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Abstract: In this paper, we investigate the global properties of two general models of pathogen
infection with immune deficiency. Both pathogen-to-cell and cell-to-cell transmissions are considered.
Latently infected cells are included in the second model. We show that the solutions are nonnegative
and bounded. Lyapunov functions are organized to prove the global asymptotic stability for uninfected
and infected steady states of the models. Analytical expressions for the basic reproduction number
R0 and the necessary condition under which the uninfected and infected steady states are globally
asymptotically stable are established. We prove that if R0 < 1 then the uninfected steady state is
globally asymptotically stable (GAS), and if R0 > 1 then the infected steady state is GAS. Numerical
simulations are performed and used to support the analytical results.
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1. Introduction

During recent years, there has been a significant effort to develop mathematical models to study
epidemic and endemic diseases caused by pathogen attacking such as virus, bacterium, fungus,
viroid, and protozoan and studding possible prevention and/or elimination strategies (see e.g. [1–17]).
Mathematical analysis and modeling of diseases dynamics has many benefits including (i) its ability
to test several conditions and introduce new visions into issues which can not be addressed by clinical
or experimental trials, (ii) enhancing diagnosis and treatment strategies in the highest efficiency at the
lowest possible cost, and with the minimum of side effects, which increase the hopes of patients, (iii) we
can use it to evaluate the values of main parameters which control the process of infection or reduce the
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viral load in the body of patients. Certainly, immune response after the pathogen infection is universal
and essential for the control or removal of the diseases. In many pathogen infections, cytotoxic T
lymphocytes (CTLs) is an essential component of natural immune resistance to pathogen infection
and plays an important role in defending the body from pathogens by destroying the infected cells.
So, CTLs are assumed to be the principal host immune factor deciding the viral load. The standard
pathogen dynamics model with CTL immune response was formulated by Nowak and Bangham [18]
as:

Ṡ (t) = Υ − ΦS (t) − ηP(t)S (t), (1.1)
İ(t) = ηP(t)S (t) − ΘI(t) − qI(t)C(t), (1.2)
Ṗ(t) = ΩI(t) − ΣP(t), (1.3)
Ċ(t) = ΨI(t)C(t) − ΛC(t), (1.4)

S (t), I(t), P(t) and C(t) are, respectively, the concentrations of uninfected cells, infected cells,
pathogens and CTLs at time t. The uninfected cells are restored at rate Υ and die at rate ΦS . The
uninfected cells are become infected at rate ηPS . The infected cells are killed by CTL at rate qIC and
die at rate ΘI. Pathogens proliferate at rate ΩI and die by rate ΣP. CTLs proliferate at rate ΨIC, die by
rate ΛC. Accordingly, dynamics of pathogen infections with CTL response has attracted a great deal
of attention recently from researchers in related fields [19–28].

Nevertheless, it has been noted that some pathogens can cause impairment in CTL function during
the infection. In many papers, pathogenic dynamics models with CTL immune impairment were
studied in many papers (see e.g. [29–31]). These papers supposed that the uninfected cells become
infected due to pathogen contacts but pathogen can also spread by direct cell-to-cell transmission.
Many papers studied two types of pathogen transmissions, cell-to-cell and pathogen-to-cell (see
[32–38]). Pathogenic infection models with CTL immune response and two modes of transmission
have been developed in [39–43]. However, these papers neglected the effect of immune impairment.
Pathogen dynamics model with immune impairment and two types of transmissions can be given as
(see [44]):

Ṡ (t) = Υ − ΦS (t) − η1P(t)S (t) − η2I(t)S (t), (1.5)
İ(t) = η1P(t)S (t) + η2I(t)S (t) − ΘI(t) − qI(t)C(t), (1.6)
Ṗ(t) = ΩI(t) − ΣP(t), (1.7)
Ċ(t) = ΨI(t) − ΛC(t) − βI(t)C(t), (1.8)

where the terms η1PS and η2S I are the incidence rates due to pathogen-to-cell and cell-to-cell
mechanisms, respectively. The impairment of the CTL is represented by βIC.

Another barrier to curing the infection in many diseases is the latent reservoirs in human cell types
or tissues caused by persistent viruses like human immunodeficiency virus (HIV), hepatitis B and
C viruses, several herpesvirus and human T-cell leukemia virus. Viral latency is the tendency of a
pathogenic virus to repose latent within the cell, which is referred to as the lysogenic portion of the
pathogen life cycle. One form of persistent viral infection is a latent viral infection where latent viruses
will incorporate its genetic material into the infected host cell’s genetic material. Because it is possible
to replicate the pathogen genetic material with the host materials, the virus becomes (invisible) with
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respect to the host detection. Latency is the phase in certain pathogens life cycles in which, after
initial infection, a proliferation of virus particles ceases. The viral genome, however, isn’t completely
eradicated. The result of this is that the virus can reactivate and begin producing large amounts of viral
progeny without the host becoming reinfected by the new outside pathogen, and stays within the host
indefinitely. The latent reservoir can explain antiviral therapies failure to remove the infection (see [6]
and [45]). Elaiw et al. [46] studied an HIV dynamics model with latent reservoirs and CTL immune
impairment, but they neglected the cell-to-cell transmission. We note that the pathogen-cell and cell-
cell incidence rates are given by bilinear forms η1PS and η2S I. Experimental work [49] showed that
the bilinear incidence rate is insufficient to describe the pathogenic infection process in detail. As a
result, several pathogen dynamics models with nonlinear incidence were proposed (see e.g. [50, 51]).

The aim of this paper is to propose and analyze pathogen dynamics models with impairment of
CTL immunity, which are generalization of several models presented in the literature by including
general incidence rates for cell-to-cell and pathogen-to-cell transmissions. The second model is a
generalization for the first one by taking into account two groups of infected cells, latently infected
cells (remains dormant in the inactive or hidden process) and actively infected cells. We demonstrate
that model solutions are non-negative and ultimately finite which ensure the well-posed of the models.
Biological threshold parameter R0 have been derived to determine existence steady states of the models
and their stability. Using Lyapunov method and applying LaSalle’s invariance principle, we investigate
the global stability of the model’s steady states. We demonstrate that (i) if R0 < 1, the uninfected
steady state Γ0 is globally asymptotic stable (GAS) and the epidemic is expected to be removed from
the patients, (ii) if R0 > 1, the infected steady state Γ1 is GAS and chronic disease is achieved. We
conduct numerical simulations to establish that the theoretical and numerical results are compatible.

2. Model with general rate of incidence

In this section, we present a pathogen dynamics model with general pathogen-to-cell and cell-to-cell
incidence as follows:

Ṡ (t) = Υ − ΦS (t) − (h1(P(t)) + h2(I(t))) f (S (t)), (2.1)
İ(t) = (h1(P(t)) + h2(I(t))) f (S (t)) − ΘI(t) − qI(t)C(t), (2.2)
Ṗ(t) = ΩI(t) − ΣP(t), (2.3)
Ċ(t) = ΨI(t) − ΛC(t) − βI(t)C(t), (2.4)

where S (t), I(t), P(t) and C(t) are respectively the concentrations of uninfected cells, infected cells,
pathogens and CTLs at time t. The uninfected cells are restored at rate Υ and die at rate ΦS . The
infected cells are killed by CTL at rate qIC and die at rate ΘI. Pathogens proliferate at rate ΩI and
die by rate ΣP. CTL cells proliferate at rate ΨI, die by rate ΛC. The impairment of the CTL is
represented by βIC where Ψ, Λ and β are constants. The uninfected cells are become infected at rate
(h1(P) + h2(I)) f (S ). Functions f , h1 and h2 are bounded and continuously differentiable satisfy the
following conditions:

(A1) h1(z) > 0, h2(z) > 0 and f (z) > 0 for all z > 0 and h1(0) = h2(0) = f (0) = 0.
(A2) h′1(z) > 0, h′2(z) > 0 and f ′(z) > 0 for all z ≥ 0 .
(A3)

(
f (S )
S

)′
≤ 0,

(
h1(P)

P

)′
≤ 0 and

(
h2(I)

I

)′
≤ 0 for all S > 0, I > 0 and P > 0.
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Remark 1. (i) If f (S ) = S , h1(P) = P and h2(I) = I , then model (2.1)-(2.4) will be reduced to the
model presented in [47] in the absent of the time delays, (ii) if f (S ) = S

1+αS , h1(P) = P, h2(I) = I , then
model (2.1)-(2.4) will be reduced to the model presented in [48].

2.1. Basic properties

In this subsection we will discuss the non-negativity and finiteness of model (2.1)-(2.4) solutions:

Lemma 1. For the model (2.1)-(2.4), a nonnegative invariant compact set exists

Ω1 =
{
(S , I, P,C) ∈ R4

≥0 : 0 ≤ S , I ≤ n1, 0 ≤ P ≤ n2, 0 ≤ C ≤ n3

}
, (2.5)

where R≥0 = {x ∈ R : x ≥ 0}.

Proof. It is obvious that

Ṡ
∣∣∣
(S =0) = Υ > 0,

İ
∣∣∣
(I=0) = h1(P) f (S ) ≥ 0, for all S > 0, P ≥ 0,

Ṗ
∣∣∣
(P=0) = ΩI ≥ 0, for all I ≥ 0,

Ċ
∣∣∣
(C=0) = ΨI ≥ 0, for all I ≥ 0.

This is an evidence for the positively invariant property of R4
≥0 for the system (2.1)-(2.4).

Let Q = S + I + Θ
2Ω

P + Θ
4Ψ

C, then

Q̇ = Υ − ΦS − (h1(P) + h2(I)) f (S )
+ (h1(P) + h2(I)) f (S ) − ΘI − qIC

+
Θ

2Ω
(ΩI − ΣP) +

Θ

4Ψ
(ΨI − ΛC − βIC)

= Υ − ΦS −
Θ

4
I −

(
q +

Θβ

4Ψ

)
IC −

ΘΣ

2Ω
P −

ΘΛ

4Ψ
C

≤ Υ − ΦS −
Θ

4
I −

ΘΣ

2Ω
P −

ΘΛ

4Ψ
C

≤ Υ − σ

(
S + I +

Θ

2Ω
P +

Θ

4Ψ
C
)

= Υ − σQ,

where, σ = min{Φ, Θ
4 ,Σ,Λ}. Then

Q(t) ≤ e−σt

(
Q (0) −

Υ

σ

)
+

Υ

σ
.

This yields, 0 ≤ Q(t) ≤ n1 for all t ≥ 0 if Q(0) ≤ n1, where n1 = Υ
σ

. It follows that 0 ≤ S (t), I(t) ≤
n1, 0 ≤ P(t) ≤ n2 and 0 ≤ C(t) ≤ n3 for all t ≥ 0 if S (0) + I(0) + Θ

2Ω
P(0) + Θ

4Ψ
C(0) ≤ n1, where n2 = 2ΩΥ

Θσ

and n3 = 4ΨΥ
Θσ

. This prove the boundedness of S , I, P and C. �

The steady state’s existence for the system (2.1)-(2.4) will be introduced in the following lemma.
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Lemma 2. Suppose that Assumption A1-A3 are satisfied and there exists a parameter R0 > 0 such that
(i) if R0 ≤ 1, then only one steady state Γ0 exists,
(ii) if R0 > 1, therefore two steady states Γ0 and Γ1 exist.

Proof. To calculate the steady states we let

0 = Υ − ΦS − [h1(P) + h2(I)] f (S ), (2.6)
0 = [h1(P) + h2(I)] f (S ) − ΘI − qIC, (2.7)
0 = ΩI − ΣP, (2.8)
0 = ΨI − ΛC − βIC. (2.9)

From Eqs (2.6)-(2.9) we find that the system has uninfected steady state Γ0 = (S 0, 0, 0, 0), where

S 0 =
Υ

Φ
and if I , 0 we can define another steady state Γ = (S , I, P,C) satisfying the following

equation

0 =
[h1(P) + h2(I)] f (S )

I
− Θ − qC

such that

P =
ΩI
Σ
, (2.10)

C =
ΨI

βI + Λ
, (2.11)

and S satisfy the following equation

0 = Υ − ΦS − [h1(P) + h2(I)] f (S ),

define a function H on [0,∞) by

H(I) =
[h1(P) + h2(I)] f (S )

I
− Θ − qC

Equation (2.10) and the boundedness of h1 and h2 imply that limI→∞
h1(p)

I = limI→∞
h2(I)

I = 0. Since

limI→∞H(I) = −Θ −
Ψq
β

< 0 and limI→0H(I) =
(

Ω
Σ

h′1(0) + h′2(0)
)

f (S 0) − Θ > 0. Consequently there

exists I1 ∈ (0,∞) and from Eqs (2.10)-(2.11) we have P1 =
ΩI1

Σ
> 0 and C1 =

ΨI1

βI1 + Λ
> 0 when

Θ
[(

Ωh′1(0)
ΘΣ

+
h′2(0)

Θ

)
f (S 0) − 1

]
> 0. Thus, we can define the basic infection reproduction number R0 as:

R0 =

(
Ωh′1(0)

ΘΣ
+

h′2(0)
Θ

)
f (S 0). (2.12)

It follow that the infected steady state Γ1 = (S 1, I1, P1,C1) exists if R0 > 1. �
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2.2. Global characteristics

In the following subsection we are going to confirm the global stability of the model (2.1)-(2.4)
steady states by creating appropriate Lyapunov functions. Define a function g : (0,∞) → [0,∞) as
g(υ) = υ − 1 − ln υ.

Remark 2. From Assumption (A3) we have h1(P)
P ≤ limP→0+

h1(P)
P = h′1(0) and h2(I)

I ≤ limI→0+
h2(I)

I =

h′2(0).

Theorem 1. For model (2.1)-(2.4), if R0 < 1, then Γ0 is globally asymptotically stable (GAS).

Proof. Let us define Y1(S , I, P,C) as:

Y1(S , I, P,C) = S − S 0 −

S∫
S 0

f (S 0)
f (θ)

dθ + I +
f (S 0)h′1(0)

Σ
P +

Θ(1 − R0)
Ψ

C.

Clearly, Y1(S , I, P,C) > 0 for all S , I, P,C > 0 and Y1(S 0, 0, 0, 0) = 0. Calculating
dY1

dt
along the

system (2.1)-(2.4), we get

dY1

dt
=

(
1 −

f (S 0)
f (S )

) [
Υ − ΦS − (h1(P) + h2(I)) f (S )

]
+ (h1(P) + h2(I)) f (S ) − ΘI − qIC

+
f (S 0)h′1(0)

Σ
(ΩI − ΣP) +

Θ(1 − R0)
Ψ

(ΨI − ΛC − βIC)

=

(
1 −

f (S 0)
f (S )

)
(Υ − ΦS ) + f (S 0)h1(P) + f (S 0)h2(I) − ΘR0I

+
f (S 0)h′1(0)Ω

Σ
I − f (S 0)h′1(0)P

−

(
q +

βΘ(1 − R0)
Ψ

)
IC −

Θ(1 − R0)Λ
Ψ

C.

Using Υ = ΦS 0 and from Remark 2 we get

dY1

dt
≤ Υ

(
1 −

f (S 0)
f (S )

) (
1 −

S
S 0

)
+ Θ

(
f (S 0)h′1(0)Ω

ΣΘ
+

f (S 0)h′2(0)
Θ

− R0

)
I

−

(
q +

βΘ(1 − R0)
Ψ

)
IC −

Θ(1 − R0)Λ
Ψ

C

= Υ

(
1 −

f (S 0)
f (S )

) (
1 −

S
S 0

)
−

(
q +

βΘ(1 − R0)
Ψ

)
IC −

Θ(1 − R0)Λ
Ψ

C.

From assumption (A2) we have
(
1 − f (S 0)

f (S )

) (
1 − S

S 0

)
≤ 0. Clearly if R0 < 1, then

dY1

dt
≤ 0 for all

S , I, P,C > 0, moreover
dY1

dt
= 0 if and only if S (t) = S 0 and C(t) = 0. Let
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D0 =

{
(S , I, P,C) :

dY1

dt
= 0

}
and D́0 be the largest invariant subset ofD0, then solutions of the model

(2.1)-(2.4) tend to D́0. For each element in D́0 we have S (t) = S 0 and C(t) = 0, thus Eq (2.4) yields

˙C(t) = 0 = ΨI(t) − ΛC(t) − βI(t)C(t),

Hence I(t) = 0 and from Eq (2.2) we have

˙I(t) = 0 = h1(P(t)) f (S 0)

then h1(P(t)) = 0, which yields P(t) = 0. It follows that D́0 contains a single point which is (S 0, 0, 0, 0).
LaSalle’s invariance principle (LIP) implies that Γ0 is GAS when R0 < 1.
Further to study the local stability of Γ0, we need to calculate the Jacobin matrix at Γ0 = (S 0, 0, 0, 0) as:

J =
∂(Ṡ , İ, Ṗ, Ċ)
∂(S , I, P,C)

|Γ0=


−Φ − f (S 0)h′2(0) − f (S 0)h′1(0) 0
0 f (S 0)h′2(0) − Θ f (S 0)h′1(0) 0
0 Ω −Σ 0
0 Ψ 0 −Λ

 .
Then the characteristic equation at Γ0 can be derived from the equation |J − λI| = 0, where I here is the
identity matrix and λ is the eigenvalues. We obtain

(λ + Φ)(λ + Λ)
[
λ2 +

(
Σ − f (S 0)h′2(0) + Θ

)
λ − f (S 0)h′2(0)Σ − f (S 0)h′1(0)Ω + ΘΣ

]
= 0. (2.13)

This gives two negative eigenvalues λ = −Φ and λ = −Λ. Define a function G1 on [0,∞) by

G1(λ) = λ2 +
(
Σ − f (S 0)h′2(0) + Θ

)
λ − f (S 0)h′2(0)Σ − f (S 0)h′1(0)Ω + ΘΣ = 0.

We have G1(0) = − f (S 0)h′2(0)Σ− f (S 0)h′1(0)Ω+ΘΣ = ΘΣ(1−R0) < 0 when R0> 1 and lim
λ→∞

G1(λ) = ∞,

which means that there exists one eigenvalue λ > 0 such that G1 = 0 has a positive real root. Hence,
Γ0 is unstable when R0 > 1.

Remark 3. From Assumptions (A1)-(A3) we have(
h1(P)

P
−

h1(P1)
P1

)
(h1(P) − h1(P1)) ≤ 0,(

h2(I)
I
−

h2(I1)
I1

)
(h2(I) − h2(I1)) ≤ 0.

Theorem 2. For the model (2.1)-(2.4), Γ1 is GAS when R0 > 1.

Proof. Constructing a function Y2(S , I, P,C) as:

Y2(S , I, P,C) = S − S 1 −

S∫
S 1

f (S 1)
f (θ)

dθ + I1g
(

I
I1

)
+

f (S 1)h1(P1)
ΣP1

P1g
(

P
P1

)
+

q
2(Ψ − βC1)

(C −C1)2.
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Note that Ψ − hC1 = ΛC1
I1

> 0. Clearly Y2(S , I, P,C) > 0 for all S , I, P,C > 0 and Y2(S 1, I1, P1,C1) = 0.
Moreover

dY2

dt
=

(
1 −

f (S 1)
f (S )

) [
Υ − ΦS − (h1(P) + h2(I)) f (S )

]
+

(
1 −

I1

I

) [
(h1(P) + h2(I)) f (S ) − ΘI − qIC

]
+

f (S 1)h1(P1)
ΣP1

(
1 −

P1

P

)
(ΩI − ΣP) +

q(C −C1)
(Ψ − βC1)

(ΨI − ΛC − βIC)

=

(
1 −

f (S 1)
f (S )

)
(Υ − ΦS ) + (h1(P) + h2(I)) f (S 1)

− Θ (I − I1) − qC (I − I1) − (h1(P) + h2(I)) f (S )
I1

I

+
f (S 1)h1(P1)

ΣP1

(
ΩI − ΣP −

ΩP1I
P

+ ΣP1

)
+

q(C −C1)
(Ψ − hC1)

(ΨI − ΛC − βIC) . (2.14)

Applying the steady state conditions for Γ1:

Υ − ΦS 1 = (h1(P1) + h2(I1)) f (S 1) = ΘI1 + qI1C1,

ΩI1 = ΣP1,

ΨI1 = ΛC1 + βI1C1,

we get

dY2

dt
= ΦS 1

(
1 −

f (S 1)
f (S )

) (
1 −

S
S 1

)
+

(
1 −

f (S 1)
f (S )

)
(h1(P1) + h2(I1)) f (S 1)

+ (h1(P) + h2(I)) f (S 1) −
(

I
I1
− 1

)
(h1(P1) + h2(I1)) f (S 1) − (h1(P) + h2(I)) f (S )

I1

I

+ f (S 1)h1(P1)
(

I
I1
−

P
P1
−

P1I
PI1

+ 1
)
− q

(
Λ + βI

Ψ − βC1

)
(C −C1)2.

= ΦS 1

(
1 −

f (S 1)
f (S )

) (
1 −

S
S 1

)
+ h1(P1) f (S 1)

(
h1(P)
h1(P1)

−
P
P1

+
Ph1(P1)
P1h1(P)

− 1
)

+ h1(P1) f (S 1)
(
4 −

f (S 1)
f (S )

−
h1(P) f (S )I1

h1(P1) f (S 1)I
−

IP1

I1P
−

Ph1(P1)
P1h1(P)

)
+ h2(I1) f (S 1)

[(
h2(I)
h2(I1)

−
I
I1

+
Ih2(I1)
I1h2(I)

− 1
)

+

(
3 −

f (S 1)
f (S )

−
h2(I) f (S )I1

h2(I1) f (S 1)I
−

Ih2(I1)
I1h2(I)

)]
− q

(
Λ + βI

Ψ − βC1

)
(C −C1)2. (2.15)

Equation (2.15) can be simplified as

dY2

dt
= ΦS 1

(
1 −

f (S 1)
f (S )

) (
1 −

S
S 1

)
+ h1(P1) f (S 1)

(
h1(P)
h1(P1)

−
P
P1

) (
1 −

h1(P1)
h1(P)

)
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+ h1(P1) f (S 1)
(
4 −

f (S 1)
f (S )

−
h1(P) f (S )I1

h1(P1) f (S 1)I
−

IP1

I1P
−

Ph1(P1)
P1h1(P)

)
+ h2(I1) f (S 1)

(
3 −

f (S 1)
f (S )

−
h2(I) f (S )I1

h2(I1) f (S 1)I
−

Ih2(I1)
I1h2(I)

)
+ h2(I1) f (S 1)

(
h2(I)
h2(I1)

−
I
I1

) (
1 −

h2(I1)
h2(I)

)
− q

(
Λ + βI

Ψ − βC1

)
(C −C1)2.

Using the geometrical and arithmetical means relationship we obtain

4 ≤
f (S 1)
f (S )

+
h1(P) f (S )I1

h1(P1) f (S 1)I
+

IP1

I1P
+

Ph1(P1)
P1h1(P)

,

3 ≤
f (S 1)
f (S )

+
h2(I) f (S )I1

h2(I1) f (S 1)I
+

Ih2(I1)
I1h2(I)

.

Using Remark 3 we get that dY2
dt ≤ 0 and dY2

dt = 0 at the point (S 1, I1, P1,C1). Let D́1 be the largest
invariant subset of the set

{
(S , I, P,C) : dY2

dt = 0
}
. Thus, the solutions of model tend to D́1 . It is clear

that D́1 contains unique point which is Γ1. The global asymptotic stability of Γ1 follows from (LIP). �

3. The model after considering the latent infected cells

Here, we shall present a pathogen dynamic model with general pathogen-to-cell and cell-to-cell
transmissions as before with immune impairment but we will consider two groups of infected cells,
latently infected and productively infected cells as:

Ṡ (t) = Υ − ΦS (t) − (h1(P(t)) + h2(I(t))) f (S ), (3.1)
L̇(t) = (1 − n) (h1(P(t)) + h2(I(t))) f (S (t)) − (d + b)L(t), (3.2)
İ(t) = n (h1(P(t)) + h2(I(t))) f (S ) − ΘI + bL − qIC, (3.3)
Ṗ(t) = ΩI(t) − ΣP(t), (3.4)
Ċ(t) = ΨI(t) − ΛC(t) − βI(t)C(t). (3.5)

where, L(t) and I(t) are the concentration of the latently and productively infected cells at time
t, respectively. The uninfected cells are become infected at rate (h1(P) + h2(I)) f (S ), where f , h1

and h2 are continuously differentiable satisfy Assumptions (A1)-(A3) in section (2), The fractions
(1 − n) and n with 0 < n ≤ 1 are the probabilities that upon infection, uninfected cells will become
either latently infected or productively infected, b is the average number of latently infected cells
become productively infected cells and d is death rate constant of the latently infected cells. All other
parameters have the same meaning as system (2.1)-(2.4).

3.1. Basic properties

Now, we will prove the non-negativity and finiteness of the solutions of the model (3.1)-(3.5).

Lemma 3. For model (3.1)-(3.5) there exists a positively invariant compact set

Ω2 =
{
(S , L, I, P,C) ∈ R5

≥0 : 0 ≤ S , L, I ≤ n1, 0 ≤ P ≤ n2, 0 ≤ C ≤ n3

}
. (3.6)

AIMS Mathematics Volume 6, Issue 1, 114–140.



123

Proof. We have

Ṡ
∣∣∣
(S =0) = Υ > 0,

L̇
∣∣∣
(L=0)

= (1 − n) (h1(P) + h2(I)) f (S ) ≥ 0, for all S , P, I ≥ 0,

İ
∣∣∣
(I=0) = nh1(P) f (S ) + bL ≥ 0, for all S , P, L ≥ 0,

Ṗ
∣∣∣
(P=0) = ΩI ≥ 0, for all I ≥ 0,

Ċ
∣∣∣
(C=0) = ΨI ≥ 0, for all I ≥ 0.

This shows the positively invariant property of R5
≥0 with respect to system (3.1)-(3.5).

Next we will show the finiteness of the solutions for system (3.1 )-(3.5),
let Q̃ = S + L + I + Θ

2Ω
P + Θ

4Ψ
C, then

˙̃Q = Υ − ΦS − (h1(P) + h2(I)) f (S )
+ (1 − n) (h1(P) + h2(I)) f (S ) − (d + b)L
+ n (h1(P) + h2(I)) f (S ) − ΘI + bL − qIC

+
Θ

2Ω
(ΩI − ΣP) +

Θ

4Ψ
(ΨI − ΛC − βIC)

= Υ − ΦS − dL −
Θ

4
I −

(
q +

Θβ

4Ψ

)
IC −

ΘΣ

2Ω
P −

ΘΛ

4Ψ
C

≤ Υ − ΦS − dL −
Θ

4
I −

ΘΣ

2Ω
P −

ΘΛ

4Ψ
C

≤ Υ − σ̃

(
S + L + I +

Θ

2Ω
P +

Θ

4Ψ
C
)

= Υ − σ̃Q̃,

where, σ̃ = min{Φ, d, Θ
4 ,Σ,Λ}. Then

Q̃(t) ≤ e−σ̃t

(
Q̃ (0) −

Υ

σ̃

)
+

Υ

σ̃
.

From last equation we conclude that, 0 ≤ Q̃(t) ≤ n1 for all t ≥ 0 if Q̃(0) ≤ n1, where n1 = Υ
σ̃

. Since
S (t), L(t), I(t), P(t) and C(t) are all non-negative, then 0 ≤ S (t), L(t), I(t) ≤ n1, 0 ≤ P(t) ≤ n2 and
C(t) ≤ n3 for all t ≥ 0 if S (0) + L(0) + I(0) + Θ

2Ω
P(0) + Θ

4Ψ
C(0) ≤ n1, where n2 = 2ΩΥ

Θσ̃
and n3 = 4ΨΥ

Θσ̃
.

Therefore S (t), L(t), I(t), P(t) and C(t) are bounded. �

In the next lemma, we will prove the existence of the steady states for the system (3.1)-(3.5).

Lemma 4. For the model (3.1)-(3.5), suppose that Assumption (A1)-(A3) are satisfied and there exists
a parameter R0 > 0 such that

(i) if R0 ≤ 1, then only one steady state Γ0 exists,
(ii) if R0 > 1, then two steady states Γ0 and Γ1 exist.

Proof. consider (S , L, I, P,C) be any steady state achieve the following equations:

0 = Υ − ΦS − (h1(P) + h2(I)) f (S ), (3.7)
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0 = (1 − n) (h1(P) + h2(I)) f (S ) − (d + b)L, (3.8)
0 = n (h1(P) + h2(I)) f (S ) + bL − ΘI − qIC (3.9)
0 = ΩI − ΣP, (3.10)
0 = ΨI − ΛC − βIC. (3.11)

From Eqs (3.7)-(3.11), the system has a uninfected steady state Γ0 = (S 0, 0, 0, 0, 0), where S 0 =
Υ

Φ
and

if I , 0 we can define another steady state Γ = (S , L, I, P,C) satisfies the following equation

0 =
(h1(P) + h2(I)) f (S )

I
− Θ −

dL
I
− qC,

such that

P =
ΩI
Σ
, (3.12)

L =
(1 − n)(h1(P) + h2(I)) f (S )

d + b
, (3.13)

C =
ΨI

βI + Λ
, (3.14)

and S satisfy the equation

0 = Υ − ΦS − (h1(P) + h2(I)) f (S ).

Define a function H on [0,∞) by

H(I) =
(nd + b)(h1(P) + h2(I)) f (S )

(d + b)I
− Θ − qC

Since limI→∞H(I) = −Θ −
Ψq
β

< 0 and limI→0H(I) = Θ
[(

nd+b
Θ(b+d)

)
(Ω

Σ
h′1(0) + h′2(0)) f (S 0) − 1

]
> 0.

Consequently there exists I1 ∈ (0,∞) and from Eqs (3.12)-(3.14) we have P1 > 0, L1 > 0 and C1 > 0
when Θ

[(
Ωh′1(0)

ΘΣ
+

h′2(0)
Θ

)
f (S 0) − 1

]
> 0. Thus, we can define the basic reproduction number R0 as:

R0 =

(
nd + b

Θ(b + d)

) (
Ω

Σ
h′1(0) + h′2(0)

)
f (S 0). (3.15)

It follows that the infected steady state Γ1 = (S 1, L1, I1, P1,C1) exists if R0 > 1. �

3.2. Global characteristics

In this subsection, we will show the global stability of the model (3.1)-(3.5) steady states by
choosing appropriate Lyapunov functions.

Theorem 3. For the model (3.1)-(3.5), Γ0 is GAS when R0 < 1.
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Proof. Let R0 < 1 and constructing a Lyapunov function N1(S , L, I, P,C) as:

N1(S , L, I, P,C) = S − S 0 −

S∫
S 0

f (S 0)
f (θ)

dθ +
b

nd + b
L +

b + d
nd + b

I +
f (S 0)h

′

1(0)
Σ

P +
Θ(1 − R0)

Ψ

b + d
nd + b

C.

Clearly, N1(S , L, I, P,C) > 0 for all S , L, I, P,C > 0 and N1(S 0, 0, 0, 0, 0) = 0. Calculating
dN1

dt
along

the system (3.1 )-(3.5), we get

dN1

dt
=

(
1 −

f (S 0)
f (S )

)
(Υ − ΦS − (h1(P) + h2(I)) f (S ))

+
b

nd + b
[
(1 − n) (h1(P) + h2(I)) f (S ) − (d + b)L

]
+

b + d
nd + b

[
n (h1(P) + h2(I)) f (S ) − ΘI + bL − qIC

]
+

f (S 0)h
′

1(0)
Σ

(ΩI − ΣP) +
Θ(1 − R0)

Ψ

b + d
nd + b

(ΨI − ΛC − βIC)

=

(
1 −

f (S 0)
f (S )

)
(Υ − ΦS ) + (h1(P) + h2(I)) f (S 0) − R0

b + d
nd + b

ΘI

+
f (S 0)h

′

1(0)
Σ

(ΩI − ΣP) −
b + d

nd + b

(
q +

Θβ(1 − R0)
Ψ

)
IC −

b + d
nd + b

ΘΛ(1 − R0)
Ψ

C.

From Remark 2 we get

dN1

dt
≤ Υ

(
1 −

f (S 0)
f (S )

) (
1 −

S
S 0

)
−

b + d
nd + b

(
q +

Θβ(1 − R0)
Ψ

)
IC −

b + d
nd + b

ΘΛ(1 − R0)
Ψ

C.

Since R0 < 1, then dN1
dt ≤ 0 for all S , L, I, P,C > 0 and can easily note that dN1

dt = 0 at Γ0. Applying LIP,
we conclude that Γ0 is GAS.

Furthermore, using the same method that was previously discussed in Theorem 1, the characteristic
equation at Γ0 is given by

(λ + Φ)(λ + Λ)(λ3 + Aλ2 + Bλ + D) = 0, (3.16)

where

A = −n f (S 0)h′2(0) + Θ + b + Σ + d,

B = −n f (S 0)h′2(0)(Σ + d + b) + Θ(b + d + Σ) + Σ(d + b),
D = −

[
(nd + b)

(
Ωh′1(0) + Σh′2(0)

)]
f (S 0) + ΘΣ(d + b)

= ΘΣ(d + b)
[
1 −

(
nd + b
d + b

) (
Ωh′1(0)

ΘΣ
+

h′2(0)
Θ

)
f (S 0)

]
= ΘΣ(d + b)(1 − R0).

This gives λ = −Φ and λ = −Λ. Define a function G2 on [0,∞) by

G2(λ) = λ3 + Aλ2 + Bλ + D.
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We have G2(0) = ΘΣ(d + b)(1 − R0) < 0 when R0 > 1 and lim
λ→∞

G2(λ) = ∞, which means that G2 has a
positive real root. Hence, Γ0 is unstable for R0 > 1 and this completes the proof. �

Theorem 4. For the model (3.1)-(3.5), Γ1 is GAS when R0 > 1.

Proof. Let a Lyapunov function N2(S , L, I, P,C) be defined as:

N2(S , L, I, P,C) = S − S 1 −

S∫
S 1

f (S 1)
f (θ)

dθ +
b

nd + b
L1g

(
L
L1

)
+

b + d
nd + b

I1g
(

I
I1

)
+

f (S 1)h1(P1)
ΣP1

P1g
(

P
P1

)

+
q

2(Ψ − βC1)
b + d

nd + b
(C −C1)2.

Clearly, N2(S , L, I, P,C) > 0 for all S , L, I, P,C > 0, and N2(S 1, L1, I1, P1,C1) = 0. Calculating dN2
dt

along the trajectories of (3.1)-(3.5), we get

dN2

dt
=

(
1 −

f (S 1)
f (S )

) [
Υ − ΦS − (h1(P) + h2(I)) f (S )

]
+

b
nd + b

(
1 −

L1

L

) [
(1 − n) (h1(P) + h2(I)) f (S ) − (d + b)L

]
+

b + d
nd + b

(
1 −

I1

I

) [
n(h1(P) + h2(I)) f (S ) − ΘI + bL − qIC

]
+

f (S 1)h1(P1)
ΣP1

(
1 −

P1

P

)
(ΩI − ΣP) +

q
Ψ − βC1

b + d
nd + b

(C −C1) (ΨI − ΛC − βIC)

=

(
1 −

f (S 1)
f (S )

)
(Υ − ΦS ) + (h1(P) + h2(I)) f (S 1)

−
b

nd + b

[
(1 − n) (h1(P) + h2(I)) f (S )

L1

L
+ (d + b)L1

]
−

b + d
nd + b

[
n (h1(P) + h2(I)) f (S )

I1

I
+ Θ(I − I1) + bL

I1

I
+ qC(I − I1)

]
+ f (S 1)h1(P1)

(
ΩI
ΣP1
−

P
P1
−

ΩI
ΣP

+ 1
)

+
q

Ψ − βC1

b + d
nd + b

(C −C1) (ΨI − ΛC − βIC) . (3.17)

Collecting terms of Eq (3.17) and applying the steady state conditions for Γ1:

Υ − ΦS 1 = (h1(P1) + h2(I1)) f (S 1),
(1 − n) (h1(P1) + h2(I1)) f (S 1) = (d + b)L1,

n (h1(P1) + h2(I1)) f (S 1) + bL1 = ΘI1 + qI1C1,

ΩI1 = ΣP1,

ΨI1 = ΛC1 + βI1C1,

and
b + d

nd + b
(ΘI1 + qI1C1) =

b + d
nd + b

[
n (h1(P1) + h2(I1)) f (S 1) + bL1

]
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=
b + d

nd + b
n (h1(P1) + h2(I1)) f (S 1) +

b(1 − n)
nd + b

(h1(P1) + h2(I1)) f (S 1)

= (h1(P1) + h2(I1)) f (S 1),

we get

dN2

dt
= ΦS 1

(
1 −

f (S 1)
f (S )

) (
1 −

S
S 1

)
+

(
1 −

f (S 1)
f (S )

)
(h1(P1) + h2(I1)) f (S 1) + (h1(P) + h2(I)) f (S 1)

−
b(1 − n)
nd + b

(h1(P) + h2(I)) f (S )
L1

L
+

b(d + b)
nd + b

L1

−
b + d

nd + b

[
n (h1(P) + h2(I)) f (S )

I1

I
+ (n (h1(P1) + h2(I1)) f (S 1) + bL1)

(
I
I1
− 1

)]
−

b(1 − n)
nd + b

(h1(P1) + h2(I1))
I1L
IL1

+ f (S 1)h1(P1)
(

ΩI
ΣP1
−

P
P1
−

ΩI
ΣP

+ 1
)

−
q(Λ + hI)
Ψ − βC1

b + d
nd + b

(C −C1)2.

dN2

dt
= ΦS 1

(
1 −

f (S 1)
f (S )

) (
1 −

S
S 1

)
+ h1(P1) f (S 1)

(
h1(P)
h1(P1)

−
P
P1

)
+

b(1 − n)
nd + b

h1(P1) f (S 1)
(
4 −

f (S 1)
f (S )

−
L1h1(P) f (S )
Lh1(P1) f (S 1)

−
I1L
IL1
−

I
I1

+
I
I1
−

P1I
PI1

)
+ h2(I1) f (S 1)

(
h2(I)
h2(I1)

−
I
I1

)
+

b(1 − n)
nd + b

h2(I1) f (S 1)
(
3 −

f (S 1)
f (S )

−
I1L
IL1
−

L1h2(I) f (S )
Lh2(I1) f (S 1)

)
+

b + d
nd + b

nh1(P1) f (S 1)
(
3 −

f (S 1)
f (S )

−
I1h1(P) f (S )
Ih1(P1) f (S 1)

−
I
I1

+
I
I1
−

IP1

I1P

)
+

b + d
nd + b

nh2(I1) f (S 1)
(
2 −

f (S 1)
f (S )

−
I1h2(I) f (S )
Ih2(I1) f (S 1)

)
−

q (Λ + hI)
Ψ − βC1

b + d
nd + b

(C −C1)2.

dN2

dt
= ΦS 1

(
1 −

f (S 1)
f (S )

) (
1 −

S
S 1

)
+ h1(P1) f (S 1)

(
h1(P)
h1(P1)

−
P
P1

+
Ph1(P1)
P1h1(P)

− 1
)

+
b(1 − n)
nd + b

h1(P1) f (S 1)
(
5 −

f (S 1)
f (S )

−
L1h1(P) f (S )
Lh1(P1) f (S 1)

−
I1L
IL1
−

P1I
PI1
−

Ph1(P1)
P1h1(P)

)
+

b + d
nd + b

nh1(P1) f (S 1)
(
4 −

f (S 1)
f (S )

−
IP1

I1P
−

I1h1(P) f (S )
Ih1(P1) f (S 1)

−
Ph1(P1)
P1h1(P)

)
+ h2(I1) f (S 1)

(
h2(I)
h2(I1)

−
I
I1

+
Ih2(I1)
I1h2(I)

− 1
)

+
b(1 − n)
nd + b

h2(I1) f (S 1)
(
4 −

f (S 1)
f (S )

−
I1L
IL1
−

L1h2(I) f (S )
Lh2(I1) f (S 1)

−
Ih2(I1)
I1h2(I)

)
AIMS Mathematics Volume 6, Issue 1, 114–140.



128

+
b + d

nd + b
nh2(I1) f (S 1)

(
3 −

f (S 1)
f (S )

−
I1h2(I) f (S )
Ih2(I1) f (S 1)

−
Ih2(I1)
I1h2(I)

)
−

q (Λ + hI)
Ψ − βC1

b + d
nd + b

(C −C1)2

= ΦS 1

(
1 −

f (S 1)
f (S )

) (
1 −

S
S 1

)
+ h1(P1) f (S 1)

(
h1(P)
h1(P1)

−
P

P1

) (
1 −

h1(P1)
h1(P)

)
+

b(1 − n)
nd + b

h1(P1) f (S 1)
(
5 −

f (S 1)
f (S )

−
L1h1(P) f (S )
Lh1(P1) f (S 1)

−
I1L
IL1
−

P1I
PI1
−

Ph1(P1)
P1h1(P)

)
+

b + d
nd + b

nh1(P1) f (S 1)
(
4 −

f (S 1)
f (S )

−
IP1

I1P
−

I1h1(P) f (S )
Ih1(P1) f (S 1)

−
Ph1(P1)
P1h1(P)

)
+ h2(I1) f (S 1)

(
h2(I)
h2(I1)

−
I
I1

) (
1 −

h2(I1)
h2(I)

)
+

b(1 − n)
nd + b

h2(I1) f (S 1)
(
4 −

f (S 1)
f (S )

−
I1L
IL1
−

L1h2(I) f (S )
Lh2(I1) f (S 1)

−
Ih2(I1)
I1h2(I)

)
+

b + d
nd + b

nh2(I1) f (S 1)
(
3 −

f (S 1)
f (S )

−
I1h2(I) f (S )
Ih2(I1) f (S 1)

−
Ih2(I1)
I1h2(I)

)
−

q (Λ + hI)
Ψ − βC1

b + d
nd + b

(C −C1)2. (3.18)

If R0 > 1, then we have S 1, L1, I1, P1,C1 > 0. The geometrical and arithmetical means relationship
implies that

5 ≤
f (S 1)
f (S )

+
L1h1(P) f (S )
Lh1(P1) f (S 1)

+
I1L
IL1

+
P1I
PI1

+
Ph1(P1)
P1h1(P)

,

4 ≤
f (S 1)
f (S )

+
IP1

I1P
+

I1h1(P) f (S )
Ih1(P1) f (S 1)

+
Ph1(P1)
P1h1(P)

,

4 ≤
f (S 1)
f (S )

+
I1L
IL1

+
L1h2(I) f (S )
Lh2(I1) f (S 1)

+
Ih2(I1)
I1h2(I)

,

3 ≤
f (S 1)
f (S )

+
I1h2(I) f (S )
Ih2(I1) f (S 1)

+
Ih2(I1)
I1h2(I)

.

Thus, dN2
dt ≤ 0 for all S , L, I, P,C > 0 and dN2

dt = 0 when S = S 1, L = L1, I = I1, P = P1 and C = C1.
Using LIP we conclude that Γ1 is GAS when R0 > 1. �

4. Numerical simulations

In this section, we propose two examples and carry out numerical simulations to approve our
theoretical results shown in this paper. All of numerical computations are carried out by MATLAB.

4.1. Example of the model (2.1)-(2.4)

To perform numerical simulations and demonstrate the global asymptotic stability of the steady
states of models, we choose the following functions f (S ) = S r

1+α3S r , h1(P) =
η1P

1+α1P and h2(I) =
η2I

1+α2I
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where η1, η1 > 0, α1, α2 ≥ 0 and r ≤ 1. We introduce the following model as a special case of the
system (2.1)-(2.4)

Ṡ = Υ − ΦS −
(

η1P
1 + α1P

+
η2I

1 + α2I

)
S r

1 + α3S r , (4.1)

İ =

(
η1P

1 + α1P
+

η2I
1 + α2I

)
S r

1 + α3S r − ΘI − qIC, (4.2)

Ṗ = ΩI − ΣP, (4.3)
Ċ = ΨI − ΛC − βIC. (4.4)

Now we verify the conditions (A1)-(A3):
(A1) It is clear that f (S ) = S r

1+α3S r > 0 as S > 0, h1(P) =
η1P

1+α1P > 0 as P > 0 and h2(I) =
η2I

1+α2I > 0 as
I > 0 where α1, α2 and α3 are a positive constants, also f (0) = h1(0) = h2(0) = 0.
(A2) f ′(S ) = rS r−1

(1+α3S r)2 > 0 where r is a positive, h′1(P) =
η1

(1+α1P)2 > 0 and h′2(I) =
η2

(1+α2I)2 > 0.

(A3)
(

f (S )
S

)′
=

S r−2[(r−1)−α3S r]
(1+α3S r)2 < 0,

(
h1(P)

P

)′
=

−η1α1
(1+α1P)2 < 0 and

(
h2(I)

I

)′
=

−η2α2
(1+α2I)2 < 0 for all S > 0, P > 0

and I > 0. The basic reproduction number for the previous functions is R0 =
(

Ωη1
ΘΣ

+
η2
Θ

) ( S r
0

1+α3S r
0

)
.

We shall carry out numerical simulations for the system (4.1)-(4.4) using the parameters values given
in Table 1. We choose three initial conditions as:

IC1: S (0) = 900, I(0) = 50, P(0) = 100,C(0) = 5.5,
IC2: S (0) = 600, I(0) = 30, P(0) = 50,C(0) = 4.5, and
IC3: S (0) = 300, I(0) = 20, P(0) = 20,C(0) = 3.5.

Case (1) To study the effect of η1 on steady states stability:
We choose β = 0.1, α1 = α2 = 0, α3 = 0.01 and η1 is varied as:
(i) if η1 = 0.05, then we compute R0 = 1.7395 > 1. Lemma 2 states that the system

has two steady states Γ0 and Γ1. As we can see from Figure 1 that numerical results agree
with theoretical results of Theorem 2 and the system solutions converge to the steady state Γ1 =

(124.5669, 45.2466, 82.9521, 4.8919) for all IC1-IC3.
(ii) if η1 = 0.02 then, R0 = 0.7181 < 1. From Lemma 2, the system has only one steady state Γ0. For
Figure 1 we note that, uninfected cells concentration is growing up to its original value S 0 = 1300,
while the concentration of infected cells, pathogens and CTL cells are decreasing and approaching zero
for IC1-IC3. It shows that, Γ0 is GAS and this means that the pathogens are cleaned up, so it supports
Theorem 1.

Case(2) Effect of β on the pathogen dynamics:
For this purpose, we let η1 = 0.05, α3 = 0.01, and β is varied. Suppose a new set of initial

conditions as: IC4: S (0) = 700, I(0) = 20, P(0) = 35,C(0) = 20. As it is illustrated in Figure 2 that as
β is decreased, the uninfected cells concentrations are increased. While the infected cells concentration
and the pathogens are decayed as a result of CTL cells concentration is increased. Also β has not effect
on R0 value, therefore it does not effect the steady states stability properties.

Case (3) Effect of α3 on the pathogen dynamics:
For this, let η1 = 0.005 and α3 is varied. We suppose the initial conditions
IC5: S (0) = 600, I(0) = 20, P(0) = 35,C(0) = 4. From Table 2, we note that R0 values are

increased as α3 is decreased and we find that: if α3 > αc
3 = 0.001464, then R0 < 1 and the solutions
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converges to Γ0, and if 0 < α3 < 0.001464, then R0 > 1 and the system solutions converge to Γ1.
Figures 3 with Theorem 2 have proved the compatibility of numerical and theoretical results.

Table 1. Parameters values of the model (4.1)-(4.4).

Parameter Value Parameter Value Parameter Value
Υ 260 η2 0.002 Σ 3
Φ 0.2 Θ 5 Ψ 0.5
r 1 q 0.04 Λ 2

α1, α2 0.01 Ω 5.5 n, η1, α3, β varied

Table 2. Variable α3 and corresponding steady states and R0 values for model (4.1)-(4.4).

α3 Steady state R0

0.01 Γ0 = (1300, 0, 0, 0) 0.2074
0.001464 Γ1 = (1297.7, 0.0858, 0.01579, 0.4545) 1.000
0.0005 Γ1 = (853.4725, 17.2105, 31.5526, 4.7254) 1.7596

0 Γ1 = (656.7340, 24.7780, 45.4263, 4.8060) 2.9033
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Figure 1. The trajectories simulations of model (4.1)-(4.4) with IC1-IC3.
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Figure 2. The trajectories simulations of model (4.1)-(4.4) with different values of β.
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Figure 3. The trajectories simulations of model (4.1)-(4.4) with different values of α3.

4.2. Example of the model (3.1)-(3.5)

In this subsection, we will implement numerical simulations for a special case of the model (3.1)-
(3.5) as

Ṡ = Υ − ΦS −
(

η1P
1 + α1P

+
η2I

1 + α2I

)
S r

1 + α3S r , (4.5)

L̇ = (1 − n)
(

η1P
1 + α1P

+
η2I

1 + α2I

)
S r

1 + α3S r − (d + b)L, (4.6)

İ = n
(

η1P
1 + α1P

+
η2I

1 + α2I

)
S r

1 + α3S r − ΘI − bL − qIC, (4.7)

ṗ = ΩI − ΣP, (4.8)
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Ċ = ΨI − ΛC − βIC, (4.9)

where the parameters values given in Table 3. We suppose that α1 = α2 = α with no loss of generality.
We will choose three sets of initial conditions as:
IC1: S (0) = 900, L(0) = 200, I(0) = 15, P(0) = 30,C(0) = 4.4,
IC2: S (0) = 600, L(0) = 150, I(0) = 10, P(0) = 20,C(0) = 3, and
IC3: S (0) = 400, L(0) = 75, I(0) = 5, P(0) = 10,C(0) = 2.

Case (1) Effect of η1 on steady states stability:
We choose α = 0.01, β = 0.1, n = 0.5, q = 0.04 and η1 is varied as:
(i) if η1 = 0.0005, then we compute R0 = 0.9682 < 1. From Lemma 4 we have that the system has

only one steady state Γ0. We observe from Figure 4 that, uninfected cells concentration is rising and
tends its free-disease value S 0 = 1350, on the other hand we find that the concentrations of latently
infected cells, productively infected, pathogens and CTL cells are decreasing and tend to zero for
IC1-IC3. This proves that, Γ0 is GAS, the pathogen will be cleared and this consistent with Theorem 3.

(ii) if η1 = 0.005 then, R0 = 2.3182 > 1. As we discussed before in Lemma 4 that the
system has two positive steady states Γ0 and Γ1. We note that Figure 4 results are consistent with
Theorem 4 results. It is seen that, the solutions of the system converge to the endemic steady state
Γ1 = (734.2778, 205.2407, 14.4357, 26.4654, 4.6761) for all IC1-IC3.

Case (2) Effect of saturation on the pathogen dynamics:
For this purpose, let η1 = 0.005, β = 0.1, n = 0.5 and α is changed and we will choose the first

set of initial conditions. The effect of saturated incidence is incorporated so in Figure 5, we note as
α is increased, both pathogen-to-cell and cell-to-cell infection rates are decreased. Accordingly, the
susceptible cells concentration is increased, the latently infected cells, productively infected, pathogens
and CTL cells are decayed. Also α does not change the value of R0 and therefore the saturation has no
effect on the steady states stability properties.

Table 3. parameters values of system (4.5)-(4.9).

Parameter Value Parameter Value Parameter Value
Υ 270 n varied Ω 5.5
Φ 0.2 b 0.1 Σ 3
η1 varied d 0.2 Ψ 0.5
η2 0.005 Θ 5.5 Λ 0.1

α1, α2 varied q 0.4 β varied
α3 0 r 1
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Figure 4. The trajectories simulation of model (4.5)-(4.9) with IC1-IC3.
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Figure 5. The trajectories simulation of model (4.5)-(4.9.) with different value of α

AIMS Mathematics Volume 6, Issue 1, 114–140.



136

5. Conclusion and discussion

In this paper, we proposed and analyzed two pathogen dynamics models with impairment of CTL
immune response and two modes of transmissions, pathogen-to-cell and cell-to-cell. The pathogen-
cell and cell-cell incidence rates are represented by general nonlinear functions which generalized
several specific forms presented in the literature. In the second model we included the latently infected
cells. We proved that the solutions of the model are nonnegative and bounded. We showed that the
model has two possible steady states, uninfected steady state Γ0 and infected steady state Γ1. We
derived the basic infection reproduction number R0 from the existence of the infected steady state
Γ1. We constructed Lyapunov functions and applied LaSalle’s invariance principle to prove the global
asymptotic stability of the two steady states. We proved that if R0 < 1, then Γ0 is GAS, and if R0 > 1
then Γ1 is GAS. The theoretical results were illustrated by numerical simulations. We note that the
cell-to-cell transmission has a significant effect on the pathogen dynamics. From model (2.1)-(2.4), the
basic infection reproduction number can be written as:

R0 = RP
0 + RC

0 =
Ωh′1(0)

ΘΣ
f (S 0) +

h′2(0)
Θ

f (S 0),

where RP
0 and RC

0 are the basic infection reproduction numbers due to the pathogen-to-cell and cell-
to-cell transmissions, respectively. Since R0 = RP

0 + RC
0 > RP

0 , therefore, neglecting the cell-to-cell
transmission can lead to under-evaluated basic infection reproduction number.

Our proposed pathogenic infection models can be extended and generalized to take into account
different biological effects such as stochastic interactions [52], reaction-diffusion [53–56]. Pathogen
dynamics model given by fractional-order differential equations can provide better understanding on
the dynamical behavior of the pathogen within-host [57]. We mention that our models assume that the
pathogen infects one class of target cells. It has been reported in several works that some viruses such
as HIV can infect two or more classes of target cells [58]. We leave these extensions for future works.
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