts, which means that the traveling fronts are not asymptotically stable under general
bounded perturbations.
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1. Introduction

In this paper, we study the multidimensional asymptotic stability of two-dimensional V-shaped
traveling fronts of the following reaction-diffusion equation with nonlinear convection term:∂u

∂t + (g(u))z = ∆u + f (u), x ∈ Rn−2, y ∈ R, z ∈ R, t > 0,
u(x, y, z, 0) = u0(x, y, z), x ∈ Rn−2, y ∈ R, z ∈ R,

(1.1)

where ∆ = ∂2/∂x2
1 + · · · + ∂2/∂x2

n−2 + ∂2/∂y2 + ∂2/∂z2 and n ≥ 3. We assume that the initial value
u0 ∈ BUC1(Rn). In (1.1), (g(u))z is a nonlinear convection term and the function f ∈ C2(R) is the
reaction term. Suppose f satisfies the following assumption:
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(F) (i) f (0) = f (1) = 0, f ′(0) < 0, f ′(1) < 0;
(ii) {r ∈ [0, 1] : f (r) = 0} = {0, λ, 1} with f ′(λ) > 0;
(iii)

∫ 1

0
f (r)dr > 0;

(iv) f (r) < 0, f ′(r) < 0 for r > 1; f (r) > 0, f ′(r) < 0 for r < 0.

The assumption (F) implies that the reaction term f is of bistable type. A typical example of such
f is the cubic function f (u) = u(u − a)(1 − u), where a ∈ (0, 1

2 ) is a given number. We also assume the
flux g satisfies the following assumption:

(G) g(r) ∈ C2+γ0(R), γ0 ∈ (0, 1); g′′(r) ≤ 0 for r ∈ [0, 1].

Examples of such g are g(u) = −ρu2 and g(u) = ρu(1 − u), where ρ > 0 is a constant. From the
assumption (G), we deduce that there exist positive constants l1 and l2 such that

|g′(r)| ≤ l1, |g′′(r)| ≤ l2 for all r ∈ [−1, 2]. (1.2)

For each θ ∈ [0, π), it follows from Crooks and Toland [1] that there exist a function Uθ(·) ∈ C2 (R)
and a constant cθ satisfying−U′′θ + (cθ + g′(Uθ) sin θ) U′θ − f (Uθ) = 0, U′θ(X) > 0, X ∈ R,

Uθ(−∞) = 0, Uθ(+∞) = 1.
(1.3)

Let ~e± = (0, · · · , 0,± cos θ, sin θ) ∈ S n−1. Then the functions

Uθ

(
(x, y, z) · ~e+ + cθt

)
= Uθ (y cos θ + z sin θ + cθt)

and
Uθ

(
(x, y, z) · ~e− + cθt

)
= Uθ (−y cos θ + z sin θ + cθt)

are planar traveling fronts of (1.1) with wave speed cθ along the directions ~e+ and ~e−, respectively. In
particular, the profile function Uθ(·) is unique up to a translation and the wave speed cθ is unique. It is
clear that c0 > 0 due to the assumption (F). However, due to the convection term, it is not necessary
that cθ > 0 for θ ∈ (0, π). For more results on traveling wave front of (1.1) with various nonlinearity f ,
we refer to [2–9].

Recently, we studied nonplanar traveling fronts of (1.1) with n = 2. Assume that (F) and (G) hold.
Fix θ ∈ (0, π2 ) satisfying the following assumption:

(C) cθ + g′(r) sin θ > 0 for any r ∈ [0, 1].

In our recent paper [10], we proved the existence of V-shaped traveling fronts to (1.1) in R2, namely,
there exists a function V(·, ·) ∈ C2

(
R2

)
satisfying

−Vyy − Vzz + (sθ + g′(V)) Vz − f (V) = 0, (y, z) ∈ R2,

V(−y, z) = V(y, z), ∂
∂zV(y, z) > 0, ∀ (y, z) ∈ R2,

∂
∂yV(y, z) > 0, ∀ (y, z) ∈ (0,+∞) × R,

V(y, z) > Uθ (|y| cos θ + z sin θ) , ∀ (y, z) ∈ R2,

limR→+∞ supy2+z2>R2 |V(y, z) − Uθ (|y| cos θ + z sin θ)| = 0,

(1.4)
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where sθ = cθ
sin θ . In addition, for any initial value u0(y, z) ∈ BUC1(R2) with u0 ≥ Uθ (|y| cos θ + z sin θ)

and
lim
R→∞

sup
y2+z2≥R2

|u0(y, z) − Uθ (|y| cos θ + z sin θ)| = 0, (1.5)

the solution u(y, z, t; u0) of (1.1) satisfies

lim
t→∞

sup
(y,z)∈R2

|u(y, z, t; u0) − V (y, z + sθt)| = 0. (1.6)

Here we would like to point out that the last results have been obtained when the convection term is
absent, see [11]. In fact, nonplanar traveling fronts of (1.1) without convection have been extensively
studied in recent years, see [12–25]. For reaction-diffusion system and time periodic reaction-diffusion
equation, we refer to [26–34]. For more results on non-planar traveling wave solutions of reaction-
diffusion equations, we refer to [35–38].

It is clear that the asymptotic stability of the V-shaped traveling front V(y, z) ∈ C(R2) of (1.1) was
established in R2, see [10]. In this paper, we further consider the multidimensional stability of the
V-shaped traveling front V(y, z), namely, we consider the stability of V(y, z) in Rn with n ≥ 3. It should
be pointed out that the multidimensional stability of planar traveling fronts of (1.1) without convection
has been studied by many authors, see [39–43] for the Allen-Cahn equation. In [39, 40, 43], it is
assumed that the initial perturbations are sufficiently small and decay to zero at space infinity. In [42]
the authors proved the asymptotic stability under any (possibly large) initial perturbations that decay to
zero at space infinity. Furthermore, they proved the asymptotic stability of planar traveling fronts for
almost periodic perturbation. Moreover, the existence of a solution that oscillates permanently between
two planar waves was shown, which implies that planar traveling fronts are not asymptotically stable
under general perturbations. Motano and Nara [41] studied how a planar front behaves when arbitrarily
large (but bounded) perturbation is given near the front region. They showed that the planar front is
asymptotically stable in L∞(Rn) under spatially ergodic perturbations, which include quasi-periodic
and almost periodic ones as special cases. Roquejoffre and Roussier-Michon [44] considered the large
time behavior of planar traveling fronts and showed that the dynamics of planar fronts are similar
to that of the heat equation. More recently, Sheng et al. [28] and Cheng and Yuan [45] studied the
multidimensional stability of V-shaped traveling fronts and pyramidal traveling fronts of the Allen-
Cahn equation by using the method of [42], respectively.

Following (1.4) and (1.5), we know that the asymptotic stability of V-shaped traveling fronts V(y, z)
of (1.1) in [10] was established in R2 under the initial value u0(y, z) satisfying that u0(y, z) − V(y, z)
decays to zero as |y| + |z| → ∞. In this paper we use the method of [42] to study the stability of
V-shaped traveling fronts V(y, z) of (1.1) under the initial value u0(x, y, z) in Rn with n ≥ 3, where
x ∈ Rn−2, y ∈ R and z ∈ R. In contrast to that in [10], in this paper we deal with the following
two cases:

Case A: The initial perturbation u0(x, y, z) − V(y, z) decays to zero as |x| + |y| + |z| → ∞.
Case B: The initial perturbation u0(x, y, z)−V(y, z) does not necessarily decay to zero as |x|+|y|+|z| →

∞.
In the remainder of this paper we always assume that (F) and (G) hold and θ ∈

(
0, π2

)
satisfies the

assumption (C). Let (Uθ(·), cθ) be defined by (1.3) and let sθ = cθ
sin θ . Let V(y, z) be defined by (1.4). For

the sake of convenience, in the sequel we always denote (Uθ(·), cθ) and sθ by (U(·), c) and s respectively.
In the following we first consider the asymptotic stability of V(y, z) in Case A.
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Theorem 1.1. Let n ≥ 3. Assume that the initial value u0(x, y, z) ∈ BUC1(Rn) and satisfies

lim
R→∞

sup
|x|+|y|+|z|≥R

|u0(x, y, z) − V(y, z)| = 0.

Then the solution u(x, y, z, t) of (1.1) satisfies

lim
t→∞

sup
(x,y,z)∈Rn

|u(x, y, z, t) − V(y, z + st)| = 0. (1.7)

Theorem 1.1 implies that the V-shaped traveling front V(y, z + st) is asymptotically stable under
any initial perturbations that decay to zero as |x| + |y| + |z| → ∞. The following theorem gives the
convergence rate for (1.7) when the initial perturbation belongs to L1 in a certain sense.

Theorem 1.2. Let n ≥ 3. Assume that the initial value u0(x, y, z) of (1.1) is given by

u0(x, y, z) = V (y, z + v0(x)) , (1.8)

for some function v0 ∈ L1(Rn−2)∩L∞(Rn−2)∩BUC1(Rn−2). Then the solution u(x, y, z, t) of (1.1) satisfies

sup
(x,y,z)∈Rn

|u(x, y, z, t) − V(y, z + st)| ≤ Ct−
n−2

2 , t > 0, (1.9)

where C > 0 is a constant depending on f , g, ‖v0‖L1(Rn−2) and ‖v0‖L∞(Rn−2).

The following proposition shows that the convergence rate (1.9) is optimal in some sense.

Proposition 1.3. Let n ≥ 3. Let u0 be defined as in (1.8) and assume that v0 either satisfies v0 ≥ 0, v0 .

0 or v0 ≤ 0, v0 . 0. Then there exist constants C1 > 0 and C2 > 0 such that

C1(1 + t)−
n−2

2 ≤ sup
(x,y,z)∈Rn

|u(x, y, z, t) − V(y, z + st)| ≤ C2t−
n−2

2 , t ≥ 0. (1.10)

Remark 1.4. Theorem 1.1 and 1.2 show that the V-shaped traveling front is not only asymptotically
stable, but also algebraically stable under certain perturbations. Furthermore, Proposition 1.3 also
implies that this convergence rate is optimal in some sense, that is , the convergence rate is not faster
than O

(
t−

n−2
2

)
.

Next, we state our results in Case B. Firstly, we show that the V-shaped traveling front is also
asymptotically stable if the initial value u0(x, y, z) satisfies some certain assumptions in Case B.

Theorem 1.5. Let n ≥ 3. Suppose that the initial value u0(x, y, z) ∈ BUC1(Rn) of (1.1) satisfies

V(y, z) ≤ u0(x, y, z) ≤ û0 (y, z) , ∀(x, y, z) ∈ R3,

where û0 (y, z) ∈ BUC1(Rn) satisfies

lim
R→∞

sup
y2+z2≥R2

|û0(y, z) − Uθ (|y| cos θ + z sin θ)| = 0. (1.11)

Then the solution u(x, y, z, t) of (1.1) satisfies

lim
t→∞

sup
(x,y,z)∈Rn

|u(x, y, z, t) − V(y, z + st)| = 0. (1.12)
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Secondly, we present a result on the existence of a solution of (1.1) that oscillates permanently
between two V-shaped traveling fronts.

Theorem 1.6. Let n = 3. Then for any δ > 0, there exists a bounded function v∗0(x) ∈ BUC1(R) with
‖v∗0‖L∞(R) = δ such that the solution u(x, y, z, t) of (1.1) with u(x, y, z, 0) = V

(
y, z + v∗0(x)

)
satisfies

lim
m→∞

sup
|x|≤m!−1,(y,z)∈R2

|u(x, y, z, tm) − V(y, z + stm + (−1)mδ)| = 0,

where tm = m(m!)2/4.

Remark 1.7. A typical example of initial functions satisfying the requirement of Theorem 1.5 is that
u0(x, y, z) = V (y, z + ψ(z)v(x)) in (x, y, z) ∈ R3, where the functions v(x) and ψ(z) respectively satisfy
the following conditions:

(i) v(x) ∈ BUC1(Rn−2) is a periodic function in Rn−2 and v(x) > 0;
(ii) ψ(z) ∈ C1(R), ψ(z) > 0 and lim

|z|→∞
ψ(z) = 0.

Since v(x) > 0 is a periodic function, there exists a positive constant vmax such that
vmax = maxx∈Rn−2 v(x). Take û0(y, z) = V (y, z + ψ(z)vmax). Then V(y, z) ≤ u0(x, y, z) ≤ û0(y, z)
and (1.11) holds. In addition, it is clear that the initial function u0(x, y, z) does not decay when
|x| + |y| + |z| → ∞. Theorem 1.5 shows that even if in Case B, the V-shaped traveling front is still
asymptotically stable under some further assumptions on the initial value. On the other hand,
Theorem 1.6 implies that even very small perturbations to the V-shaped traveling front V(y, z + st) can
give rise to permanent oscillation, hence the V-shaped traveling front is not asymptotically stable
under general bounded perturbations. It can be viewed as a counter-example to the asymptotic
stability of V-shaped traveling fronts in Case B. From the viewpoint of dynamical system,
Theorem 1.6 gives two ω-limit points of the solution u(x, y, z, t) in the L∞loc(R

n)-topology. From the
above discussion, we conclude that the V-shaped traveling fronts may be stable or unstable in Case B.

The rest of the paper is organized as follows. In Section 2, we study Case A, namely, we prove
Theorem 1.1 and 1.2. In the proofs, we use the moving coordinated with speed s so that the V-shaped
traveling fronts can be viewed as stationary states. Setting

u(x, y, z, t) = w(x, y, χ, t), χ = z + st,

the Eq (1.1) can be rewritten aswt = ∆w − (g′(w) + s) wχ + f (w), x ∈ Rn−2, y ∈ R, χ ∈ R, t > 0,
w(x, y, χ, 0) = u0(x, y, χ), x ∈ Rn−2, y ∈ R, χ ∈ R,

where ∆ = ∂2/∂x2
1 + · · · + ∂2/∂x2

n−2 + ∂2/∂y2 + ∂2/∂χ2. For convenience, we denote w(x, y, χ, t) as
u(x, y, z, t) and consider the problem of the formut = ∆u − (g′(u) + s) uz + f (u), x ∈ Rn−2, y ∈ R, z ∈ R, t > 0,

u(x, y, z, 0) = u0(x, y, z), x ∈ Rn−2, y ∈ R, z ∈ R.
(1.13)

The global existence of a unique solution u(x, z, t; u0) of the Eq (1.13) follows
from [46, Theorem 7.1.2, Propositions 7.1.9 and 7.1.10 and Remark 7.1.12] and the assumptions (F)
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and (G), see also [2, Proposition A.3 and Theorem A.7]. In particular,
u(t; u0)(·) ∈ C1

(
(0,∞), BUC(R2)

)
∩ C

(
(0,∞), BUC2(R2)

)
∩ C

(
[0,∞), BUC1(R2)

)
, where

u(t; u0)(x, z) := u(x, z, t; u0). It is clear that, for each ξ ∈ R, the function V(y, z + ξ) is a stationary
solution for problem (1.13). In this section, we also show that the convergence rate in Theorem 1.1
and Theorem 1.2 is optimal in some sense, namely, we prove Proposition 1.3. In Section 3, we
consider Case B. Firstly, we prove that the V-shaped traveling fronts are asymptotically stable under
certain assumptions of the initial value, namely, we prove Theorems 1.5. Secondly, using the
supersolutions and subsolutions constructed in Section 2, we prove that the V-shaped traveling fronts
are not asymptotically stable, namely, we prove Theorem 1.6.

2. Stability of V-shaped fronts in Case A

In this section, we consider Case A and prove the asymptotic stability of V-shaped traveling fronts
under perturbations that decay to zero as |x| + |y| + |z| → ∞. We first state some known results of the
curvature flow problem in [47], see also [42].

The mean curvature flow for a graphical surface Ψ(x, t) on Rn−2 is given by the Cauchy problem of
the form 

Ψt√
1+|∇Ψ|2

= div
(

∇Ψ√
1+|∇Ψ|2

)
, x ∈ Rn−2, t > 0,

Ψ(x, 0) = Ψ0(x), x ∈ Rn−2.

(2.1)

If the first and second derivatives of Ψ with respect to x are all bounded on Rn−2, then we take some
large constant k > 0 such that

0 =Ψt −
√

1 + |∇Ψ|2 div

 ∇Ψ√
1 + |∇Ψ|2


=Ψt − ∆Ψ +

n−2∑
i, j=1

ΨxiΨx jΨxi x j

1 + |∇Ψ|2

≥Ψt − ∆Ψ − k|∇Ψ|2.

Clearly, Ψ(x, t) is a subsolution of the following Cauchy problem:v+
t = ∆v+ + k|∇v+|2, x ∈ Rn−2, t > 0,

v+(x, 0) = u0(x), x ∈ Rn−2.

Taking w(x, t) = ekv+(x,t), we havewt = ∆w, x ∈ Rn−2, t > 0,
w(x, 0) = eku0(x), x ∈ Rn−2.

Then, from the solution of a standard heat equation, the explicit expression for v+(x, t) is given by

v+(x, t) =
1
k

ln
(∫
Rn−2

Γ(x − η, t)eku0(η)dη
)
, (2.2)
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where Γ(ξ, τ) is the heat kernel given by

Γ(ξ, τ) =
1

(4πτ)
n−2

2

e−
|ξ|2
4τ .

Consequently, the expression (2.2) gives an upper estimate for Ψ(x, t) of (2.1). By considering the
equation v−t = ∆v− − k|∇v−|2, x ∈ Rn−2, t > 0,

v−(x, 0) = u0(x), x ∈ Rn−2,

we also give a lower estimate for Ψ(x, t) of (2.1).
The following lemma gives the large time behavior of the solutions of

v±t = ∆v± ± k
∣∣∣∇v±

∣∣∣2 , x ∈ Rn−2, t > 0.

Lemma 2.1. (See [42, Lemma 2.4 and Remark 2.5]) Let k > 0 be any constant. Let v±(x, t) be solutions
to the Cauchy problems: v±t = ∆v± ± k |∇v±|2 , x ∈ Rn−2, t > 0,

v±(x, 0) = v0(x), x ∈ Rn−2.

Suppose that v0(x) is bounded and continuous on Rn−2 and satisfies lim
|x|→∞

|v0(x)| = 0. Then the solutions

v±(x, t) satisfy
lim
t→∞

sup
x∈Rn−2

∣∣∣v±(x, t)
∣∣∣ = 0,

respectively. Furthermore, if v0 ∈ L1(Rn−2), then we have

sup
x∈Rn−2

|v±(x, t)| ≤
1
k

∥∥∥ekv0 − 1
∥∥∥

L1(Rn−2)
· t−

n−2
2 , t > 0.

Before constructing a series of supersolutions and subsolutions, we first give some auxiliary
lemmas.

Lemma 2.2. (See [10, Lemma 3.2 and Theorem 2.3]) For any δ ∈ (0, 1
2 ), there exists a positive constant

β := β(δ) such that
Vz(y, z) ≥ β for δ ≤ V(y, z) ≤ 1 − δ.

In addition, we have
lim

R→+∞
sup

|z+m∗ |y||≥R
Vz = 0,

where m∗ =
√

s2 − c2
/

c.

Now, we introduce a lemma which plays a key role in constructing supersolutions and subsolutions.

Lemma 2.3. There exists a constant k > 0 such that

−kVz(y, z) ≤ Vzz(y, z) ≤ kVz(y, z), ∀(y, z) ∈ R2.
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Proof. It follows from the first equation of (1.4) that

∆Vz −
(
s + g′(V)

)
Vzz + f ′(V)Vz − g′′(V)V2

z = 0, ∀(y, z) ∈ R2. (2.3)

If we write W = Vz, then (2.3) becomes

∆W −
(
s + g′(V)

)
Wz +

(
f ′(V) − g′′(V)W

)
W = 0. (2.4)

Setting
b(y, z) = −

(
s + g′(V)

)
, c(y, z) = f ′(V) − g′′(V)W,

then (2.4) can be rewritten as
∆W + bWz + cW = 0.

From Lemma 2.2, there exists a constant K > 0 such that

0 < W(x, z) = Vz(x, z) ≤ K, ∀ (x, z) ∈ R2.

By the interior Lp estimates for the second derivatives of elliptic equations (see [48, Theorem 9.11])
and the embedding theorem (see [48, Theorem 7.26]), there exists a constant Λ > 0 such that

‖W‖C1+α(R2) ≤ Λ

for some constant α ∈ (0, 1]. Using the above estimate, the assumptions (F) and (G), and the Schauder
interior estimates for the second derivatives of elliptic equations (see [48, Theorem 6.2]), we have that
for some 0 < α ≤ 1 and C0 > 0, there are

|W |∗2,α;B2(y0,z0) ≤ C0|W |0;B2(y0,z0), ∀ (y0, z0) ∈ R2, (2.5)

where Br(y0, z0) is a ball of radius r in R2 with origin (y0, z0). On the other hand, since B1(y0, z0) ⊂⊂
B2(y0, z0) and dist (B1 (y0, z0) , ∂B2 (y0, z0)) = 1, we have

|W |m,α;B1(y0,z0) ≤ |W |∗m,α;B2(y0,z0), ∀ (y0, z0) ∈ R2. (2.6)

Here we refer the definitions of the norms |·|∗m,α;Ω, |·|m,α;Ω and |·|m;Ω to [48] and [28]. Combining (2.5)
and (2.6) yields

|W |2,α;B1(y0,z0) ≤ C0|W |0;B2(y0,z0), ∀ (y0, z0) ∈ R2.

Since W(x, z) > 0, the Harnack-type inequality [48, Theorem 2.5] implies that there exists another
constant C1 > 0 such that

|W |2,α;B1(y0,z0) ≤ C0C1W(y0, z0), ∀ (y0, z0) ∈ R2.

Taking
k := C0C1,

we obtain that
|Wz(y0, z0)| ≤ kW(y0, z0), ∀ (y0, z0) ∈ R2,

that is
|Vzz| ≤ kVz in R2.

This completes the proof of Lemma 2.3. �
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Now, we will show that the functions V (y, z + v±(x, t)) are a supersolution and a subsolution
of (1.13), respectively. In what follows, ∆x and ∇x denote the (n − 2)-dimensional Laplacian and the
(n − 2)-dimensional gradient, respectively.

Lemma 2.4. (Supersolutions and Subsolutions). Let u(x, y, z, t) be the solution of (1.13) with the initial
value u0(x, y, z) ∈ BUC1(Rn). Suppose that the functions v+(x, t) and v−(x, t) solving the following
problems  ∂

∂t v
+(x, t) = ∆xv+ + k|∇xv+|2, x ∈ Rn−2, t > 0,

v+(x, 0) = v+
0 (x), x ∈ Rn−2, ∂

∂t v
−(x, t) = ∆xv− − k|∇xv−|2, x ∈ Rn−2, t > 0,

v−(x, 0) = v−0 (x), x ∈ Rn−2,

respectively. Where k > 0 is the constant defined in Lemma 2.3. If

V
(
y, z + v−0 (x)

)
≤ u0(x, y, z) ≤ V

(
y, z + v+

0 (x)
)
, (x, y, z) ∈ Rn,

then u+(x, y, z, t) := V (y, z + v+(x, t)) and u−(x, y, z, t) := V (y, z + v−(x, t)) are a supersolution and a
subsolution of (1.13), respectively.

Proof. We only show that u+(x, y, z, t) is a supersolution of (1.13), since the subsolution can be proved
in a similar way.

Set
L[u] := ut − ∆u +

(
g′(u) + s

)
uz − f (u).

Using the equality −Vyy − Vzz + (g′(V) + s) Vz − f (V) = 0 and Lemma 2.3, we have

L[u+] =u+
t − ∆u+ +

(
g′

(
u+) + s

)
u+

z − f (u+)

=v+
t Vz −

n−2∑
i=1

(
v+

xi xi
Vz +

(
v+

xi

)2
Vzz

)
− Vyy − Vzz +

(
g′(V) + s

)
Vz − f (V)

=v+
t Vz − ∆xv+Vz −

∣∣∣∇xv+
∣∣∣2 Vzz

=(kVz − Vzz)
∣∣∣∇xv+

∣∣∣2 ≥ 0.

This completes the proof. �

Now we prove Theorem 1.2.
Proof of Theorem 1.2. Let the function v+(x, t) as in Lemma 2.4. Then we have

u(x, y, z, t) ≤ V
(
y, z + v+(x, t)

)
≤ V(y, z) + ‖Vz‖L∞(R2) · sup

x∈Rn−2

∣∣∣v+(x, t)
∣∣∣ .

From Lemma 2.1, we have

u(x, y, z, t) − V(y, z) ≤ ‖Vz‖L∞(R2) · sup
x∈Rn−2

∣∣∣v+(x, t)
∣∣∣ ≤ Ct−

n−2
2 ,

for some positive constant C. Similarly, we also obtain

u(x, y, z, t) − V(y, z) ≥ −Ct−
n−2

2 .
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This completes the proof. �
Next, we give a proof of Proposition 1.3. Our argument is based again on Lemma 2.4.

Proof of Proposition 1.3. We only consider the case that v0 ≤ 0, v0 . 0. The right hand side inequality
of (1.10) immediately follows from Theorem 1.2. To prove the left hand side inequality of (1.10), from
Lemma 2.4, it suffices to show that the solution v(x, t) of the problemvt = ∆xv + k |∇xv|2 , x ∈ Rn−2, t > 0,

v(x, 0) = v0(x), x ∈ Rn−2

satisfies v(0, t) ≤ −C(1 + t)−
n−2

2 for some constant C > 0. Indeed, Lemma 2.4 gives that

u(0, 0, 0, t) ≤V(0, v(0, t))
≤V(0, 0) + min

z∈
[
−‖v0‖L∞(Rn−2),0

] |Vz(0, z)| · v(0, t)

≤V(0, 0) −C′(1 + t)−
n−2

2 , t ≥ 0,

where C′ is a positive constant.
Similar to (2.2), the explicit expression for v(x, t) is given by

v(x, t) =
1
k

ln
(∫
Rn−2

Γ(x − η, t)ekv0(η)dη
)
,

where Γ(ξ, τ) is the heat kernel on Rn−2. Since v0 ≤ 0 and v0 . 0, there exists a constant δ > 0 and a
nonempty open set D ⊂ Rn−2 such that v0 ≤ −δ for x ∈ D. Then we have

v(x, t) ≤
1
k

ln
(
1 −

∫
D

Γ(x − η, t)
(
1 − e−kδ

)
dη

)
≤

1
k

ln
(
1 − |D|

(
1 − e−kδ

)
·min
η∈D

Γ(x − η, t)
)

≤ −
|D|
k

(
1 − e−kδ

)
·min
η∈D

Γ(x − η, t),

which implies v(0, t) ≤ −C(1+t)−
n−2

2 . This completes the proof. �
Now, we construct some new types of supersolutions and subsolutions.

Lemma 2.5. Let k > 0 be defined as in Lemma 2.3. Then there exist constants δ0 > 0, β > 0 and σ ≥ 1
such that, for any δ ∈ (0, δ0] and any functions v±(x, t) satisfying

v±t = ∆xv± ± k
∣∣∣∇xv±

∣∣∣2 ,
the functions defined by

ũ(x, y, z, t) := V
(
y, z + v+(x, t) + σδ

(
1 − e−βt

))
+ δe−βt,

û(x, y, z, t) := V
(
y, z + v−(x, t) − σδ

(
1 − e−βt

))
− δe−βt

are a supersolution and a subsolution of (1.13), respectively.
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Proof. Using the equality −Vyy − Vzz + (s + g′(V)) Vz − f (V) = 0 and Lemma 2.3, we have

L[ũ] =ũt − ∆ũ +
(
s + g′(ũ)

)
ũz − f (ũ)

=Vzv+
t + σδβe−βtVz − δβe−βt − ∆xv+Vz −

∣∣∣∇xv+
∣∣∣2 Vzz − Vyy − Vzz

+
(
s + g′

(
V + δe−βt

))
Vz − f

(
V + δe−βt

)
=

(
v+

t − ∆xv+) Vz −
∣∣∣∇xv+

∣∣∣2 Vzz + σδβe−βtVz − δβe−βt

+
(
g′

(
V + δe−βt

)
− g′(V)

)
Vz + f (V) − f (V + δe−βt)

= (kVz − Vzz)
∣∣∣∇xv+

∣∣∣2 + σδβe−βtVz − δβe−βt

+ δe−βt
∫ 1

0
g′′

(
V + θδe−βt

)
dθVz − δe−βt

∫ 1

0
f ′

(
V + θδe−βt

)
dθ

≥δe−βt

((
σβ +

∫ 1

0
g′′

(
V + θδe−βt

)
dθ

)
Vz − β −

∫ 1

0
f ′

(
V + θδe−βt

)
dθ

)
.

On the other hand, from (F), there exists a constant δ0(0 < δ0 <
1
8 ) such that

− f ′(r) ≥ k0 > 0 for r ∈ [−2δ0, 2δ0] ∪ [1 − 2δ0, 1 + 2δ0], (2.7)

where

k0 :=
1
2

min {− f ′(0),− f ′(1)} > 0.

Let β3 > 0 be defined by Lemma 2.2 with δ0. For δ0 ≤ V
(
y, z + v+(x, t) + σδ

(
1 − e−βt

))
≤ 1 − δ0,

from (1.2) and Lemma 2.2, we have(
σβ +

∫ 1

0
g′′

(
V + θδe−βt

)
dθ

)
Vz − β −

∫ 1

0
f ′

(
V + θδe−βt

)
dθ

≥(σβ − l2)β3 − β − M ≥ 0

if we take

σ >
β + M
ββ3

+
l2

β
,

where
M := sup

−1≤r≤2
| f ′(r)| . (2.8)

For V
(
y, z + v+(x, t) + σδ

(
1 − e−βt

))
> 1 − δ0 or V

(
y, z + v+(x, t) + σδ

(
1 − e−βt

))
< δ0, following

from Lemma 2.2 and (2.7) we have(
σβ +

∫ 1

0
g′′

(
V + θδe−βt

)
dθ

)
Vz − β −

∫ 1

0
f ′

(
V + θδe−βt

)
dθ ≥ k0 − β ≥ 0

if we take

σ >
l2

β
and 0 < β < k0.
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Thus, if we take β small and σ large as

0 < β < k0, σ > max
{

1,
M + β

ββ3
+

l2

β

}
,

we obtain L[ũ] ≥ 0. Similarly, we can obtain L[û] ≤ 0. This completes the proof. �

To prove Theorem 1.1, we need another auxiliary lemma.

Lemma 2.6. Assume that the initial value u0(x, y, z) ∈ BUC1(Rn) satisfies

lim
R→∞

sup
|x|+|y|+|z|≥R

|u0(x, y, z) − V(y, z)| = 0. (2.9)

Then, for any fixed T > 0, the solution u(x, y, z, t) of (1.13) satisfies

lim
R→∞

sup
|x|+|y|+|z|≥R

|u(x, y, z,T ) − V(y, z)| = 0.

Proof. Define a function w(x, y, z, t) by

ω(x, y, z, t) := u(x, y, z, t) − V(y, z).

Then ω(x, y, z, t) solves the following Cauchy problem
ωt = ∆ω − (s + g′(ω + V))ωz + ( f ′(V + θ1ω) − g′′(V + θ2ω)Vz)ω,

x ∈ Rn−2, (y, z) ∈ R2, t > 0,
ω(x, y, z, 0) = u0(x, y, z) − V(y, z), x ∈ Rn−2, (y, z) ∈ R2,

(2.10)

where θi(x, y, z, t) is the functions that satisfy 0 ≤ θi(x, y, z, t) ≤ 1, i = 1, 2.
In order to prove the lemma, it suffices to consider the case whereω(x, y, z, 0) ≥ 0 and the case where

ω(x, y, z, 0) ≤ 0, since the general case follows easily from these special cases and the comparison
principle. In the following, we always assume that ω(x, y, z, 0) ≥ 0.

Letting

g1(x, y, z, t) = −
(
s + g′(ω + V)

)
, g2(x, y, z, t) = f ′(V + θ1ω) − g′′(V + θ2ω)Vz,

then (2.10) can be rewritten asωt = ∆ω + g1(x, y, z, t)ωz + g2(x, y, z, t)ω, x ∈ Rn−2, (y, z) ∈ R2, t > 0,
ω(x, y, z, 0) = u0(x, y, z) − V(y, z), x ∈ Rn−2, (y, z) ∈ R2.

Because of ω(x, y, z, 0) ≥ 0, the maximum principle gives ω(x, y, z, t) ≥ 0. Then, by assumptions (F)
and (G), there exists a constant M∗ > 0 such that

ωt = ∆ω + g1(x, y, z, t)ωz + g2(x, y, z, t)ω ≤ ∆ω + g1(x, y, z, t)ωz + M∗ω.

Since g ∈ C2+γ0(R) and g1(x, y, z, t) is bounded continuous in Rn × R+, Friedman [49, Chapter 9,
Theorem 2] implies that the fundamental solution Γ(x, y, z, ζ, η1, η2, t, τ) of the problemω̃t = ∆ω̃ + g1(x, y, z, t)ω̃z + M∗ω̃, x ∈ Rn−2, (y, z) ∈ R2, t > 0,

ω̃(x, y, z, 0) = u0(x, y, z) − V(y, z), x ∈ Rn−2, (y, z) ∈ R2
(2.11)
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exists and satisfies

Γ(x, y, z, ζ, η1, η2, t, τ) ≤
c1

(t − τ)
n
2
e−c2

|x−ζ |2+(y−η1)2+(z−η2)2

t−τ for 0 ≤ τ < t ≤ T,

where c1, c2 are positive constants depending only on T . A solution of problem (2.11) can be expressed
as

ω̃(x, y, z, t) =

∫
R2

∫
Rn−2

Γ(x, y, z, ζ, η1, η2, t, 0) (u0(ζ, η1, η2) − V(η1, η2)) dζdη1dη2.

Then we obtain the estimate

0 ≤ω(x, y, z, t) ≤ ω̃(x, y, z, t)

≤

∫
R2

∫
Rn−2

Γ(x, y, z, ζ, η1, η2, t, τ) (u0(ζ, η1, η2) − V(η1, η2)) dζdη1dη2

≤c1

∫
R2

∫
Rn−2

e−c2(|X|2+Y2+Z2)

×
(
u0(x +

√
tX, y +

√
tY, z +

√
tZ) − V(y +

√
tY, z +

√
tZ)

)
dXdYdZ.

Since (2.9), then for any fixed T > 0, we have

lim
R→∞

sup
|x|+|y|+|z|≥R

|u(x, y, z,T ) − V(y, z)| = 0.

Similarly, we can treat the case that ω(x, y, x, 0) ≤ 0. This completes the proof. �

Next, we end this section by proving Theorem 1.1.

Proof of Theorem 1.1. We only show a lower estimate, since an upper estimate is obtained similarly.
Taking constants k > 0 as in Lemma 2.3 and σ ≥ 1 as in Lemma 2.5. Let a constant ε > 0 be arbitrarily
fixed. Define a constant ε̂ := ε/

(
2‖Vz‖L∞(R2) + 1

)
. Since f (r) > 0 for r < 0 by the assumption (F), we

have that
lim inf

t→+∞
u(x, y, z, t) = 0

by the comparison principle. Consequently, there exists a constant T1 > 0 such that

u(x, y, z,T1) ≥ −
ε̂

2σ
, (x, y, z) ∈ Rn.

Furthermore, Lemma 2.6 implies that there exists a constant R > 0 that satisfies

sup
|x|+|y|+|z|≥R

|u(x, y, z,T1) − V(y, z)| ≤
ε̂

σ
.

Then we can take a function v0(x) ≥ 0 that satisfies lim|x|→∞ v0(x) = 0 and

u(x, y, z,T1) ≥ V (y, z − v0(x)) −
ε̂

σ
, (x, y, z) ∈ Rn.
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Assume that v(x, t) solves the following Cauchy problem:vt = ∆xv − k|∇xv|2, x ∈ Rn−2, t > 0,
v(x, 0) = v0(x), x ∈ Rn−2.

Then Lemma 2.1 implies that there exists a constant T2 > 0 for which v(x, t) ≤ ε̂ holds true
for t ≥ T2. Finally, by using the comparison principle and the solution constructed in Lemma 2.5,
we obtain

u(x, y, z, t) ≥V
(
y, z − v(x, t − T1) − ε̂

(
1 − e−β(t−T1)

))
−
ε̂

σ
e−β(t−T1)

≥V(y, z − 2ε̂) − ε̂

≥V(y, z) −
(
2‖Vz‖L∞(R2) + 1

)
ε̂

≥V(y, z) − ε

for t ≥ T1 + T2. This completes the proof of Theorem 1.1. �

3. Stability and unstability of V-shaped fronts in Case B

In this section, we consider Case B and give proofs of Theorems 1.5 and 1.6.

Proof of Theorem 1.5. Consider the following two-dimensional problem∂u
∂t + (g(u))z = uyy + uzz + f (u), y ∈ R, z ∈ R, t > 0,
u(y, z, 0) = û0(y, z), y ∈ R, z ∈ R.

(3.1)

Denote the solution by u(y, z, t; û0). Following from (1.6) (see also [10]), we have that

lim
t→∞

sup
(y,z)∈Rn

|u(y, z, t; û0) − V (y, z + st)| = 0. (3.2)

It is clear that u(y, z, t; û0) is also a solution of (1.1) with initial value u(x, y, z, 0) = û0(y, z). Since
V(y, z) ≤ u0(x, y, z) ≤ û0(y, z) in (x, y, z) ∈ R3, it follows from the comparison principle that

V(y, z + st) ≤ u(x, y, z, t; u0) ≤ u(y, z, t; û0) ∀(x, y, z) ∈ R3, t > 0, (3.3)

where u(x, y, z, t; u0) denotes the solution of (1.1). Finally, using (3.2) and (3.3) we obtain

lim
t→∞

sup
(x,y,z)∈Rn

|u(x, y, z, t; u0) − V (y, z + st)| = 0.

This completes the proof. �
We now give the proof of Theorem 1.6. This theorem implies that the V-shaped traveling fronts are

not necessarily asymptotically stable if the initial perturbations are not decay to zero as |x|+|y|+|z| → ∞
even they are very small. By using supersolutions and subsolutions constructed in the previous section
and the following lemma, we construct a sequence of supersolutions and subsolutions that push the
solution back and forth in the z-direction, then forcing the solution to oscillate permanently with non-
decaying amplitude.
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Lemma 3.1. (See [42, Lemma 3.1 and Lemma 3.2]). Let k > 0 be defined as in Lemma 2.3 and v±(x, t)
be the solutions to the problem v±t = v±xx ± kv±, x ∈ R, t > 0,

v(x, 0) = v±0 (x), x ∈ R,

respectively. Suppose that the initial value v±0 (x) are bounded on R and satisfy

v+
0 (x) ≤ δ for x ∈ R,

v+
0 (x) ≤ −δ for |x| ∈ [m! + 1, (m + 1)! − 1]

and

v−0 (x) ≥ −δ for x ∈ R,

v−0 (x) ≥ δ for |x| ∈ [m! + 1, (m + 1)! − 1]

for some constant δ > 0 and some integer m ≥ 2, respectively. Then there exists a constant C > 0
depending only on δ and k such that

sup
|x|≤m!−1

v+(x,T ) ≤ −δ + C
∫
|ζ |∈

[
0, 2√

m

]⋃
[
√

m,∞)
e−ζ

2
dζ

and
sup
|x|≤m!−1

v−(x,T ) ≥ δ −C
∫
|ζ |∈

[
0, 2√

m

]⋃
[
√

m,∞)
e−ζ

2
dζ,

respectively, where T = m(m!)2/4.

Proof of Theorem 1.6. Set

Im = [m! + 1, (m + 1)! − 1], Ĩm = [0,m!] ∪ [(m + 1)!,∞).

Define two sequences of smooth functions
{
v±0,i(x)

}
i=1,2,···

satisfying

|v+
0,i(x)| ≤ δ, x ∈ R and v+

0,i(x) =

−δ, |x| ∈ I2i,

δ, |x| ∈ Ĩ2i

and

|v−0,i(x)| ≤ δ, x ∈ R and v−0,i(x) =

δ, |x| ∈ I2i+1,

−δ, |x| ∈ Ĩ2i+1,

respectively. We also take a function v∗0(x) ∈ C∞(R) to satisfy

v−0,i(x) ≤ v∗0(x) ≤ v+
0,i(x) for all i ≥ 1.

Let u∗(x, y, z, t) be the solution to (1.13) with u∗(x, y, z, 0) = V
(
y, z + v∗0(x)

)
and v+

i (x, t) be the solution
to the following Cauchy problem:(v+

i )t = (v+
i )xx + k

((
v+

i

)
x

)2
, x ∈ R, t > 0,

v+
i (x, 0) = v+

0,i(x), x ∈ R.
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From −δ ≤ v∗0(x) ≤ v+
0,i(x), we have

V(y, z − δ) ≤ V
(
y, z + v∗0(x)

)
≤ V

(
y, z + v+

0,i(x)
)
,

then Lemma 2.4 implies that

V(y, z − δ) ≤ u∗(x, y, z, t) ≤ V
(
y, z + v+

i (x, t)
)
.

Thus, it follows from Lemma 3.1 that

V(y, z − δ) ≤ sup
|x|≤(2i)!−1

u∗ (x, y, z, t2i)

≤ sup
|x|≤(2i)!−1

V
(
y, z + v+

0,i (x, t2i)
)

≤V(y, z − δ) + ‖Vz‖L∞(R2) ·C
∫
|ζ |∈

[
0, 2√

2i

]⋃[√
2i,∞)

e−ζ
2
dζ,

where t2i = (2i) ((2i)!)2 /4. This implies that

lim
i→∞

sup
(y,z)∈R2

sup
|x|≤(2i)!−1

|u∗(x, y, z, t2i) − V(y, z − δ)| = 0. (3.4)

Similarly, again by using Lemma 3.1 and the equalities v−0,i(x) ≤ v∗0(x) ≤ δ for i = 1, 2, 3, · · · , we get

V(y, z + δ) ≥ sup
|x|≤(2i+1)!−1

u∗ (x, y, z, t2i+1)

≥ sup
|x|≤(2i+1)!−1

V
(
y, z + v−0,i (x, t2i+1)

)
≥V(y, z + δ) − ‖Vz‖L∞(R2) ·C

∫
|ζ |∈

[
0, 2√

2i+1

]⋃[√
2i+1,∞)

e−ζ
2
dζ,

where t2i+1 = (2i + 1) ((2i + 1)!)2 /4. Then, we have

lim
i→∞

sup
(y,z)∈R2

sup
|x|≤(2i+1)!−1

|u∗(x, y, z, t2i+1) − V(y, z + δ)| = 0. (3.5)

Combining (3.4) and (3.5), we obtain the expected result. This completes the proof. �

4. Discussion

Recently, the study on multidimensional traveling fronts for scalar reaction-diffusion equations has
attracted much attention. For example, V-formed curved fronts for two-dimensional spaces (see [10–
12, 15–17, 20, 28, 33]), cylindrically symmetric traveling fronts (see [14, 30, 36]) and traveling fronts
with pyramidal shapes (see [21,23–25,35,37,45]) in higher-dimensional spaces. For reaction-diffusion
system, we refer to [26, 27, 29, 31, 32].

In [10], under the assumptions (F) and (G), we establish the existence and stability of V-shaped
traveling fronts V(y, z) of (1.1) in R2 for every direction θ ∈ (0, π/2) satisfying (C). On the basis
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of [10], we establish the multidimensional asymptotic stability of V-shaped traveling fronts V(y, z) in
Rn(n > 3) in this article. Here we would like to mention that the main method of this paper comes
from Matano et al. [42] and Sheng et al. [28]. However, in order to overcome the difficulties caused by
nonlinear convection, we have to choose a suitable space for the initial data u0, namely u0 ∈ C1(R2).
Moreover, there seems to be no research on the multidimensional asymptotic stability of the nonplanar
traveling fronts for a reaction-diffusion equation with nonlinear convection, even if one-dimensional
traveling fronts (or planar traveling fronts).
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Basel, 1995.

47. M. Nara, M. Taniguchi, Stability of a traveling wave in curvature flows for spatially non-decaying
initial perturbations, Discrete Contin. Dyn. Syst., 14 (2006), 203–220.

48. D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the
1998 edition, Springer-Verlag, Berlin, 2001.

49. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs,
1964.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 1, 314–332.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Stability of V-shaped fronts in Case A
	Stability and unstability of V-shaped fronts in Case B
	Discussion

