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1. Introduction

The theory of evolution equations has attracted researchers’ great interest stimulated by its
numerous practical applications in the areas such as physics, population dynamics, electrical
engineering, medicine biology, ecology [1, 7]. In fact, much evidence has been gathered that Poisson
jumps are ubiquitous in many fields of science. By now, it is well established that stochastic systems
driven by Poisson jumps are more suitable for capturing sudden bursty fluctuations, some large moves
and unpredictable events than classical diffusion models [2, 4, 13]. Therefore, it is necessary to study
stochastic evolution equation (SEEs) driven by jumps. For example, in the areas of population
dynamics, Rathinasamy, Yin and Yasodha [20] discussed a stochastic age-dependent population
equation with Markovian switching

∂P
∂t + ∂P

∂a = −µ(t, a)P + f (r(t), P) + g(r(t), P) dW(t)
dt + h(r(t), P)dN(t)

dt , (t, a) ∈ Q,
P(0, a) = P0(a), r(0) = r0, a ∈ [0, Ã],

P(t, 0) =
∫ Ã

0
β(t, a)P(t, a)da, t ∈ [0,T ],

(1.1)
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where T > 0, Ã > 0,Q := (0,T ) × (0, Ã), P = P(t, a) is the population density of age a at time t,
r(t) ≥ 0 is a continuous-time Markov chain, µ(r(t), a) denotes the mortality rate of age a at time t,
β(t, a) denotes the fertility rate of females of age a at time t and f (·, ·) denotes the effects of the external
environment on the population system. g(·, ·) is a diffusion coefficient, W is a Brownian motion. h(·, ·)
is a jump coefficient, N is a scalar Poisson process with intensity λ̃.

This paper considers SEEs with jumps and random time delays modulated by Markov chains. To
illustrate, consider the following SEEs with random time delays

dX(t) =
(
AX(t) + f (X(t), X(t − r(t)))

)
dt +

∫
U

h(X(t), z)Ñ(dt, dz), (1.2)

where U ∈ Bσ(K − {0}) which will be defined in next section, r(t) ≥ 0 is a continuous-time Markov
chain in a finite state space S := {r1, . . . , rn}with generator Q̃ = (q̃i j) ∈ Rn×n. Without loss of generality,
assume that r1 < r2 < · · · < rn. Recall that the generator Q̃ is weakly irreducible, if the system of
equation { ṽQ̃ = 0,

n∑
i=1

ṽi = 1, (1.3)

has a unique solution ṽ = (ṽ1, ṽ2, . . . , ṽn) satisfying ṽi > 0 for all i = 1, . . . , n. The solution ṽ =

(ṽ1, ṽ2, . . . , ṽn) is termed as the stationary measure.
This system (1.2) is a switching system among the following n fixed delay subsystems

dXi(t) =
(
AXi(t) + f (Xi(t), Xi(t − ri))

)
dt +

∫
U

h(Xi(t), z)Ñ(dt, dz), i = 1, 2 · · · n. (1.4)

The random switching is governed by the Markov chain r(t) ≥ 0. In our setup, the Markov chain
has both fast and slow motions and involves strong and weak interactions. To reflect the fast and slow
motions of the Markov chain, we introduce a small parameter ε > 0 and rewrite the Markov chain r(t)
as rε(t) and the generator Q̃ as Qε. Thus, the Markov chain displays two-time-scales. That is, a usual
running time t and a stretched (fast) time t/ε. Suppose that the generator of the Markov chain is given
by

Qε :=
Q

ε
+ Q̂,

where both Q and Q̂ are generators of suitable continuous-time Markov chains such that Q/ε and Q̂
represent the fast-varying and slowly-changing parts, respectively. Throughout the paper, we assume
that Q is weakly irreducible in the sense defined in (1.3). Denote the stationary measure associated
with Q as v = (v1, v2, . . . , vn).

Now, we consider the following SEEs driven by jumps with random time delays modulated by
two-time-scale Markov switching processes, that is, we can rewrite Eq.(1.2) as

dXε(t) =
(
AXε(t) + f (Xε(t), Xε(t − rε(t)))

)
dt +

∫
U

h(Xε(t), z)Ñ(dt, dz), t ∈ [0,T ], (1.5)

where X0 = ψ(·) ∈ Db
F0

([−rn, 0];H), ψ(·) satisfies

E
[

sup
−rn≤s≤0

|ψ(s)|2H
]
< +∞, (1.6)
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and the Lipschitz condition, namely, there exists a constant K1 > 0 such that

|ψ(t1) − ψ(t2)| ≤ K1|t1 − t2|. (1.7)

An interesting question is: Whether or when the averaging principle still holds for the overall system
consisting of n fixed delay subsystems, can an averaged system be obtained? Such a question is the
main concern of this paper. It is well known that there is an extensive literature on averaging principles
for singularly perturbed stochastic (partial) differential equations [5, 6, 10, 16, 22, 24, 25]. Cerrai and
Freidlin [6] presented an averaged result for stochastic parabolic equations. Bréhier [5] derived explicit
convergence rates in strong and weak convergence for averaging of stochastic parabolic equations. Pei
et al. [14, 17] obtained an averaging principle for fast-slow stochastic partial differential equations
(SPDEs) in which the slow variable is driven by a fractional Brownian motion (fBm) and the fast
variable is driven by an additive Brownian motion. Xu, Miao and Liu [23] obtained an averaging
principle for two-time-scale SPDEs driven by Poisson random measures in the sense of mean-square.
Xu and Liu [22] proved a stochastic averaging principle for two-time-scale jump-diffusion SDEs under
the non-Lipschitz coefficients. Pei, Xu and Wu [15] studied the existence, uniqueness and averaging
principles for two-time-scales hyperbolic-parabolic equations driven by Poisson random measures.
Bao, Yin and Yuan [3] obtained averaging principles for SPDEs driven by α-stable noises with two-
time-scale Markov switching. As for random delays cases, Wu, Yin, and Wang [21] considered a class
of nonlinear systems with random time delays modeled by a two-time-scale Markov chain. Pei, Xu,
Yin and Zhang [19] examined averaging principles for functional SPDEs driven by a fBm modulated
by two-time-scale Markov switching process. Pei, Xu and Yin [18] considered SPDEs driven by fBms
with random time delays modulated by two-time-scale Markov switching processes.

Therefore, it is quite natural to ask whether or when an averaging principle for SEEs driven by
jumps with random time delays still holds. On the one hand, to the authors’ knowledge, the averaging
principle for SEEs driven by jumps with random time delays modulated by two-time-scale Markov
switching processes has not been considered. Therefore, it is necessary to obtain the averaging
principle for SEEs driven by jumps with random time delays. On the other hand, since introducing
randomly switching time delays, it is much more difficult to make system analysis and control design.
However, in our setup, we can employ a two-time scale framework to describe the dynamic
relationships of the switching time delay and the underlying system dynamics. Thus, it will be very
useful to consider delay-dependent stability by the two-time-scale approach whose main advantage is
that the stability can be examined by an ”average” system as a bridge. Thus, in this paper, my aim is
to obtain the averaging principle for SEEs driven by jumps with random time delays. Then, in
forthcoming work, it will be possible to consider delay-dependent stability involving jumps.

The rest of the paper is arranged as follows. Section 2 presents preliminary results that are needed
in the subsequent sections. In Section 3, we established an averaging principle for the case of SEEs
driven by jumps with random time delays.

2. Preliminaries

Let (Ω,F ,P) be a complete probability space equipped with some filtration {Ft}t≥0 satisfying the
usual conditions (i.e. it is right continuous and F0 contains all P -null sets). Let H,K be two separable
Hilbert spaces and we denote by 〈· 〉H , 〈· 〉K their inner products and by ‖ · ‖H, ‖ · ‖K their norms,
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respectively. To proceed, given τ > 0 and Dτ(H) := D([−τ, 0];H) denotes the family of all
right-continuous functions with left-hand limits ϕ from [−τ, 0] to H with the notation
‖ϕ‖Dτ

:= sup−τ≤s≤0 ‖ϕ(s)‖H. We use Db
F0

([−τ, 0];H) to denote the family of all almost surely bounded
F0-measurable, D([−τ, 0];H)-valued random variables. Define Xt by Xt(θ) = X(t + θ), θ ∈ [−τ, 0]. Let
Bσ(H) denote the Borel σ-algebra of H.

Let p(t), t ≥ 0 be a K-valued, σ-finite stationary Poisson point process with characteristic measure
ν on (Ω,F , {F }t≥0,P). The counting random measure Np is defined by

Np((t1, t2] × Λ)(ω) :=
∑

t1<s≤t2

IΛ(p(s)),

for any Λ ∈ Bσ(K) is the Poisson random measure associated to the Poisson point process p(t). Let
ν(·) = EN((0, 1] × ·). Then we defined the compensated Poisson measure Ñ associated to the Poisson
point process p(t) by

Ñ(dt, dz) := Np(dt, dz) − ν(dz)dt,

ν is a σ-finite measure and is called the Lévy measure.
Assume that {S (t), t ≥ 0} is an analytic semigroup with its infinitesimal generator A, then it is

possible under some circumstances to define the fractional power −A for any θ ∈ (0, 1) which is a
closed linear operator with its domain D((−A)θ). In this work, we always use the same symbol ‖ · ‖
to denote norms of operators regardless of the spaces potentially involved when no confusion possibly
arises. Then, we assume that the operator A satisfies the following condition.

(H1) A is the infinitesimal generator of an analytic semigroup of bounded linear operators {S (t), t ≥ 0}
in H such that the following inequality holds:

‖S (t)‖ ≤ Me−λt, t ≥ 0,

for some constants M ≥ 1 and λ > 0.

Lemma 2.1. Suppose that (H1) holds. Then for any θ ∈ (0, 1), the following equality holds:

S (t)(−A)θx = (−A)θS (t)x, x ∈ D((−A)−θ),

and there exists a positive constant Mθ > 0 such that

‖(−A)θS (t)‖ ≤ Mθt−θe−λt, t > 0,
‖(S (t) − I)(−A)−θ‖ ≤ Mθtθ, t > 0,

where I is the identity operator.

3. Stochastic evolution equations with jumps and random time delays

Throughout this paper, we assume that the following conditions are satisfied.

(H2) There exist constants K2,K3 > 0, for any x1, y1, x2, y2 ∈ H and q ≥ 2, such that

| f (x1, y1) − f (x2, y2)|2H ≤ K2(|x1 − x2|
2
H + |y1 − y2|

2
H),∫

U
|h(x1, z) − h(x2, z)|qHν(dz) ≤ K3|x1 − x2|

q
H.
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(H3) There exist constants K4,K5 > 0, for any x, y ∈ H and q ≥ 2, such that

| f (x, y)|2H ≤ K4(1 + |x|2H + |y|2H),∫
U
|h(x, z)|qHν(dz) ≤ K5(1 + |x|qH).

To proceed, we show that as ε→ 0, Xε to Eq.(1.5) has a limit X̄ which satisfies the following SEEs
that an averaged system

dX̄(t) =
(
AX̄(t) +

n∑
i=1

f (X̄(t), X̄(t − ri))vi

)
dt +

∫
U

h(X̄(t), z)Ñ(dt, dz), (3.1)

in the mild sense, with initial value X̄0 = ψ(·) ∈ Db
F0

([−rn, 0];H). Here, as ε → 0,
∑n

i=1 f (X̄(t), X̄(t −
ri))vi is the averaged drift term of f (Xε(t), Xε(t − rε(t))) in (1.5) based on the the stationary measure v
associated with the generator Q.

Following the discretization techniques inspired by Khasminskii in [10], we formulate our main
result of averaging principle.

Theorem 3.1. Let the condition (H1)–(H3) hold and assume further that ψ(0) ∈ D((−A)θ) with θ ∈
(0, 1

2 ). Then, for sufficiently small ε ∈ (0, 1), we have

E
[

sup
t∈[0,T ]

|Xε(t) − X̄(t)|2p
H ] ≤ Cp,n((ερ)2pθ + ε

β−ρ
2 )→ 0, as ε→ 0.

where Cp,n > 0 is a constant which is independent of ε and p ∈ [1, 1
2θ ), 0 < ρ < β < 1.

In this section, we firstly prove the existence and uniqueness of mild solution to Eq. (1.5). Then,
we give some estimations on the solution process. Finally, we prove the averaging principe result
(Theorem 3.1).

3.1. The existence and uniqueness of mild solution and some estimations on the solution process

Definition 3.2. (cf. [11] for example) An H-valued process Xε(t), t ∈ [0,T ] is called a mild solution of
Eq (1.5), if

1. Xε(t) is Ft-adapted and cadlag;

2. Xε(t) satisfies the following integral equation:

Xε(t) = S (t)ψ(0) +

∫ t

0
S (t − s) f (Xε(s), Xε(s − rε(s)))ds

+

∫ t

0

∫
U

S (t − s)h(X̄(s), z)Ñ(ds, dz), t ∈ [0,T ], (3.2)

where rε(t) is a two-time-scales Markov chain taking values in S.

By the classical method [11, 12], these assumptions (H1)–(H3) can guarantee the existence and
uniqueness of the mild solution to Eq (1.5).
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By Definition 3.2, the integral form of Eq (3.1) can be written as

X̄(t) = S (t)ψ(0) +

n∑
i=1

∫ t

0
S (t − s) f (X̄(s), X̄(s − ri))vids

+

∫ t

0

∫
U

S (t − s)h(X̄(s), z)Ñ(ds, dz), t ∈ [0,T ],

X̄(s) = ψ(s), s ∈ [−rn, 0], rn > 0, (3.3)

where ri ∈ S, i = 1, 2, . . . , n.

Lemma 3.3. Let (H1)–(H3) hold. Then, for p ≥ 1, we have

E
[

sup
t∈[−rn,T ]

(|X̄(t)|2p
H + |Xε(t)|2p

H )
]
≤ Cp,n,

where Cp,n > 0 is a constant which is independent of ε.

Proof: Taking expectation and employing the elementary inequality, we get from Eq (3.3) that

E
[

sup
t∈[−rn,T ]

|X̄(t)|2p
H

]
≤ CpE

[
sup
−rn≤t≤0

|ψ(t)|2p
H

]
+ CpE

[
sup

t∈[0,T ]

∣∣∣∣∣ n∑
i=1

∫ t

0
S (t − s) f (X̄(s), X̄(s − ri))vids

∣∣∣∣∣2p

H

]
+CpE

[
sup

t∈[0,T ]

∣∣∣∣∣ ∫ t

0

∫
U

S (t − s)h(Xε(s), z)Ñ(ds, dz)
∣∣∣∣∣2p

H

]
=: I1 + I2 + I3.

Firstly, for I1, by (1.6), it is easy to know there exists a constant Cp,n > 0 such that

I1 ≤ Cp,n.

Next, for I2, we have

I2 ≤ Cp,n

n∑
i=1

E
[

sup
t∈[0,T ]

∣∣∣∣∣ ∫ t

0
S (t − s) f (X̄(s), X̄(s − ri))vids

∣∣∣∣∣2p

H

]
≤ Cp,n

n∑
i=1

∫ T

0
E
[
| f (X̄(s), X̄(s − ri))|

2p
H

]
ds

≤ Cp,n

n∑
i=1

∫ T

0
(1 + E

[
|X̄(s)|2p

H + |X̄(s − ri)|
2p
H

]
)ds

≤ Cp,n + Cp,n

∫ T

0
E
[

sup
s1∈[−rn,s]

|X̄(s1)|2p
H

]
ds.

Then, for I3, by [8, Lemma 3.1], we have

I3 = CpE
[

sup
t∈[0,T ]

∣∣∣∣∣ ∫ t

0

∫
U

S (t − s)h(X̄(s), z)Ñ(ds, dz)
∣∣∣∣∣2p

H

]
≤ CpE

[( ∫ T

0

∫
U
|h(X̄(s), z)|2Hν(dz)ds

)p]
+ CpE

[ ∫ t

0

∫
U
|h(X̄(s), z)|2p

H ν(dz)ds
]
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≤ Cp + Cp

∫ T

0
E
[

sup
s1∈[−rn,s]

|X̄(s1)|2p
H

]
ds.

Therefore, by Gromwall’s inequality, we have

E
[

sup
t∈[−rn,T ]

|X̄(t)|2p
H

]
≤ Cp,n,

where Cp,n > 0 is a constant.
Finally, with the same proof, one obtains bounds on Xε, uniformly with respect to ε, i.e.

E
[

sup
t∈[−rn,T ]

|Xε(t)|2p
H

]
≤ Cp,n,

where Cp,n > 0 is a constant which is independent of ε. This completes the proof. �

Lemma 3.4. Let (H1)–(H3) hold and assume further that ψ(0) ∈ D((−A)θ) with θ ∈ (0, 1
2 ). Then, for

0 ≤ t < t + δ ≤ T, δ ∈ (0, 1), p ∈ [1, 1
2θ ), we have

sup
t∈[0,T ]

E[|X̄(t + δ) − X̄(t)|2p
H ] = Cp,nδ

2pθ.

Proof: From Eq (1.5) and Eq (3.1), one has

E[|X̄(t + δ) − X̄(t)|2p
H ] ≤ CpE

[
|(S (δ) − I)S (t)ψ(0)|2p

H

]
+CpE

[∣∣∣∣∣ n∑
i=1

∫ t+δ

0
S (t + δ − s) f (X̄(s), X̄(s − ri))vids

−

n∑
i=1

∫ t

0
S (t − s) f (X̄(s), X̄(s − ri))vids

∣∣∣∣∣2p

H

]
+CpE

[∣∣∣∣∣ ∫ t+δ

0

∫
U

S (t + δ − s)h(X̄(s), z)Ñ(ds, dz)

−

∫ t

0

∫
U

S (t − s)h(X̄(s), z)Ñ(ds, dz)
∣∣∣∣∣2p

H

]
=: J1 + J2 + J3.

Firstly, for J1, by Lemma 2.1 and the condition ψ(0) ∈ D((−A)θ), one has

J1 ≤ Cp‖(S (δ) − I)(−A)−θ‖2p‖S (t)‖2pE[|(−A)θψ(0)|2p
H ]

≤ Cpδ
2pθ. (3.4)

Then, for J2, we have

J2 ≤ Cp,n

n∑
i=1

E
[∣∣∣∣∣ ∫ t+δ

0
S (t + δ − s) f (X̄(s), X̄(s − ri))ds −

∫ t

0
S (t − s) f (X̄(s), X̄(s − ri))ds

∣∣∣∣∣2p

H

]
≤ Cp,n

n∑
i=1

E
[∣∣∣∣∣ ∫ t

0
(S (δ) − I)S (t − s) f (X̄(s), X̄(s − ri))ds

∣∣∣∣∣2p

H

]
+Cp,n

n∑
i=1

E
[∣∣∣∣∣ ∫ t+δ

t
S (t + δ − s) f (X̄(s), X̄(s − ri))ds

∣∣∣∣∣2p

H

]
AIMS Mathematics Volume 6, Issue 1, 39–51.
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=: J21 + J22.

Therefore, by Lemma 2.1 and Lemma 3.3, we have

J21 ≤ Cp,n

( ∫ t

0
(‖(S (δ) − I)(−A)−θ‖‖S (t − s)(−A)θ‖)ds

)2p−1

×

n∑
i=1

∫ t

0
(‖(S (δ) − I)(−A)−θ‖‖S (t − s)(−A)θ‖)E[| f (X̄(s), X̄(s − ri))|

2p
H ]ds,

≤ Cp,nM2p
θ δ

(2p−1)θ
n∑

i=1

∫ t

0
(t − s)−θδθ(1 + E[|X̄(s)|2p

H ] + E[|X̄(s − ri)|
2p
H ])ds

≤ Cp,nM2p
θ δ

2pθ, (3.5)

For J22, one has

J22 ≤ Cp,n

n∑
i=1

E
[∣∣∣∣∣ ∫ t+δ

t
S (t + δ − s) f (X̄(s), X̄(s − ri))vids

∣∣∣∣∣2p

H

]
≤ Cp,nδ

2p−1
n∑

i=1

∫ t+δ

t
E
[
| f (X̄(s), X̄(s − ri))|

2p
H

]
ds

≤ Cp,nδ
2p−1

∫ t+δ

t

(
1 + E

[
sup

s1∈[−rn,s]
|X̄(s1)|2p

H

])
ds

≤ Cp,nδ
2p.

Then, for J3, by [8, Lemma 3.1], Lemma 2.1 and Lemma 3.3, we have

J3 = CpE
[∣∣∣∣∣ ∫ t+δ

0

∫
U

S (t + δ − s)h(X̄(s), z)Ñ(ds, dz) −
∫ t

0

∫
U

S (t − s)h(X̄(s), z)Ñ(ds, dz)
∣∣∣∣∣2p

H

]
≤ CpE

[∣∣∣∣∣ ∫ t

0

∫
U

(S (t + δ − s) − S (t − s))h(X̄(s), z)Ñ(ds, dz)
∣∣∣∣∣2p

H

]
+CpE

[∣∣∣∣∣ ∫ t+δ

t

∫
U

S (t + δ − s)h(X̄(s), z)Ñ(ds, dz)
∣∣∣∣∣2p

H

]
≤ CpE

( ∫ t

0
‖(S (δ) − I)S (t − s)‖2

∫
U
|h(X̄(s), z)|2Hν(dz)ds

)p

+Cp

∫ t

0
‖(S (δ) − I)S (t − s)‖2p

∫
U
E[|h(X̄(s), z)|2p

H ]ν(dz)ds

+CpE
[( ∫ t+δ

t
‖S (t + δ − s)‖2

∫
U
|h(X̄(s), z)|2Hν(dz)ds

)p]
+Cp

∫ t+δ

t
‖S (t + δ − s)‖2p

∫
U
E[|h(X̄(s), z)|2p

H ]ν(dz)ds

≤ Cp,nδ
2pθ.

Here, we need the condition p ∈ [1, 1
2θ ).

Finally, putting above results together, it yields that

sup
t∈[0,T ]

E[|X̄(t + δ) − X̄(t)|2p
H ] = Cp,nδ

2pθ.

This completes the proof. �
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3.2. Proof of main result

By Hölder’s inequality and (H2), it follows from (1.5) and (3.1) that

E
[

sup
t∈[0,T ]

|Xε(t) − X̄(t)|2p
H ] ≤ Cp,n

n∑
i=1

E
[

sup
t∈[0,T ]

∣∣∣∣∣ ∫ t

0
S (t − s)( f (Xε(s), Xε(s − ri))

− f (X̄(s), X̄(s − ri)))I{rε(s)=ri}ds
∣∣∣∣∣2p

H

]
+Cp,n

n∑
i=1

E
[

sup
t∈[0,T ]

∣∣∣∣∣ ∫ t

0
S (t − s) f (X̄(s), X̄(s − ri)){I{rε(s)=ri} − vi}ds

∣∣∣∣∣2p

H

]
+CpE

[
sup

t∈[0,T ]

∣∣∣∣∣ ∫ t

0

∫
U

S (t − s)h(Xε(s), z)Ñ(ds, dz)

−

∫ t

0

∫
U

S (t − s)h(X̄(s), z)Ñ(ds, dz)
∣∣∣∣∣2p

H

]
=: Cp,n(Ψ1 +

n∑
i=1

Ψ2i) + CpΨ3.

Now, let us evaluate Ψ1,Ψ3, by (H2), we have

Ψ1 =

n∑
i=1

E
[

sup
t∈[0,T ]

∣∣∣∣∣ ∫ t

0
S (t − s)( f (Xε(s), Xε(s − ri)) − f (X̄(s), X̄(s − ri)))I{rε(s)=ri}ds

∣∣∣∣∣2p

H

]
≤ Cp

n∑
i=1

∫ T

0
E[| f (Xε(s), Xε(s − ri)) − f (X̄(s), X̄(s − ri))|

2p
H ]ds

≤ Cp

n∑
i=1

∫ T

0
E[|Xε(s) − X̄(s)|2p

H + |Xε(s − ri) − X̄(s − ri)|
2p
H ]ds

≤ Cp,n

∫ T

0
E[|Xε(s) − X̄(s)|2p

H ]ds.

For Ψ3, using [8, Lemma 3.1], we get

Ψ3 ≤ CpE
[( ∫ T

0

∫
U
|h(Xε(s), z) − h(X̄(s), z)|2Hν(dz)ds

)p]
+CpE

[ ∫ T

0

∫
U
|h(Xε(s), z) − h(X̄(s), z)|2p

H ν(dz)ds
]

≤ Cp

∫ T

0
E[|Xε(s) − X̄(s)|2p

H ]ds.

Now, let bsc := b s
ερ
cερ, 0 < ερ < 1, ρ > 0 with b s

ερ
c denoting the integer part of s

ερ
. Then, one has

Ψ2i ≤ CpE
[

sup
t∈[0,T ]

∣∣∣∣∣ ∫ t

0
S (t − s)(I − S (s − bsc)) f (X̄(s), X̄(s − ri))I{rε(s)=ri}ds

∣∣∣∣∣2p

H

]
+CpE

[
sup

t∈[0,T ]

∣∣∣∣∣ ∫ t

0
S (t − bsc)[ f (X̄(s), X̄(s − ri)) − f (X̄(bsc), X̄(bsc − ri))]I{rε(s)=ri}ds

∣∣∣∣∣2p

H

]
+CpE

[
sup

t∈[0,T ]

∣∣∣∣∣ ∫ t

0
(S (t − bsc) − S (t − s)) f (X̄(bsc), X̄(bsc − ri))]vids

∣∣∣∣∣2p

H

]
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+CpE
[

sup
t∈[0,T ]

∣∣∣∣∣ ∫ t

0
S (t − s)vi[ f (X̄(bsc), X̄(bsc − ri))] − f (X̄(s), X̄(s − ri))]ds

∣∣∣∣∣2p

H

]
+CpE

[
sup

t∈[0,T ]

∣∣∣∣∣ ∫ t

0
S (t − bsc) f (X̄(bsc), X̄(bsc − ri)){I{rε(s)=ri} − vi}ds

∣∣∣∣∣2p

H

]
=:

5∑
k=1

Πki(t).

Next, let t j := jερ, j = 0, 1, ..., b t
ερ
c and tb t

ερ
c+1 := t, ρ > 0. Then, similarly to the proof of J21, for

Π1i(t) and Π3i(t), using Hölder’s inequality, we have

Π1i(t) + Π3i(t) ≤ Cp,n(ερ)2pθ.

For Π2i(t) and Π4i(t), by (H2) and Lemma 3.4, we have

Π2i(t) ≤ CpE
[

sup
t∈[0,T ]

∫ t

0
‖S (t − bsc)‖2p| f (X̄(s), X̄(s − ri)) − f (X̄(bsc), X̄(bsc − ri))|

2p
H ds

]
≤ CpE

[
sup

t∈[0,T ]

∫ t

0
(|X̄(bsc) − X̄(s)|2p

H + |X̄(bsc − ri) − X̄(s − ri)|
2p
H )ds

]
≤ Cp

∫ T

0
E[|X̄(s j) − X̄(s)|2p

H ]ds + Cp

∫ T

0
E[|X̄(s − ri) − X̄(s j − ri)|

2p
H ]ds.

Then, by the initial condition on ψ(·) (1.7) and Lemma 3.4, we obtain

Π2i(t) + Π4i(t) ≤ Cp,n(ερ)2pθ.

To proceed, let us estimate Π5i(t). By Hölder’s inequality, (H3), Lemma 3.3 and the boundedness
of |I{rε(s)=ri} − vi|, we have

Π5i(t) ≤
Cp

(ερ)(2p−1)E
[

sup
t∈[0,T ]

b t
ερ
c∑

j=0

∣∣∣∣∣ ∫ t j+1

t j

S (t − t j) f (X̄(t j), X̄(t j − ri){I{rε(s)=ri} − vi}ds
∣∣∣∣∣2p

H

]

≤
Cp

(ερ)(2p−1) sup
t∈[0,T ]

( b t
ερ
c∑

j=0

e−2pλ(t−t j)
)(
E
[

sup
t∈[0,T ]

| f (X̄(t), X̄(t − ri)|
4p
H )

]) 1
2

× max
0≤ j≤b T

ερ
c

(
E
[∣∣∣∣∣ ∫ t j+1

t j

{I{rε(s)=ri} − vi}ds
∣∣∣∣∣4p]) 1

2

≤
Cp

(ερ)(2p−1) sup
t∈[0,T ]

( b t
ερ
c∑

j=0

e−2pλ(t−t j)
)
(1 + E[ sup

t∈[0,T ]
|X̄(t)|4p

H ] + E[ sup
t∈[0,T ]

|X̄(t − ri)|
4p
H ])

1
2

× max
0≤ j≤b T

ερ
c

(
E
[∣∣∣∣∣ ∫ t j+1

t j

{I{rε(s)=ri} − vi}ds
∣∣∣∣∣4p]) 1

2

≤ Cp(e2pλερ − 1)−1 max
0≤ j≤b T

ερ
c

(
E
[∣∣∣∣∣ ∫ t j+1

t j

{I{rε(s)=ri} − vi}ds
∣∣∣∣∣2]) 1

2

. (3.6)

To show (3.6), we adopt an argument similar to that of Yin and Zhang [26, Theorem 7.2, page 170]
and Bao, Yin and Yuan [3, Proof of Theorem 2.1, (2.24), pp. 653]. Let
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ηε(u) :=
1
2
E
[∣∣∣∣∣ ∫ u

t j

{1{rε(s)=i} − vi}ds
∣∣∣∣∣2], u ∈ [t j, t j+1].

Then, it is easy to see from the chain rule that

dηε(u)
du

= E
[ ∫ u

t j

(1{rε(u)=i} − vi)(1{rε(s)=i} − vi)ds
]
, u ∈ [t j, t j+1].

Let t̄k := kεβ, k = 0, 1, . . . , b(u − t j)/εβc + 1, where t̄0 := t j and t̄b(u−t j)/εβc+1 =: u. Thus, by [3, Proof of
Theorem 2.1, (2.24), pp. 653], we have

E
[∣∣∣∣∣ ∫ t j+1

t j

{I{rε(s)=ri} − vi}ds
∣∣∣∣∣2] = O(ερ+β),

where β ∈ (ρ, 1). Next, by Taylor’s formula, it is easy to know (e2pλ1ε
ρ
− 1) = O(ερ) for sufficiently

small ερ ∈ (0, 1). Thus, we get

Π5i(t) ≤ Cpε
β−ρ

2 .

Finally, by Gronwall’s inequality, we have

E
[

sup
t∈[0,T ]

|Xε(t) − X̄(t)|2p
H ] ≤ Cp,n((ερ)2pθ + ε

β−ρ
2 ),

with β ∈ (ρ, 1). Thus, we have

lim
ε→0
E
[

sup
t∈[0,T ]

|Xε(t) − X̄(t)|2p
H ] = 0,

This completes the proof. �

4. Conclusions

In this paper, by focusing on SEEs with jumps and random time delays modulated by
two-time-scale Markov switching processes in which both fast and slow components co-exist, we
establish an averaging principle under suitable conditions. For future research, delay-dependent
stability involving two-time-scale structure and jumps is both interesting and important. It deserves to
be further investigated in the future.
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