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Abstract: This paper investigates the problem of exponential stability analysis and control design for
time delay nonlinear systems with unknown control coefficient. Nussbaum gain function is utilized
to solve the problem of unknown control directions at every step. By designing a new Lyapunov-
Krasovskii functional, the problem of unknown time-varying delay is solved. Under the frame of
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1. Introduction

Since there exists the time-delay phenomenon in the process of signal transmission, the control
problems of time delay nonlinear systems have been widely paid attention in the field of industrial
engineering, and some works have been received, such as [1–9]. The commonly time-delay nonlinear
systems contain input time-delay [1–3] and state time-delay [4–9]. On the one hand, the authors in [1]
and [2] investigated the fuzzy adaptive sampling control for nonlinear systems with input time-delay.
By adopting Pade approximation method, [3] developed fuzzy adaptive tracking control algorithm for
nonlinear system with input delay. On the other hand, when considering the state time-delay, the
authors in [4] and [5] investigated the robust adaptive control design problems for nonlinear systems
with unknown time-delay. However, in [4] and [5], the considered time-delay belongs to the constant
delay, the difficulty of control design process is less than that of time-varying delay system. Thus,
the authors in [6–8] developed adaptive tracking control algorithm for time-varying delay nonlinear
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systems, and [9] studied the adaptive tracking output feedback control issue for time-varying delay
system by constructing a state observer.

It is worth noting that the above developed control algorithms are all required the control direction
is known. However, in practical engineering systems, the control direction is unknown, it will increase
the design difficulty of these systems. Thus, the Nussbaum gain function technique is developed to
cope with this issue, and some interesting works have been published, see [10–13]. In [10], the authors
studied the adaptive fuzzy output-feedback control problem for nonlinear system with unknown control
gain functions. The work [11] developed adaptive robust tracking control method for nonlinear system
with unknown control direction by adopting smooth projection operator and Nussbaum gain function.
By adopting the approximation property of FLS, the authors in [12] and [13] studied the fuzzy adaptive
output feedback control issues for nonlinear systems with unknown control coefficient.

Noted that the convergence rate of the system states has an important influence in practical
industry systems. Obviously, compared with the asymptotic stability in the above results, the
exponential stability has the better control performance. Thus, the authors in [14] first studied the
exponential stability for nonlinear system. Then, inspired by [14], the authors in [15] developed
exponential stabilization for uncertain nonholonomic systems, and [16] studied the output feedback
exponential stability for nonlinear system. When considering the interconnection of each subsystems
and stochastic disturbance, the authors in [17] and [18] developed the exponential stability control for
nonlinear systems. The works [19] and [20] developed global exponential stabilization control
algorithm for nonlinear systems. It is worth pointing out that there are no available results about the
exponential stability analysis and control design for nonlinear systems with unknown control
coefficient and time-varying delay.

This paper studies the problem of adaptive exponential stability analysis and control design for
time-varying delay nonlinear system with unknown control coefficients. Nussbaum gain functions
is adopted in each step to solve the issue of unknown control direction. By designing a Lyapunov-
krasovskii functional, the issue of time-varying delay is solved. Compared with the existing results,
the major highlights of this paper can be summarized as

1) This paper first studied the adaptive exponential stability analysis and control design problem
for SISO nonlinear systems. Under the adaptive backstepping control technique, this paper developed
adaptive exponential stabilization control algorithm, which can guarantee all solutions of the controlled
system are UUB and exponential converge to zero.

2) Compared with [17], the Lyapunov-Krasovskii functionals are adopted to deal with the problems
of unknown time-varying delay, and the considered system is nonlinear systems, instead of linear ones.

The remainder of this paper is organized as follows. In Section II, the problem description and the
preliminary knowledge are formulated. Exponential controller design and stability analysis are given
in Section III. Simulation studies illustrating the effectiveness of the developed control algorithm are
given in Section IV. Finally, we conclude the paper in Section V.
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2. Problem formulation and preliminaries

2.1. Problem formulation

Consider a class of nonlinear systems as
ẋi = θT

i (t)ϕi(x̄i) + gixi+1 + qi(y(t − τi(t)))
ẋn = θT

n (t)ϕn(x) + gnu + qn(y(t − τn(t)))
y = x1 , i = 1, 2, · · · , n − 1,

(2.1)

where x̄i = [x1, x2, · · · , xi]T (x = [x1, x2, · · · , xn]T ) is the state vector, y and u are the output and
control input, respectively. qi(t) are unknown nonlinear functions. θi(t) are vectors of time-varying
and uncertain parameters. ϕi(·) are known continuous nonlinear functions. gi , 0(i = 1, 2, · · · , n) are
unknown constants, and they are referred to as virtual control coefficients. τi(t) is the time-varying
delay and satisfies τ̇i(t) ≤ τ∗ ≤ 1, |τi| ≤ τ with constants τ∗ and τ.
Remark 1. Nonlinear system (2.1) is a huger class of nonlinear SISO strict-feedback systems and
has been studied extensively in some published results. In [11], the adaptive robust control of the
unknown control coefficients was addressed for nonlinear systems. However, [11] are not considered
the unknown time-varying delays problems. In fact, when the time-varying delays appears in systems,
the control design in [11] will need to be reconstructed. In this paper, the time-varying delays will be
handled by designing a Lyapunov-Krasovskii functional.
Assumption 1. ([9]) There exist positive constant $i and known function Qi(·), nonlinear function
qi(·) satisfies

|qi(y(t − τi(t)))|2 ≤ z1(t − τi(t))Qi1(z1(t − τi(t))) +$i

Control Objective: This paper will develop an exponential stabilization control algorithm such that
all solutions of the controlled system are UUB and exponentially converge to zero.

To deal with the issue of unknown control coefficient gi, the Nussbaum gain technique is utilized in
this note.
Definition 1. ([11, 12]) Nussbaum-type function N(ζ) satisfies

lim
s→∞

sup
1
s

∫ s

0
N(ζ)dζ = ∞ and lim

s→∞
inf

1
s

∫ s

0
N(ζ)dζ = −∞ (2.2)

The Nussbaum functions that are commonly used are exp(ζ2) cos((π/2)ζ), ζ2 sin(ζ), ζ2 cos(ζ). In
this note, we choose the Nussbaum functions as N(ζ) = ζ2 cos(ζ).
Lemma 1. ([11,12]) ζ(t) is a continuous functions defined on [0, t f ), N(ζ) is called as Nussbaum
function. If the positive definite function V(t) satisfies

V(t) ≤ D + e−λt
∫ t

0
g(τ)N(ζ)ζ̇eλτdτ + e−λt

∫ t

0
ζ̇eλτdτ

where D > 0 λ > 0 and g(τ) is time-varying parameter in I := [l−, l+] (0 < I), thus V(t), ζ(t) and∫ t

0
g(τ)N(ζ)ζ̇dτ are bounded on [0, t f ).
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3. Exponential controller design

In this section, an exponential stabilization controller needs to be designed.
Define the following cooperation transactions as

z1 = x1 (3.1)

zi = xi − αi−1 (3.2)

where zi are the virtual errors, αi (i = 2, · · · , n) is the virtual control function, which will be designed
later.

Step 1. According to (2.1) and (3.1), we have

ż1 = g1x2 + θT
1 (t)ϕ1(x1) + q1(y(t − τ1(t)))

= g1(z2 + α1) + θT
1 (t)ϕ1(x1) + q1(y(t − τ1(t)))

(3.3)

Choose Lyapunov function

V1 =
1
2

z2
1 + W1 +

1
2γ1

θ̃T
m,1θ̃m,1 (3.4)

where γ1 > 0 is a design constant, θ̂m,1 is the estimation of θm,1 and θ̃m,1 = θm,1 − θ̂m,1. Define W1 =
er(τ−t)

2(1−τ∗1)

∫ t

t−τ1(t)
ersz1(s)Q1,1(z1(s))ds, thus, Ẇ1 ≤ −rW1 + erτ

2(1−τ∗)z1(t)Q1,1(z1(t)) − 1
2z1(t − τ1(t))Q1,1(z1(t −

τ1(t))).
From (3.3) and (3.4), we have

V̇1 = z1[g1z2 + g1α1 + θT
m,1(t)ϕm,1(x1) + q1(y(t − τ1(t)))] + Ẇ1 −

1
γ1
θ̃T

m,1
˙̂θm,1 (3.5)

where θm,1 = θ1 and ϕm,1 = ϕ1.
Utilizing Young’s inequality [26,27]

cT d ≤
εm

m
‖c‖m +

1
nεn ‖d‖

n (3.6)

where ε > 0, c, d ∈ R, n,m > 1 with (n − 1)(m − 1) = 1. One has

g1z1z2 ≤
1
4

z2
1 + ḡ2

1z2
2 (3.7)

z1q1(y(t − τ1(t))) ≤ 1
2z2

1 + 1
2z1(t − τ1(t))Q1,1(z1(t − τ1(t))) + 1

2$1 (3.8)

where ḡ1 is positive constant and satisfies |g1| < ḡ1.
By invoking (3.5)–(3.8), we have

V̇1 ≤ z1[g1α1 + θ̂T
m,1(t)ϕm,1(x1) + 3

4z1 + erτ

2(1−τ∗1) Q1,1(z1(t))]

+
θ̃T

m,1

γ1
[γ1z1ϕm,1(x1) − ˙̂θm,1] + ḡ2

1z2
2 + 1

2$1 − rW1

(3.9)
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Design the virtual control function α1 and update law ˙̂θm,1 as

α1 = N(ζ1)[c1z1 + θ̂T
m,1(t)ϕm,1(x1) + 3

4z1 +
n∑

j=1
Q̄ j{z1(t)}] (3.10)

˙̂θm,1 = γ1z1ϕm,1(x1) − σ1θ̂m,1 (3.11)

ζ̇1 = z1[c1z1 + θ̂T
m,1(t)ϕm,1(x1) + 3

4z1 +
n∑

j=1
Q̄ j{z1(t)}] (3.12)

where σ1 > 0 and c1 > 0 are design parameters. Q̄ j =
j∑

k=1

erτ

2(1−τ∗k) Qk,1(z1(t)).

Thus, (3.9) can be rewritten as

V̇1 ≤ −c1z2
1 + (g1N(ζ1) + 1)ζ̇1 + ḡ2

1z2
2 + 1

2$1

+ σ1
γ1
θ̃T

m,1θ̂m,1 −
n∑

j=2
z1(t)Q̄ j{z1(t)} − rW1

(3.13)

Step 2. According to (2.1) and (3.2), we have

ż2 = g2x3 + θT
2 (t)ϕ2(x̄2) + q2(y(t − τ2(t))) − α̇1

= g2(z3 + α2) + θT
m,2(t)ϕm,2(x̄2) + q2(y(t − τ2(t)))

−
∂α1
∂x1

q1(y(t − τ1(t))) − H2

(3.14)

where H2 = ∂α1
∂θ̂m,1

˙̂θm,1 + ∂α1
∂ζ1
ζ̇1. ϕm,2 = [ϕT

2 (x̄2),−(∂α1/∂x1)ϕT
1 (x1),−(∂α1/∂x1)x2]T , θm,2 = [θT

2 , θ
T
1 , g1]T .

Choose Lyapunov function as

V2 = V1 + 1
2z2

2 + W2 + 1
2γ2
θ̃T

m,2θ̃m,2 (3.15)

where γ2 > 0 is a design constant. θ̂m,2 is the estimation of θm,2 and θ̃m,2 = θm,2 − θ̂m,2.

Define W2 =
2∑

k=1

2r(τ−t)

2(1−τ∗k)

∫ t

t−τk(t)
ersz1(s)Qk,1(z1(s))ds, thus, we have

Ẇ2 ≤ −rW2 +
2∑

k=1

erτ

1−τ∗k
z1(t)Qk,1(z1(t)) − 1

2

2∑
k=1

z1(t − τk(t))Qk,1(z1(t − τk(t))).

Thus,the derivation of V2 is

V̇2 = V̇1 + z2[g2(z3 + α2) + θT
m,2(t)ϕm,2(x̄2) + q2(y(t − τ2(t)))

−
∂α1
∂x1

q1(y(t − τ1(t))) − H2] − 1
γ2
θ̃T

m,2
˙̂θm,2 + Ẇ2

(3.16)

From (3.6), we can get

z2(g2z3 + q2) ≤ 3
4z2

2 + ḡ2
2z2

3 + 1
2z1(t − τ2(t))Q2,1(z1(t − τ2(t))) + 1

2$2 (3.17)

−z2
∂α1
∂x1

q1 ≤
1
2z2

2(∂α1
∂x1

)2 + 1
2z1(t − τ1(t))Q1,1(z1(t − τ1(t))) + 1

2$1 (3.18)
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where ḡ2 is positive constant and satisfies |g2| < ḡ2.
By invoking (3.16)–(3.18), we have

V̇2 ≤ −c1z2
1 + (g1N(ζ1) + 1)ζ̇1 + σ1

γ1
θ̃T

m,1θ̂m,1 −
n∑

j=3
z1(t)Q̄ j{z1(t)}

+ z2[g2α2 + ḡ2
1z2 + θ̂T

m,2(t)ϕm,2(x̄2) + 3
4z2 + 1

2z2(∂α1
∂x1

)2 − H2]

+ 1
γ2
θ̃T

m,2[γ2z2ϕm,2(x̄2) − ˙̂θm,2] + ḡ2
2z2

3 +$1 + 1
2$2 −

2∑
k=1

rWk

(3.19)

Design the virtual control function α2 and update law ˙̂θm,2 as

α2 = N(ζ2)[c2z2 + ḡ2
1z2 + θ̂T

m,2(t)ϕm,2(x̄2) + 3
4z2 + 1

2z2(∂α1
∂x1

)2 − H2] (3.20)

˙̂θm,2 = γ2z2ϕm,2(x̄2) − σ2θ̂m,2 (3.21)

ζ̇2 = z2[c2z2 + ḡ2
1z2 + θ̂T

m,2(t)ϕm,2(x̄2) + 3
4z2 + 1

2z2(∂α1
∂x1

)2 − H2] (3.22)

where σ2 > 0 and c2 > 0 are design parameters.
Thus, rewrite (3.19) as

V̇2 ≤ −
2∑

k=1
ckz2

k +
2∑

k=1
[(gkN(ζk) + 1)ζ̇k] +$1 + 1

2$2

+
2∑

k=1

σk
γk
θ̃T

m,kθ̂m,k −
n∑

j=3
z1(t)Q̄ j{z1(t)} + ḡ2

2z2
3 −

2∑
k=1

rWk

(3.23)

Step i (3 ≤ i ≤ n − 1): From (2.1) and (3.2), one has

żi = gixi+1 + θT
i (t)ϕi(x̄i) + qi(y(t − τi(t))) − α̇i−1

= gi(zi+1 + αi) + θT
m,i(t)ϕm,i(x̄i) + qi(y(t − τi(t)))

−
i−1∑
l=1

∂αi−1
∂xl

ql(y(t − τl(t))) − Hi

(3.24)

where Hi =
i−1∑
l=1

∂αi−1

∂θ̂m,l

˙̂θm,l +
i−1∑
l=1

∂αi−1
∂ζl

ζ̇l.

ϕm,i = [ϕT
i (x̄i),−∂αi−1

∂xi−1
ϕT

i−1(x̄i−1), · · · ,−∂αi−1
∂x1

ϕT
1 (x̄1),−∂αi−1

∂xi−1
xi, · · · ,−

∂αi−1
∂x1

x2]T ,
θm,i = [θT

i , · · · , θ
T
1 , gi−1, · · · , g1]T .

Choose the Lyapunov function as

Vi = Vi−1 + 1
2z2

i + Wi + 1
2γ2
θ̃T

m,iθ̃m,i (3.25)

where γi > 0 is a design constant. θ̂m,i is the estimation of θm,i and θ̃m,i = θm,i − θ̂m,i.

Define Wi =
i∑

k=1

2r(τ−t)

2(1−τ∗k)

∫ t

t−τk(t)
ersz1(s)Qk,1(z1(s))ds, thus, we have Ẇi ≤ −rWi +

i∑
k=1

erτ

1−τ∗k
z1(t)Qk,1(z1(t))

− 1
2

i∑
k=1

z1(t − τk(t))Qk,1(z1(t − τk(t))).
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Thus, the derivation of Vi is

V̇i = V̇i−1 + zi[gi(zi+1 + αi) + θT
m,i(t)ϕm,i(x̄i) + qi(y(t − τi(t)))

−
i−1∑
l=1

∂αi−1
∂xl

ql(y(t − τl(t))) − Hi] − 1
γi
θ̃T

m,i
˙̂θm,i + Ẇi

(3.26)

From (3.6), we can get

zi(gizi+1 + qi) ≤ 3
4z2

i + ḡ2
i z2

i+1 + 1
2z1(t − τi(t))Qi,1(z1(t − τi(t))) + 1

2$i (3.27)

−zi

i−1∑
l=1

∂αi−1
∂xl

ql ≤
1
2z2

i (∂αi−1
∂xl

)2 + 1
2

i−1∑
l=1

z1(t − τl(t))Ql,1(z1(t − τl(t))) + 1
2

i−1∑
l=1
$l (3.28)

where ḡi is positive constant and satisfies |gi| < ḡi.
By invoking (3.26)–(3.28) yields

V̇i ≤ −
i−1∑
k=1

ckz2
k +

i−1∑
k=1

[(gkN(ζk) + 1)ζ̇k] +
i−1∑
k=1

σk
γk
θ̃T

m,kθ̂m,k + 1
2

i∑
k=1

k∑
j=1
$ j

−
n∑

j=i+1
z1(t)Q̄ j{z1(t)} + ḡ2

i z2
i+1 + zi[giαi + θ̂T

m,i(t)ϕm,i(x̄i) + ḡ2
i−1zi

+ 3
4zi + 1

2zi

i−1∑
l=1

(∂αi−1
∂xl

)2− Hi]−
i∑

k=1
rWk + 1

γi
θ̃T

m,i[γiziϕm,i(x̄i) − ˙̂θm,i]

(3.29)

Design the virtual control function αi and update law ˙̂θm,i as

αi = N(ζi)[cizi + θ̂T
m,i(t)ϕm,i(x̄i) + ḡ2

i−1zi + 3
4zi + 1

2zi

i−1∑
l=1

(∂αi−1
∂xl

)2 − Hi] (3.30)

˙̂θm,i = γiziϕm,i(x̄i) − σiθ̂m,i (3.31)

ζ̇i = zi[cizi + ḡ2
i−1zi + θ̂T

m,i(t)ϕm,i(x̄i) + 3
4zi + 1

2zi

i−1∑
l=1

(∂αi−1
∂xl

)2 − Hi] (3.32)

where σi > 0 and ci > 0 are design parameters.
Thus, rewrite (3.29) as

V̇i ≤ −
i∑

k=1
ckz2

k +
i∑

k=1
[(gkN(ζk) + 1)ζ̇k] + 1

2

i∑
k=1

k∑
j=1
$ j

+
i∑

k=1

σk
γk
θ̃T

m,kθ̂m,k + ḡ2
i z2

i+1−
i∑

k=1
rWk −

n∑
j=i+1

z1(t)Q̄ j{z1(t)}
(3.33)

Step n: According to (2.1) and (3.2), we have

żn = gnu + θT
n (t)ϕn(x̄n) + qn(y(t − τn(t))) − α̇n−1

= gnu + θT
m,n(t)ϕm,n(x̄n) + qn(y(t − τn(t)))

−
n−1∑
l=1

∂αn−1
∂xl

ql(y(t − τl(t))) − Hn

(3.34)
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where Hn =
n−1∑
l=1

∂αn−1

∂θ̂m,l

˙̂θm,l +
n−1∑
l=1

∂αn−1
∂ζl

ζ̇l. θm,n = [θT
n , · · · , θ

T
1 , gn−1, · · · , g1]T ,

ϕm,n = [ϕT
n (x̄n),−∂αn−1

∂xn−1
ϕT

n−1(x̄n−1), · · · ,−∂αn−1
∂x1

ϕT
1 (x1),−∂αn−1

∂xn−1
xn, · · · ,−

∂αn−1
∂x1

x2]T .
Choose the Lyapunov function as

Vn = Vn−1 + 1
2z2

n + Wn + 1
2γn
θ̃T

m,nθ̃m,n (3.35)

where γn > 0 is a design constant. θ̂m,n is the estimate of θm,n and θ̃m,n = θm,n − θ̂m,n.

Define Wn =
n∑

k=1

2r(τ−t)

2(1−τ∗k)

∫ t

t−τk(t)
ersz1(s)Qk,1(z1(s))ds, thus, we have

Ẇn ≤ −rWn +
n∑

k=1

erτ

1−τ∗k
z1(t)Qk,1(z1(t)) − 1

2

n∑
k=1

z1(t − τk(t))Qk,1(z1(t − τk(t))).

Thus, the derivation of Vn is

V̇n ≤ −
n−1∑
k=1

ckz2
k + 1

2

n∑
k=1

k∑
j=1
$ j +

n−1∑
k=1

σk
γk
θ̃T

m,kθ̂m,k +
n−1∑
k=1

[(gkN(ζk) + 1)ζ̇k]

+ zn[gnu + θ̂T
m,n(t)ϕm,n(x̄n) + ḡ2

n−1zn + 1
2zn + 1

2zn

n−1∑
l=1

(∂αn−1
∂xl

)2

− Hn] + 1
γi
θ̃T

m,n[γnznϕm,n(x̄n) − ˙̂θm,n] −
N∑

k=1
rWk

(3.36)

Design the controller u and update law ˙̂θm,n as

u = N(ζn)[cnzn + ḡ2
n−1zn + θ̂T

m,n(t)ϕm,n(x̄n) + 1
2zn + 1

2zn

n−1∑
l=1

(∂αn−1
∂xl

)2 − Hn] (3.37)

˙̂θm,n = γnznϕm,n(x̄n) − σnθ̂m,n (3.38)

ζ̇n = zn[cnzn + ḡ2
n−1zn + θ̂T

m,n(t)ϕm,n(x̄n) + 1
2zn + 1

2zn

n−1∑
l=1

(∂αn−1
∂xl

)2 − Hn] (3.39)

where σn > 0 and cn > 0 are design parameters.
Thus, rewrite (3.36) as

V̇n ≤ −
n∑

k=1
ckz2

k +
n∑

k=1
[(gkN(ζk) + 1)ζ̇k] + 1

2

n∑
k=1

k∑
j=1
$ j +

n∑
k=1

σk
γk
θ̃T

m,kθ̂m,k −
n∑

k=1
rWk (3.40)

3.1. Exponential stability analysis

The property of the developed exponential controller can be summarized as the following Theorem.
Theorem 1. Consider nonlinear system (2.1), under the Assumption 1, the designed exponential
controller (3.37), virtual control functions (3.10), (3.20) and (3.30), update laws (3.11), (3.21), (3.31)
and (3.37), can guarantee that all signal of controlled system are UUB and exponential converge to
origin.

Proof. Choose Lyapunov function as V =
n∑

i=1
{ 12z2

i + Wi + 1
2γi
θ̃T

m,iθ̃m,i}, from (3.40), one has

V̇ ≤ −
n∑

i=1
ciz2

i +
n∑

i=1
[(giN(ζi) + 1)ζ̇i] +

n∑
i=1

σi
γi
θ̃T

m,iθ̂m,i −
n∑

i=1
rWi + 1

2

n∑
i=1

i∑
j=1
$ j (3.41)
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By utilizing (3.6), we have

σi

γi
θ̃T

m,iθ̂m,i ≤ −
σi

2γi
θ̃T

m,iθ̃m,i +
σi

2γi
θT

m,iθm,i (3.42)

Thus, let λ = min{2ci, σi, r} (i = 1, · · · , n), rewrite (3.41) as

V̇ ≤ −λV +
n∑

i=1
[(giN(ζi) + 1)ζ̇i] + D̄ (3.43)

where D̄ = 1
2

n∑
i=1

i∑
j=1
$ j +

n∑
i=1

σi
2γi
θT

m,iθm,i.

According to Lemma 1,
n∑

i=1
[(giN(ζi) + 1)ζ̇i] is bounded on [0, t f ]. Define D′ =

n∑
i=1

[(giN(ζi) + 1)ζ̇i],

D = D̄ + D′, (3.43) is finally expressed as

V̇ ≤ −λV + D (3.44)

Integrating (3.44) over [0, t] yields

0 ≤ V(t) ≤ D
λ

+ e−λtV(0) (3.45)

Thus, from (3.45), we can get |zi(t)| ≤
√

2( D
λ

+ e−λtV(0)), xi, zi, θ̂m,i are UUB and exponential converge
to zero. Furthermore, we also can obtain exponential decay rate can be determined by λ, by increasing
ci, σi or decreasing γi to get good transient performance of controlled system. This completes the proof
of Theorem 1. �

Remark 2. From the above analysis, we know that the size of |zi(t)| ≤
√

2( D
λ

+ e−λtV(0)) lies the design
parameters ci, γi and σi. By increasing the design parameters ci, γi or decreasing the design parameters
σi can make error z1 be smaller.

4. Simulation example

In this section, a numerical example is provided to display the feasibility of the designed controller.
Example. Consider the nonlinear system as

ẋ1 = g1x2 + θT
1 (t)ϕ1(x1) + q1(y(t − τ1(t)))

ẋ2 = g2u + θT
2 (t)ϕ2(x̄2) + q2(y(t − τ2(t)))

y = x1

(4.1)

where θ1 = 0.6, ϕ1(x1) = x2
1, θ2 = [0.8, 0.2]T , ϕ2(x̄2) = [x2 sin(x1), x1x2]T , g1 = 2, g2 = 3, q1(y(t −

τ1(t))) =
x1(t−τ1(t))

1+x2
1(t−τ1(t)) , q2(y(t − τ2(t))) =

sin(x1(t))x2
1(t−τ2(t))

1+x2
1(t−τ2(t)) .

Choose the design parameters in controller, virtual control functions and update laws as: c1 = 0.8,
c2 = 0.8, τ = 0.6, τ∗ = 0.4, γ1 = 6, γ2 = 4, σ1 = 4, σ2 = 4.

Then, the virtual control function α1, controller u and update laws are:

α1 = N(ζ1)[0.8z1 + θ̂T
m,1(t)ϕm,1(x1) +

3
4

z1 +

2∑
j=1

Q̄ j{z1(t)}]
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u = N(ζ2)[0.8z2 + ḡ2
1z2 + θ̂T

m,2(t)ϕm,2(x̄2) +
1
2

z2 +
1
2

z2(
∂α1

∂x1
)2 − H2]

˙̂θm,1 = 6z1ϕm,1(x1) − 4θ̂m,1

˙̂θm,2 = 4z2ϕm,2(x̄2) − 4θ̂m,2

Select the initial conditions od variables as: x1(0) = 0.5, x2(0) = 0.5, θ̂m,1(0) = 0.2, θ̂m,2(0) =

[0, 0, 0, 0]T . Thus, the simulation results are displayed by Figures 1-2. Figure 1 is the curves of states
x1 and x2; Figure 2 is the controller u.
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Figure 1. The trajectories of xi (i = 1, 2).
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Figure 2. The trajectory of controller u.

From the figures 1 and 2, it means that all the variables of controlled system exponential converge
to origin.
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5. Conclusion

In this paper, we have studied the exponential stability analysis and controller design issue for time-
varying delay nonlinear systems with unknown control direction. In control design, time-varying delay
and unknown control directions have been solved. Under the framework of adaptive backstepping
recursive design, an exponential stabilization control algorithm has been developed. It is demonstrated
that all solutions of controlled system are UUB and exponential converge to origin. The future research
directions will focus on the global exponential or fixed-time stabilization control for switched nonlinear
systems [21–23]. In addition, the global exponential output-feedback control for nonlinear systems are
also our future research topics [24] and [25].
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